
Improving Gaussian Splatting with Localized Points Management

Haosen Yang1* Chenhao Zhang1* Wenqing Wang1* Marco Volino1 Adrian Hilton1

Li Zhang2 Xiatian Zhu1

1University of Surrey 2Fudan University

*Equal contribution

https://happy-hsy.github.io/projects/LPM/

3
D

G
S

+
L

P
M

Rendered Image Gaussian Points Rendered Depth

3
D

G
S

Figure 1. Visualization of points behavior. 3DGS produces ill-conditioned Gaussians (red box) that occlude other valid points, resulting

in noticeably incorrect depth estimation. LPM handles these ill-conditioned points to reduce negative impacts and further calibrate the

geometry.

Abstract

Point management is critical for optimizing 3D Gaussian

Splatting models, as point initiation (e.g., via structure from

motion) is often distributionally inappropriate. Typically,

Adaptive Density Control (ADC) algorithm is adopted,

leveraging view-averaged gradient magnitude thresholding

for point densification, opacity thresholding for pruning,

and regular all-points opacity reset. We reveal that this

strategy is limited in tackling intricate/special image re-

gions (e.g., transparent) due to inability of identifying all

3D zones requiring point densification, and lacking an ap-

propriate mechanism to handle ill-conditioned points with

negative impacts (e.g., occlusion due to false high opac-

ity). To address these limitations, we propose a Localized

Point Management (LPM) strategy, capable of identify-

ing those error-contributing zones in greatest need for both

point addition and geometry calibration. Zone identifica-

tion is achieved by leveraging the underlying multiview ge-

ometry constraints, subject to image rendering errors. We

apply point densification in the identified zones and then re-

set the opacity of the points in front of these regions, creat-

ing a new opportunity to correct poorly conditioned points.

Serving as a versatile plugin, LPM can be seamlessly in-

tegrated into existing static 3D and dynamic 4D Gaussian

Splatting models with minimal additional cost. Experimen-

tal evaluations validate the efficacy of our LPM in boosting

a variety of existing 3D/4D models both quantitatively and

qualitatively. Notably, LPM improves both static 3DGS and

dynamic SpaceTimeGS to achieve state-of-the-art rendering

quality while retaining real-time speeds, excelling on chal-

lenging datasets such as Tanks & Temples and the Neural
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3D Video dataset.

1. Introduction

Neural rendering has emerged as a generalizable, flexible,

and powerful approach for photorealistic novel view synthe-

sis (NVS) of any camera poses [23], underpinning a wide

variety of applications in augmented/virtual/mixed reality

[9], robotics [37], and generation [25], among more oth-

ers. For example, taking a learning-based parametric idea,

Neural Radiance Fields (NeRFs) [23] implicitly represent

the scene radiance of any complexity using neural networks

(e.g., MLPs), without the tedious requirements of model

handcrafting for accounting the scene variations in geom-

etry, texture, illumination. However, their view rendering is

inefficient computationally due to heavy ray sampling, thus

suffer in scaling to high-resolution content applications and

large scale scene modeling [29, 32].

Recently, 3D Gaussian Splatting (3DGS) [14] has come

as an alternative with explicit representation, much faster

model optimization and real-time neural rendering. The

process begins by initializing a set of 3D Gaussian points

using Structure from Motion (SfM) [28]. This is followed

by optimizing the parameters of these points through view

reconstruction loss, resulting in a view output generated

with differentiable splatting-based rasterization. However,

the point initialization is often distributionally non-optimal,

leading to issues such as under-population (e.g., insuffi-

cient points) or over-population (e.g., excessive points) in

the 3D space. Consequently, a point management mech-

anism, such as Adaptive Density Control (ADC), is nec-

essary during optimization. However, we identify several

limitations with ADC: (i) Thresholding the average gradi-

ent to determine regions for point densification often over-

looks under-optimized points. For instance, larger Gaussian

points typically have lower average gradients and may fre-

quently appear across various views in screen space. (ii)

Point sparsity complicates the addition of sufficient and reli-

able points needed to comprehensively cover the scene. (iii)

Mis-optimized Gaussian points can have detrimental ef-

fects, such as occluding other valuable points and leading to

incorrect depth estimates (see erroneous placements on win-

dows in Fig. 1). While GaussianPro [7] and PixelGS [41]

try to solve (1) and (2) through multi-view stereo [2] and

additional gradient propagation, respectively, these meth-

ods significantly increase the training budget, as shown in

the Table 4.

To overcome the aforementioned limitations, in this pa-

per we propose a novel and efficient Localized Point Man-

agement (LPM) approach. Our idea is intuitive – identi-

fying those 3D Gaussian points leading to rendering er-

rors. Thus we start with an image rendering error map of

a specific view. To obtain the error contributing 3D points,

we leverage the region correspondence between different

views via feature mapping, subject to the multiview ge-

ometry constraint. For each pair of corresponded regions,

we cast the rays through them at their respective camera

views in the cone shape, and consider their intersection as

the error source zone. Within each such zone, we consider

two situations: (1) At presence of points, we further ap-

ply point densification at a lower threshold to complement

the original counterpart locally; (2) In case no point due to

point sparsity, we add new Gaussian points. Concurrently,

we reset the opacity of points with high opacity estimates

that are located in front of these zones, as they can signifi-

cantly affect view rendering. This provides an opportunity

to correct potentially ill-conditioned points while tuning the

newly added ones in the subsequent optimization. To mini-

mize model expansion, we prune the points by opacity in a

density-aware manner.

We summarize the contributions below: (1) Through in-

depth analysis, we have identified several limitations in the

standard point management mechanism used in Gaussian

Splatting that impede model optimization. (2) We present

Localized Point Management (LPM) for these issues by

identifying error-contributing 3D zones and implementing

appropriate operations for point densification and opacity

reset. (3) Extensive experiments validate the benefits of our

LPM in improving a diversity of existing 3D and 4D Gaus-

sian Splatting models in novel view synthesis on both static

and dynamic scenes.

2. Related Work

Neural Scene Representations has always been an impor-

tant direction in novel view synthesis. Previous methods al-

locate neural features to structures such as volume [21, 27],

texture [31], and point cloud [1]. The pioneering work

of NeRF [23] proposes integrating neural networks with

3D volumetric representations to convert a 3D scene into

a learnable density field, enabling high-quality novel view

synthesis without requiring explicit modeling of the 3D

scene and illumination. Later on, numerous works emerge

to boost the quality and efficiency of volume rendering,

[3, 5, 35] refine the point sampling strategy in ray march-

ing, some some advanced works [4, 33] reparameterize the

scene to produce a more compact representation. Addition-

ally, regularization terms [8, 39] can be incorporated to con-

strain the scene representation, resulting in a closer approx-

imation to real-world geometry. Despite their high-quality

representational performance, these methods are typically

computationally inefficient for view rendering due to the ex-

tensive ray sampling required and the use of Multi-Layer

Perceptrons (MLPs) to represent the scene, complicating

the computation and optimization of any point within the

scene. To address this, several works have proposed novel

scene representations aimed at accelerating the rendering

process. These representations replace MLPs with sparse

21697



voxels [20], hash tables [24], or triplanes [6], significantly

enhancing rendering speed. However, real-time rendering

remains challenging due to the inherent complexity of the

ray marching strategy in volume rendering.

Gaussian Splatting represents a recent advancement

in novel view synthesis, enabling real-time high-quality

rendering. It contributes to splatting-based rasterization

by computing pixel colors through depth sorting and α-

blending of projected 2D Gaussians, thereby avoiding the

complex sampling strategies of ray marching and achiev-

ing real-time performance. It is precisely due to its real-

time high-quality rendering capabilities that 3DGS has

been applied to various domains, including autonomous

driving, content generation [30], and 4D dynamic scenes

[18, 34, 38], among others. Despite these advancements,

3DGS still has some drawbacks, such as the storage of

Gaussians and handling multi-resolution, and so on. Sev-

eral works have enhanced 3DGS by improving Gaussian

representation, including techniques such as low-pass filter-

ing [40], multiscale Gaussian representations [36], and in-

terpolating Gaussian attributes from structured grid features

[22]. However, these works often overlook the importance

of point management, specifically Adaptive Density Con-

trol, which is typically applied during optimization to ad-

dress issues like under-population or over-population in the

3D space. Only a few works have focused on point manage-

ment. For example, GaussianPro [7] directly tackles densi-

fication limitations, bridging gaps from SfM-based initial-

ization. Pixel-GS [41] proposes a gradient scaling strategy

to suppress artifacts near the camera. Additionally, [26] in-

troduces an auxiliary per-pixel error function to implicitly

supervise point contributions.

Although these methods improve densification, they are

still unable to identify all 3D zones that require point

densification and lack a proper mechanism to handle ill-

conditioned points with negative impacts. Here, we propose

a novel approach, Localized Point Management, capable of

identifying error-contributing zones with greatest demand

for both point addition and geometry calibration.

3. Method

3.1. Preliminaries: 3D Gaussian Splatting

Gaussian Splatting builds upon concepts from EWA [42]

splatting and proposes modeling a 3D scene as a collec-

tion of 3D Gaussian points {Gi | i = 1, . . . ,K}, rendered

through volume splatting. Each 3D Gaussian G is defined

by the equation:

G(x) = e−
1

2
(x−µ)TΣ−1(x−µ),

where µ ∈ R
3×1 represents the mean vector, and Σ ∈ R

3×3

denotes its covariance matrix. To maintain the positive

semi-definite nature of Σ during optimization, it is repre-

sented as Σ = RSSTRT , with the orthogonal rotation ma-

trix R ∈ R
3×3 and the diagonal scale matrix S ∈ R

3×3.

To render an image from a specific viewpoint, the color

of each pixel p is determined by blending N ordered Gaus-

sians {Gi | i = 1, . . . , N} that overlap p, using the formula:

c(p) =
N∑

i=1

ciαi

i−1∏

j=1

(1− αj),

where αi is derived by evaluating a projected 2D Gaussian

from Gi at pixel p combined with a learned opacity for

Gi, and ci is the learnable, view-dependent color modeled

using spherical harmonics in 3DGS. Gaussians that influ-

ence p are arranged in ascending order based on their depth

from the current viewpoint. Employing differentiable ren-

dering techniques allows for the end-to-end optimization of

all Gaussian attributes through training view reconstruction.

Point management Since existing 3DGS variants start by

initializing 3D Gaussian points using Structure from Mo-

tion (SfM), the points are often coarse and non-optimal in

space. During optimization, a point management mecha-

nism, Adaptive Density Control (ADC), is typically applied

to manage point distribution issues. Specifically, threshold-

ing the average gradient is used to decide on point densifi-

cation. For each Gaussian point Gi, 3DGS tracks the mag-

nitude of the positional gradient ∂Lπ

∂µi

across all rendered

views, which is then averaged to a quantity Ti. During each

training iteration, if the gradient Ti surpasses a predefined

threshold, it considers this point as inadequately represent-

ing the corresponding 3D region. With the scale of the

Gaussian as the size measure, a large Gaussian will be split

into two, while a small one leads to point cloning.

However, this commonly used ADC strategy is unable to

identify all the 3D zones with the underlying need for point

densification. This is becuase, often the local complexity

of scene geometry varies significantly, which beyond the

reach of any single-value based thresholding. Besides, there

is lacking of a proper mechanism to handle ill-conditioned

points with negative impacts (e.g., wrong opacity values

estimated during training with points distributed here and

there).

3.2. Localized Gaussian Point Management

To address the aforementioned issues, we introduce a novel

model agnostic point management approach, Localized

Point Management (LPM), which leverages multiview ge-

ometry constraints to identify error contributing 3D points,

with the guidance of image rendering errors. This approach

can be seamlessly integrated with existing 3DGS models

without the need for architectural modification. As illus-

trated in Figure 2, we begin with an image rendering error

map for a specific view. Under the multiview geometry con-

straint, the corresponding regions in the referred view are
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Figure 2. Overview of our Localized Point Management (LPM). (a) We start with an image rendering error map versus the current view

(the ground-truth). Concurrently, matching points are identified between the current view and a referred view sampled as an adjacent view

via off-the-shelf feature mapping. (b) Subsequently, cross-view region mapping is then employed to locate the correspondence region in

the refereed view. (c) For each pair of corresponded regions, we cast the rays through them at their respective camera views in the cone

shape, and consider their intersection as the error source zone. The final step involves identifying under-optimized or ill-conditioned points

within these zones, where under-optimized/empty places are densified, and ill-conditioned points are reset.

matched via feature mapping. For each pair of correspond-

ing regions, we then cast rays through them from their re-

spective camera views in a cone and identify their intersec-

tion as the error source zone. Within each zone, we perform

localized point manipulation.

Error map generation To accurately localize those zones

in the 3D space that require point densification and geome-

try calibration, we initiate our process by rendering the cur-

rent view image through the splatting of 3D Gaussians. This

is followed by generating an error map (Figure 2(a)) for this

specific view against the grounth-truth image using an error

function [18].

Error contributing 3D zone identification To project

this rendering error back to the 3D space, we leverage the

region correspondence between different views under mul-

tiview geometry constraints. This involves the following

two key steps.

(i) Cross-view region mapping We select a neighbor-

ing view as the referred image. Following LightGlue [19],

which predicts a partial assignment between two sets of lo-

cal features extracted from images A and B from different

views. Each feature consists of sets of 2D features position

{Fi | (xi, yi) ∈ [0, 1]2}, normalized by the image size. The

images A and B contain M and N local features. LightGlue

outputs a set of correspondences M = {(i, j)} ⊆ A × B,

where i and j denote the indices of matched points from

sets A and B, respectively. Since the 2D rendering error

regions in the current view may not all appear in the ref-

erenced image, we select the paired regions (Re, R
′

e) (Fig-

ure 2(b)) based on the matching points, where Re represents

the region in the current view and R′

e corresponds to the re-

gion in the reference view. Additionally, this paired region

undergoes multiview adaptive adjustments based on the er-

ror map throughout the optimization process.

(ii) 2D-to-3D projection After obtaining the paired re-

gions with render errors, we project each 2D error region to

the 3D space via multiview geometry constraints. Specifi-

cally, we cast the rays C in cone shape for region Re from

the camera’s center of projection o along the direction d,

which aligns with the pixel’s center (Figure 2(c)). The apex

of this cone is located at o, and its radius at the image plane.

Hence, o+ d is parameterized as C. The radius rCone is set

to match the radius of the smallest circumscribed circle of

the 2D plane error region, creating a cone on the 3D space

that can trace the Gaussian points contributing to the 2D

error region. Concurrently, a corresponding cone, denoted

as C′, belong to region R′

e is similarly projected. Subse-

quently, we compute the intersection points of these rays.

In order to regionalize these points, we directly use a small-

est sphere that can contain these points as error source 3D

zone Rzone.

Points manipulation Recall that in existing 3DGS, points

management only relies on the view-averaged gradient

magnitude τ to determine point densification globally. In

addition to this, we further perform localized points ad-

dition and geometry calibration within the identified error

source 3D zone Rzone. For the point addition, we consider

two common situations: (1) In the presence of points, we
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Ground Truth 3DGS+LPM rendered RGB image3DGS* rendered RGB image

(a)

(b)

(c)

Ground Truth 3DGS+LPM rendered depth3DGS* rendered depth

(d)

2DGS rendered mesh 2DGS vs 2DGS+LPM heatmap 2DGS+LPM rendered mesh
Figure 3. Qualitative evaluation of our LPM across diverse static datasets [4, 12]. Our LPM improves 2DGS [13] and 3DGS [14] on these

challenging scenarios, e.g. (a) Light artifacts, (b) Completeness in the distance, (c) Depth structure and (d) Mesh details. See red

patches for highlighted visual differences.

apply point densification to locally complement the original

counterparts. We set a lower threshold to select the points

that need densification, aiming to enhance the geometric de-

tails. The densification rule is consistent with 3DGS, but it

focuses on local 3D zones that need it most. Specifically,

for small Gaussians, our strategy involves cloning the Gaus-

sians while maintaining their size and repositioning them

along the positional gradient to better capture emerging ge-

ometrical features. Conversely, larger Gaussians situated in

areas of high variance are split into smaller points to more

accurately represent the underlying geometry. (2) In cases

of point sparsity, we add new Gaussian points at the center

of the 3D zone. In the context of α-blending in 3DGS, if the

points at the forefront of the identified 3D zone Rzone have

the highest opacity, they may occlude valid points, lead-

ing to incorrect depth estimation, as shown in Figure 1. To

deal with such issues, we treat these points as potentially

ill-conditioned. We reset these points to provide an op-

portunity for correction, further calibrating the geometry.

To minimize model expansion, we adaptively prune points

based on their opacity values, starting from low to high. The

number of points pruned is determined by the density of
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Method Mip-NeRF 360 Tanks&Temples Deep Blending

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Plenoxels 23.08 0.625 0.463 21.08 0.719 0.379 23.06 0.795 0.510

INGP-Big 25.59 0.699 0.331 21.92 0.745 0.305 24.96 0.817 0.390

Mip-NeRF 360 27.69 0.792 0.237 22.22 0.759 0.257 29.40 0.901 0.245

3DGS 27.21 0.815 0.214 23.14 0.841 0.183 29.41 0.903 0.243

3DGS* 27.47 0.816 0.216 23.67 0.849 0.177 29.55 0.904 0.245

3DGS* + LPM 27.59 0.820 0.216 23.83 0.850 0.181 29.76 0.908 0.241

2DGS* 27.15 0.808 0.246 23.58 0.832 0.185 29.35 0.899 0.262

2DGS* + LPM 27.42 0.817 0.228 23.65 0.848 0.180 29.52 0.903 0.240

MipGS* 27.51 0.817 0.210 23.69 0.852 0.173 29.58 0.910 0.242

MipGS* + LPM 27.70 0.821 0.210 23.82 0.851 0.180 29.61 0.910 0.241

PixelGS* 27.54 0.819 0.203 23.75 0.850 0.175 29.58 0.920 0.220

PixelGS* + LPM 27.80 0.830 0.190 24.02 0.856 0.173 29.65 0.910 0.196

Table 1. Comparison of various methods across different scenes on the Mip-NeRF 360 dataset, Tanks&Temples and Deep Blending. *

indicates the retrained model from the official implementation. Bold represents best, underline indicates second best.

points in the zone. This strategic reduction ensures that our

point management remains cost efficient and adaptive to the

evolving needs of the scene representation.

4. Experiment

Datasets and metrics We conducted an extensive eval-

uation using both static and dynamic scenes derived from

publicly datasets. For static scenes, our approach was ap-

plied to a total of 13 scenes as specified in the 3DGS frame-

work [14], which includes nine scenes from Mip-NeRF360

[3], two from Tanks&Temples [15], and two from Deep-

Blending [12]. In the context of dynamic scenes, our ap-

proach was tested across six scenes from the Neural 3D

Video Dataset [17].

To evaluate novel view synthesis performance, we fol-

lowed standard protocols by selecting one out of every eight

images as test images, with the remaining used for train-

ing in static scenes. For each dynamic scene within the

Neural 3D Video Dataset, one view was designated for

testing while the others were allocated for training pur-

poses. Evaluation metrics included the peak signal-to-noise

ratio (PSNR), structural similarity index measure (SSIM),

and the learned perceptual image patch similarity (LPIPS),

which are broadly recognized standards in the field.

Baselines and implementation Vanilla 3D Gaussian

Splatting (3DGS) [14], 2D Gaussian Splatting (2DGS)

[13], Mip Gaussian Splatting (MipGS) [40], PiexlGS [41]

and SpacetimeGS (STGS) [18] were selected as our main

baselines for their established art performance in novel view

synthesis. For the static 3D benchmark, we also recorded

the results of Mip-NeRF360 [3], iNGP [24] and Plenox-

els [10] as in [14]. For the Dynamic 4D benchmark, we

performed system comparison, such as DyNeRF [16], K-

planes [11] and so on. In alignment with the approach

described in 3DGS an STGS, our models were trained for

30k iterations across all scenes, following the same training

schedule and hyperparameters. In addition to the original

Gaussian densification strategies used in 3DGS and Space-

Time Gaussian, we also performed localized points man-

agement, including addition, reset, and pruning. We main-

tained the same thresholds for splitting and cloning points

as in the original 3DGS and SpaceTime Gaussian. For point

matching, we performed offline extraction to save compu-

tational cost. All experiments were conducted on an RTX

3090 GPU with 24GB of memory.

4.1. Main Results

Results on static 3D datasets The quantitative results

(PSNR, SSIM, and LPIPS) on the Mip-NeRF 360 and Tanks

& Temples datasets are presented in Tables 1. We re-

trained the 3DGS model (referred to as 3DGS*) as it yields

better performance compared to the vanilla 3DGS and its

variants. Our approach achieves results comparable to the

state-of-the-art on the Mip-NeRF360 dataset and further en-

hances all 3DGS based method using our point management

technique. Additionally, LPM improve vanilla 3DGS and

PiexlGS to set new state-of-the-art results on the Mip-NeRF

360, Tanks & Temples datasets and Dep Blending, effec-

tively capturing more challenging environments (e.g., light

effects, transparency). These results quantitatively validate

the effectiveness of our method in improving the quality of

reconstruction.

In Figures 3, we present a comparison between

3DGS [14] and 3DGS* + LPM, focusing on both appear-

ance and depth. A variety of improvements can be ob-

served, particularly in challenging cases such as light ef-

fects, completeness at a distance. Our LPM significantly

reduces artifacts in specific regions on top of 3DGS, partic-
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3DGS (lower threshold) LPM wo/ point addition LPM wo/ reset 3DGS+LPM3DGS

Figure 4. Effect of key operations of LPM. We show that the point addition operation effectively captures the geometric details in the

scene; The point reset operation based on the error map further calibrate the geometry.

Method PSNR DSSIM LPIPS FPS

LLFF 1 23.24 0.076 0.235 -

DyNeRF 1 29.58 0.083 0.063 0.015

Dynamic-4DGS 1 - - - 30

4DGS 1 29.38 - - 114

STGS 1 29.58 0.022 0.063 103

STGS* 1 29.48 0.023 0.066 110

STGS* 1 + LPM 29.84 0.022 0.062 105

StreamRF 28.26 - 0.039 10.9

NeRFPlayer 30.69 - 0.111 0.05

HyperReal 31.10 - 0.096 2

K-planes 31.63 - 0.31 3

MixVoxels-X 31.73 - 0.064 4.6

Dynamic-4DGS 31.15 0.016 0.049 30

4DGS 32.01 - 0.055 114

STGS 32.05 0.014 0.044 140

STGS* 31.99 0.015 0.045 145

STGS*+ LPM 32.40 0.014 0.045 140

Table 2. Quantitative comparisons on the Neural 3D Video dataset.

“FPS” is measured at a resolution of 1352 × 1014. Some methods

only report results for a subset of scenes. For a fair comparison,

we report LPM’s results under two pre-existing settings. 1 Only

includes the Flame Salmon scene. Bold represents best, underline

indicates second best.

ularly in the tree at the second. These regions require more

points for accurate population, leading to a more precise and

detailed reconstruction. Additionally, the tablecloth in the

first row is affected by ill-conditioned points. Furthermore,

we provide depth and mesh comparisons in the third and fi-

nal rows. All these observations demonstrate that our geom-

etry calibration with LPM offers an opportunity to correct

these potentially ill-conditioned points, thereby enhancing

the overall reconstruction accuracy.

Results on dynamic 4D datasets Table 2 presents a

quantitative evaluation on the Neural 3D Video Dataset.

(b)

(a)

Ground Truth STGS STGS+LPM

Figure 5. Qualitative evaluation on dynamic Neural 3D Video

dataset [17]. LPM improves STGS [18] for both scenes Transpar-

ent (e.g., window) and Dynamic movements (e.g., dog’s tongue).

Following established practices, training and evaluation are

conducted at half resolution, with the first camera held out

for evaluation [16]. Integrating our LPM into Space-

TimeGS yields the best performance across all compar-

isons. Notably, our method demonstrates significant im-

provements in the challenging Flame Salmon scene com-

pared to SpaceTimeGS [18]. Our approach not only sur-

passes previous methods in rendering quality but also main-

tains comparable rendering speed.

In addition to the quantitative assessment, we provide

qualitative comparisons on the Flame Salmon and Flame

Steak scenes, as illustrated in Figure 5. The quality of syn-

thesis in both static and dynamic regions markedly outper-

forms STGS. Several intricate details, including the tree be-

hind the window and the fine features like the dog’s tongue,

are faithfully reproduced with higher accuracy compared to

STGS [18]. Both examples indicate that LPM improves

upon STGS for superior scene modeling.

4.2. Ablation study

We conducted ablation studies on the more challenging

scene: PlayRoom from Deep Blending [12] and Truck from

Tanks&Temples [15].

Effectiveness and cost of LPM We hypothesize that the

Adaptive Density Control (ADC) tends to overlook under-
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PlayRoom Truck

Method PSNR LPIPS SSIM PSNR LPIPS SSIM

Full LPM 30.22 0.241 0.910 25.61 0.154 0.883

wo/ point addition 30.10 0.241 0.910 25.43 0.153 0.883

wo/ reset 30.07 0.243 0.908 25.52 0.144 0.883

Table 3. Performance comparison for different configurations

Scene Method PSNR LPIPS Gaussians Training time

3DGS* 30.03 0.244 232k 22min

3DG* (lower threshold) 29.69 0.240 523k 36min

PlayRoom GaussianPro Out of Memory

PiexlGS 30.09 0.241 186k 35min

3DGS + LPM 30.22 0.241 186k 23min

3DGS* 25.42 0.146 257k 19 min

3DGS* (lower threshold) 25.45 0.127 635k 35min

Truck GaussianPro 25.40 0.164 312k 36min

PiexlGS 25.51 0.121 518k 37min

3DGS + LPM 25.61 0.154 265k 21min

Table 4. Cost-effectiveness analysis. Rendering speed of both methods are measured on our machine. Note: For 3DGS+LPM, training

time includes the feature matching process.

optimized points due to its simplistic approach of thresh-

olding the average gradient. The straight way to identify

the all points is lowering threshold to densification process.

Although this solution can reduce blurring in specific re-

gions, such as the toy (red box) illustrated in Figure 4, it

still has limitations. As shown in Table 4, lowering the

threshold for 3DGS significantly increases the number of

Gaussian points and decreases rendering speed. Addition-

ally, the PSNR of the quantitative results decreases due to

the introduction of unnecessary points in already dense ar-

eas. In contrast, LPM effectively generates points in areas

indicated by the error map, leading to more accurate and

detailed reconstructions while maintaining real-time render-

ing speed. As demonstrated by the qualitative comparison

in Figure 4, 3DGS with LPM achieves superior qualitative

results. We further compare our method with other recent

methods that also focus on adaptive density control (ADC).

While PixelGS and GaussianPro achieve improvements in

rendering quality, their training times increase substantially

as they only consider point addition and extra gradient prop-

agation. In contrast, LPM achieves a noticeable improve-

ment with only a slight increase in training time due to (1)

point matching [19] is much faster (2) considering model

expansion to dynamically prune the points by their addition

number and (3) selecting points in error-contributing zones

3D zone using the parallel matrix operations.

Individual points manipulation We study the effect of

individual points manipulation of LPM, including the point

addition and reset ill-conditional points. The results in Ta-

ble 3 show that, (1) each manipulation is useful with posi-

tive gain, suggesting that the LPM is meaningful. (2) The

point addition operation densify the under-optimized points

which may be overlook in the 3DGS , further captures the

geometry details (e.g., detail of toy and leaf of the tree, see

Fig. 4). (3) Reset points in ceratin zone provide the oppor-

tunity of correct the ill-conditioned points to achieve geom-

etry calibration, (e.g., window of the trunk, see Fig. 4).

5. Conclusion

We propose Localized Point Management (LPM), a novel

point management approach to address the limitations of the

Adaptive Density Control (ADC) mechanism in 3D Gaus-

sian Splatting (3DGS). The core idea of LPM is identify-

ing the error-contributing 3D zones that require both point

addition and geometry calibration under multiview geome-

try constraints, guided by image rendering errors. We im-

plement appropriate operations for point densification and

opacity reset. As a versatile plugin, LPM can be seam-

lessly integrated into existing 3DGS-based rendering meth-

ods. Extensive experiments across both static 3D and dy-

namic 4D scenes validate the efficacy of LPM in enhancing

existing ADC mechanisms both quantitatively and qualita-

tively. While our method identifies the 3D Gaussian points

that lead to rendering errors, it still follows the densification

rules of 3DGS [14]. This approach may not be optimal for

under-optimized points, and we leave this aspect for further

investigation.
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