
OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary

Yifeng Yang1, Lin Zhu1, Zewen Sun2, Hengyu Liu3, Qinying Gu4, Nanyang Ye1*

1 Shanghai Jiao Tong University 2 Tianjin University
3 The Chinese University of Hong Kong 4 Shanghai Artificial Intelligence Laboratory

{zxk1212, zhulin sjtu, ynylincoln}@sjtu.edu.cn, 3022244294@tju.edu.cn,
piang.lhy@link.cuhk.edu.hk, guqinying@pjlab.org.cn

Abstract

Out-of-distribution (OOD) detection remains challenging
for deep learning models, particularly when test-time OOD
samples differ significantly from training outliers. We pro-
pose OODD, a novel test-time OOD detection method
that dynamically maintains and updates an OOD dictio-
nary without fine-tuning. Our approach leverages a pri-
ority queue-based dictionary that accumulates represen-
tative OOD features during testing, combined with an in-
formative inlier sampling strategy for in-distribution (ID)
samples. To ensure stable performance during early test-
ing, we propose a dual OOD stabilization mechanism that
leverages strategically generated outliers derived from ID
data. To our best knowledge, extensive experiments on the
OpenOOD benchmark demonstrate that OODD significantly
outperforms existing methods, achieving a 26.0% improve-
ment in FPR95 on CIFAR-100 Far OOD detection com-
pared to the state-of-the-art approach. Furthermore, we
present an optimized variant of the KNN-based OOD de-
tection framework that achieves a 3x speedup while main-
taining detection performance. Our code is available at
https://github.com/zxk1212/OODD.

1. Introduction
Deep learning has demonstrated impressive capabilities but
often exhibits unpredictable behavior when faced with un-
known situations, such as receiving data unrelated to its
training tasks. What’s worse, the model tends to incorrectly
classify unknown out-of-distribution (OOD) data into one of
the in-distribution (ID) classes with high confidence [10, 26].
Existing solutions in OOD detection areas can be broadly
categorized into three main types: (i) post-hoc methods, (ii)
fine-tuning methods, and (iii) test-time calibrated methods.

Post-hoc methods typically design an OOD score function
to analyze model outputs (e.g., logits), features, or layer-wise

*Nanyang Ye is the corresponding author.

Figure 1. Before calibration, we dynamically feed the lower tail
of the OOD score distribution into an OOD dictionary through a
priority queue and then use this dictionary to calibrate the OOD
scores.

statistics [7, 13, 21–23, 31]. During inference, these meth-
ods discriminate between ID and OOD samples based on the
OOD scores of test samples. In contrast, fine-tuning methods
[4, 14, 37, 41] require fine-tuning the model that has been
pre-trained on ID data, using a combination of an auxiliary
dataset with outliers and ID samples. These methods are
often called outlier exposure (OE) based methods, aiming to
make the classifier outputs more uniformly distributed when
exposed to outliers. However, when the test-time OOD sam-
ples differ significantly from the training outliers, the model
may still assign high confidence to test-time OOD samples
[35]. While recent works [1, 8, 36] attempt to calibrate OOD
detection during test time, their batch-wise parameter up-
dates can lead to catastrophic forgetting, unstable detection
performance, and even impact ID classification. We consider
that the key to test-time OOD detection is utilizing the la-
tent OOD features. Particularly in the medical field, when
dealing with unknown diseases during the early stages of an
epidemic, there is an urgent need to specifically collect the
features of these unknown diseases [9].

Given this, we propose a method called OODD (test-time
Out-Of-Distribution detection with dynamic Dictionary),
which does not impose any burden during the training phase,
nor does it require optimization or fine-tuning at test time.
It only requires the addition of a dynamic OOD dictionary

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

30630

managed by a priority queue, enabling calibration at test
time with just a single matrix multiplication with the keys
in the OOD dictionary. The intuition behind our method
is illustrated in Figure 1. Specifically, based on the OOD
scores at test time, we collect features of OOD samples in
real time, focusing on those with lower scores in the left tail
of the OOD score distribution. These features are then stored
in the dynamic OOD dictionary by a priority queue. During
testing, we calculate the similarity between the features of
the test sample and the features stored in the dynamic OOD
dictionary. Then, according to the similarity between the
sample’s feature and the features stored in the dynamic OOD
dictionary, we can adaptively calibrate the OOD score. Ad-
ditionally, by using a priority queue to manage the features
in the OOD dictionary, our approach mitigates catastrophic
forgetting and detection fluctuation in other methods by up-
dating parameters with minibatches. Notably, we designed
a strategy to initialize this priority queue with outliers gen-
erated from the training ID data, alleviating the detection
fluctuations caused by inaccurate estimates during the early
testing phase. To evaluate the effectiveness of our method,
we conducted comprehensive experiments on the OpenOOD
benchmark [38], which is one of the authoritative platforms
for testing OOD detection methods.

Extensive experiments confirm that our method can ef-
fectively calibrate the OOD score during testing. Compared
to the most relevant baseline TULIP [1], our method sig-
nificantly improves the FPR95 from 58.17% to 24.74% on
CIFAR-100 Far OOD. Our key contributions are as follows:
• We propose a novel test-time OOD detection method

based on a dynamic OOD dictionary. Unlike previous
approaches, it doesn’t require prior outlier samples from
auxiliary datasets. Additionally, we devise a specific ini-
tialization for the OOD dictionary to alleviate the initial
test-time fluctuations.

• Our approach achieves state-of-the-art performance on
the OpenOOD benchmark, surpassing current baselines.
Moreover, it demonstrates strong complementarity with
existing post-hoc methods, effectively enhancing their per-
formance when used in combination.

• To optimize computational efficiency, we use cosine simi-
larity to replace the Euclidean distance used in KNN-based
OOD detection methods without comprising performance.
We provide a rigorous theoretical analysis establishing
the relationship between these distance metrics and jus-
tify their equivalence in discriminative ability for OOD
detection.

2. Related Works
Learning from auxiliary data. According to auxiliary data
type, learning from auxiliary data methods can be classified
into two categories: active learning and outlier exposure. In
the first category, Scone [2] addresses OOD detection by uti-

lizing auxiliary data consisting of a mixture of ID and OOD
samples. They assign pseudo-labels to this auxiliary data,
enabling the model to adapt to these pseudo-labeled samples.
Other notable works in this category include AL-OOD [28],
DUL [39]. The second category, known as Outlier Exposure
(OE) [14], uses auxiliary data where the class space usually
does not overlap with ID or test-time OOD samples. By
leveraging such data, the aim is to make the model more
robust against test-time OOD samples [4, 14, 37, 41].
Test-Time Adaptation. Test-time adaptation methods can
generally be categorized as: (i) Test-Time Domain Adap-
tation (TTDA): In this situation, we can obtain samples
of unlabeled data in test domain once before deployment
[29]. However, for OOD detection scenarios, it’s difficult to
gather all potential test domain data beforehand, particularly
in the dynamic open world. (ii) Test-Time Batch Adaptation
(TTBA): the model undergoes adaptive updates each time
it processes a new batch, helping it handle distributional
shifts over time. RTL++ [8] assumes a linear correlation be-
tween OOD scores and features, but the feature distribution
overlap between hard OOD and ID samples challenges this
simple assumption. AUTO [36] directly modifies the model
at test time using stochastic gradient descent to produce low-
confidence predictions for potential OOD samples. Our work
also belongs to this category, but we don’t require strong
assumptions or fine-tuning. (iii) Test-Time Prior Adaptation
(TTPA): This adjusts prior information within the model,
such as class or feature distribution at test time. For example,
TUIP [1] introduces priors for ID and OOD samples at test
time to calibrate model uncertainty.
Deep K-Nearest Neighbor for OOD detection. [31] pro-
poses using K-nearest neighbors (KNN) for OOD detection.
The approach first normalizes the penultimate layer features
of a neural network and computes the Euclidean distance be-
tween a test sample’s feature and all training sample features.
The opposite of the distance to the K-th nearest neighbor
is then used as the OOD score of this test sample. Despite
its simplicity, this KNN-based method nearly outperforms
other post-hoc methods and even fine-tuning methods in
OpenOOD benchmark [38].

3. Preliminaries
Setup. We consider a supervised multi-class classification
setting where the input space is denoted by X and the label
space by Y = {1, 2, . . . , C}. The training set {(xi, yi)}ni=1

is drawn i.i.d. from the joint distribution PXY . Let f : X 7→
R|Y| be a model parameterized by θ, trained on samples
drawn from PXY , which outputs logits. Then the logits are
transformed by a softmax layer: p̂k = efk/

∑C
j=1 e

fj for
k ∈ Y , where the class probability of a sample x is defined
as P (y = k | θ,x) = p̂k, and the confidence is defined as
Conf (x) = maxy P (y | θ,x). Importantly, we could use
the latent feature z = ϕ(x) for OOD detection, where ϕ :

30631

Unlabeled Test Data
Batch

Batch-wise
Update

…

…
Batch1 Batch2 Batch3 Batch4

Priority Queue Memory Bank

+

Priority Queue Memory Bank

+

OOD dictionary

Latent OOD Score

Latent OOD
OOD ID

Memory Bank

+

Pop

e.g. Birds as ID OOD

e.g. Birds as ID Others as OOD

Calibrate

OOD score

Encoder

e.g. Birds as ID OOD

Encoder

…ID

Information Inliers

C
onf

Conf
…

…Sort

Cropping

Patch Level

Class Level

𝛼%

…ID

Information Inliers

Conf

…

…Sort

Cropping

Patch Level

Class Level
C

onf

…ID

Cropping Outliers

…

…Sort

Cropping

Patch Level

Class Level

Conf

C
onf

Figure 2. Overview of the proposed OODD framework, which performs real-time, batch-wise updates to the OOD dictionary using a priority
queue based on the left-tail distribution of OOD score. Using training ID samples, we generate multiple random crops for each sample
[30], which are then filtered at the patch and class levels. High-confidence inliers are selected to compute the latent OOD score, while
low-confidence outliers initialize the priority queue, allowing for a more robust and adaptive OOD detection process.

X 7→ Rd is an image encoder, and d is the dimensionality of
the latent space.
Problem Statement. At test time, our goal is to find a
good OOD detector, which can distinguish whether a sample
x ∈ X is from ID or not OOD. The decision function Dτ is
usually defined as follows:

Dτ (x) =

{
ID S (x) ≥ τ
OOD S (x) < τ

, (1)

where samples with lower OOD scores S(x) are classified as
OOD and vice versa, and τ is a handcraft threshold, which
is commonly chosen so that a high fraction (e.g., 95%) of ID
data is correctly distinguished.

4. Methodology
In this section, we present our proposed method for informa-
tive inlier and dynamic OOD dictionary construction. We
first describe the process of informative inlier sampling (IIS)
in Sec 4.1, where key patches with high confidence are se-
lected to create a representative ID dictionary. In Sec 4.2,
we extend the KNN-based method to build a dynamic OOD
dictionary using a priority queue that is progressively up-
dated with latent OOD samples to calibrate OOD score. To
stabilize the OOD detection process, we introduce a Dual
OOD Stabilization (DOS) strategy. Finally, we propose three
approaches for obtaining outliers, which are crucial for ini-
tializing the OOD dictionary and stabilizing the detection
process. An overview of the proposed method is shown in
Figure 2.

4.1. Informative Inlier Sampling
Unlike the KNN-based OOD detection [31], which uses all
or randomly selected training data as an ID dictionary to

compute the similarity between the query (latent features)
of a test sample, we propose that the ID dictionary should
be more informative and representative. To sample the in-
formative inliers from training ID dataset, we capture the
key patch of samples with high OOD scores at the patch
level and the class level respectively. Specifically, to suf-
ficiently explore the vicinal space of training samples, we
perform multiple random cropping [30] on each training ID
sample xi to obtain the set Xcrop

i =
{
xcrop
i,m

}M

m=1
, where

M is the number of random cropping. Then, based on
the confidence of each patch Conf(xcrop

i,m) for each sam-
ple, we select the patch with the highest confidence. After
selecting the highest-confidence patches for all samples, we
further choose the top α% of patches based on their con-
fidence within each class. The latent features of the final
selected patches are then saved in ID dictionary, denoted
as Kid

n′ = {kid1 , kid2 , . . . , kidn′}, where n′ = [α% · n], n is
the number of training samples and [·] denotes the rounding
function.

4.2. Dynamic OOD Dictionary
In a similar way to constructing the ID dictionary, we can
easily extend this approach to construct the OOD dictionary,
but the OOD dictionary should be dynamic in the sense that
OOD samples randomly appear and are sampled as keys by
latent OOD scores Sin(x) during testing. Our hypothesis
is that good OOD latent features can be saved in the OOD
dictionary that covers a rich set of OOD samples, while
the OOD dictionary keys are kept as consistent as possible
despite its evolution.
Latent OOD Score. we derive the query q(x∗) = Φ(x∗)
for a test sample x∗ and compute the cosine similarity
cos(kidi , q) with each key kidi in ID dictionary Kid

n′ . Then,

30632

we denote the sorted list of these similarities in descending
order as cos(kid(1), q) ≥ cos(kid(2), q) ≥ · · · ≥ cos(kid(n′), q).
Finally, the latent OOD score is given by:

Sin(x
∗) = cos(kid(K), q) (2)

Where the K-th largest cosine similarity serves as the latent
OOD score Sin(x

∗) for the test-time sample.
OOD dictionary as a priority queue. During test time, the
core of our motivation is maintaining the OOD dictionary as
a priority queue of potential OOD sample keys (or latent fea-
tures). This configuration enables the reuse of encoded keys
from previous mini-batches by leveraging a priority queue
structure that separates the dictionary size from the mini-
batch size. Consequently, the OOD dictionary can be much
larger than the mini-batch, and the OOD dictionary size can
be easily adjusted as a hyperparameter. Dictionary samples
are progressively updated, with lower potential OOD scores
(i.e., more likely to be OOD) replacing existing samples.
The priority queue maintains the sample with the highest
OOD score at the front. A new sample from the mini-batch
is enqueued only if it has a lower OOD score than the queue
front, and the front needs to be dequeued first when the
dictionary is full. Further, we denote this OOD dictionary
as Kood

l = {kood1 , kooid2 , . . . , koodl′ } where l represents the
size of the proposed priority queue and l ≥ l′. Thus, the
OOD dictionary Kood

l represents a dynamically sampled la-
tent OOD subset of the test-time data, and keeping the OOD
dictionary up to date incurs little computational cost.
Dual OOD Stabilization. Although subsequent experiments
show that initializing the OOD dictionary as empty has lit-
tle impact on OOD detection results in most scenarios, the
empty OOD dictionary may lead to highly unstable scores
during the early stage. To maintain historical information in-
ertia, we propose the Dual OOD Stabilization (DOS) strategy
to mitigate substantial fluctuations in calibrated OOD scores
caused by dramatic changes in latent OOD data within the
priority queue. Specifically, we utilize some outliers (with
their obtained approaches further detailed later) as a memory
bank and others to initialize the priority queue. Under this
setup, the OOD dictionary encompasses not only the priority
queue but also the memory bank, which can be represented
as: Kood

total = Kood
l ∪ Kood

mb where Kood
mb represents samples

in the memory bank, and the memory bank size is denoted
as mb. Similar to Equation 2, we can obtain the negative
cosine similarity between the query and each of the keys in
the OOD dictionary during testing, as follows:

Sout(x
∗) = − cos(kood

(K̂)
, q) (3)

where K̂-th largest cosine similarity serves as the calibrated
OOD score Sout(x

∗) for the test-time sample. Finally,the
OOD score in our method is integrated as follows:

S(x∗) = Sin(x
∗) + Sout(x

∗) (4)

However, a critical yet fully underexplored question thus
arises:

How do we obtain these outliers?

We explore three approaches for obtaining outliers in our
subsequent experiments:
▷ C-Out (Cropping Outliers): Use multiple random crop-

ping augmentation [30] on the training ID data to generate
low-confidence outliers that originate from ID data.

▷ T-Out (Target Outliers): Introduce a small amount of
data that shares the same distribution as the test-time OOD
data as outliers.

▷ D-Out (Different test-time Outliers): This type of outlier
is derived from a distribution different from both the ID
and test-time OOD data.

Notably, our proposed C-Out method does not introduce any
prior knowledge beyond training ID. The process it uses to
generate outliers is the reverse of what is described in Sec
4.1. In contrast, T-Out incorporates priors aligned with the
test-time OOD distribution, while D-Out needs to leverage
samples from external datasets. Subsequent experiments
demonstrate that C-Out alone can achieve strong perfor-
mance, even without using priors beyond the training ID
data.

5. Experiments
5.1. Experiments Setup
Datasets. We use four popular ID datasets CIFAR-10/100
[18], ImageNet-200/1K [6]. Following OpenOOD bench-
mark [38], the OOD testing datasets are categorized into
two groups: Near OOD and Far OOD. Specifically, for
CIFAR-10/100 [18] benchmarks, the Far OOD group in-
cludes MNIST [20], SVHN [25], Textures [5], Places365
[40], and the Near OOD group comprises CIFAR-100/10
and Tiny ImageNet-200 [19]. For ImageNet-200/1K, the
Near OOD group includes SSB-hard [33], NINCO [3], and
the Far OOD group comprises iNaturalist [32], Textures [5],
and OpenImage-O [34].
Evaluation Metrics. We use three metrics to evaluate the
results: (1) FPR95, the false positive rate for OOD when the
ID true positive rate is 95%; (2) AUROC, the area under the
receiver operating characteristic curve; and (3) ID ACC, the
ID classification accuracy. Our reported results are averaged
over three independent runs with different random seeds.
Pre-trained Model. For CIFAR-10/100 and ImageNet-200,
we employed the ResNet-18 model [11] trained with em-
pirical risk minimization on each ID training set provided
by OpenOOD [38]. For ImageNet-1K, we use a pre-trained
ResNet-50 model [12] from the PyTorch.
Baseline Methods. We compared our method with vari-
ous post-hoc methods, including MaxLogits [15], ODIN
[22], Mahalanobis Distance (MD)[21], Energy [23], KNN

30633

Table 1. Comparison with state-of-the-art methods on the CIFAR benchmarks, where the best results are in bold.

Dataset Method ID ACC↑
Near OOD Far OOD

AUROC↑ FPR95↓ AUROC↑ FPR95↓

CIFAR-10

MaxLogits [15] 95.06 ± 0.30 87.52 ± 0.47 61.32 ± 4.62 91.10 ± 0.89 41.68 ± 5.27
ODIN [22] 95.06 ± 0.30 82.87 ± 1.85 76.19 ± 6.08 87.96 ± 0.61 57.62 ± 4.24
MD [21] 95.06 ± 0.30 84.20 ± 2.40 49.90 ± 3.98 89.72 ± 1.36 32.22 ± 3.40

Energy [23] 95.06 ± 0.30 87.58 ± 0.46 61.34 ± 4.63 91.21 ± 0.92 41.69 ± 5.32
KNN [31] 95.06 ± 0.30 90.64 ± 0.20 34.01 ± 0.38 92.96 ± 0.14 24.27 ± 0.40
ViM [7] 95.06 ± 0.30 88.68 ± 0.28 44.84 ± 2.31 93.48 ± 0.24 25.05 ± 0.52

RTL++ [8] 95.06 ± 0.30 88.76 ± 0.01 54.03 ± 0.21 87.06 ± 0.07 64.30 ± 0.21
TULIP [1] 95.06 ± 0.30 89.67 ± 0.24 33.80 ± 0.59 92.55 ± 0.13 24.43 ± 0.17

OODD 95.06 ± 0.30 90.96 ± 0.21 36.01 ± 0.44 95.77 ± 0.12 17.44 ± 0.44

CIFAR-100

MaxLogits [15] 77.25 ± 0.10 81.05 ± 0.07 55.47 ± 0.66 79.67 ± 0.57 56.73 ± 1.33
ODIN [22] 77.25 ± 0.10 79.90 ± 0.11 57.91 ± 0.51 79.28 ± 0.21 58.86 ± 0.79
MD [21] 77.25 ± 0.10 58.69 ± 0.09 83.53 ± 0.60 69.39 ± 1.39 72.26 ± 1.56

Energy [23] 77.25 ± 0.10 80.91 ± 0.08 55.62 ± 0.61 79.77 ± 0.61 56.59 ± 1.38
KNN [31] 77.25 ± 0.10 80.18 ± 0.15 61.22 ± 0.14 82.40 ± 0.17 53.65 ± 0.28
ViM [7] 77.25 ± 0.10 74.98 ± 0.13 62.63 ± 0.27 81.70 ± 0.62 50.74 ± 1.00

RTL++ [8] 77.25 ± 0.10 79.24 ± 0.03 63.92 ± 0.27 80.76 ± 0.03 67.14 ± 0.07
TULIP [1] 77.25 ± 0.10 81.29 ± 0.26 55.07 ± 0.73 79.63 ± 0.94 58.17 ± 1.78

OODD 77.25 ± 0.10 82.10 ± 0.20 56.98 ± 1.09 93.64 ± 0.31 24.74 ± 1.30

Table 2. Comparison with state-of-the-art methods on the ImageNet benchmarks, where the best results are in bold.

Dataset Method ID ACC↑
Near OOD Far OOD

AUROC↑ FPR95↓ AUROC↑ FPR95↓

ImageNet-200

MaxLogits [15] 86.37± 0.08 82.90 ± 0.04 59.76 ± 0.59 91.11 ± 0.19 34.03 ± 1.21
ODIN [22] 86.37 ± 0.08 80.27± 0.08 66.76 ± 0.26 91.71 ± 0.19 34.23 ± 1.05
MD [21] 86.37± 0.08 61.93 ± 0.51 79.11 ± 0.31 74.72 ± 0.26 61.66 ± 0.27

Energy [23] 86.37± 0.08 82.50 ± 0.05 60.24 ± 0.57 90.86 ± 0.21 34.86 ± 1.30
KNN [31] 86.37± 0.08 81.57 ± 0.17 60.18 ± 0.52 93.16 ± 0.22 27.27 ± 0.75
ViM [7] 86.37± 0.08 78.68 ± 0.24 59.19 ± 0.71 91.26 ± 0.19 27.20 ± 0.30

RTL++ [8] 86.37± 0.08 81.02 ± 0.08 63.99 ± 0.29 93.11 ± 0.02 30.38 ± 0.10
TULIP [1] 86.37± 0.08 83.77 ± 0.06 54.51 ± 0.35 91.03 ± 0.09 33.94 ± 0.51

OODD 86.37± 0.08 85.74 ± 0.03 53.70 ± 0.14 95.47 ± 0.03 20.89 ± 0.12

ImageNet-1K

MaxLogits [15] 76.18 76.46 67.82 89.57 38.22
ODIN [22] 76.18 74.75 72.50 89.47 43.96
MD [21] 76.18 55.44 85.45 74.25 62.92

Energy [23] 76.18 75.89 68.56 89.47 38.39
KNN [31] 76.18 71.10 70.87 90.18 34.13
ViM [7] 76.18 72.08 71.35 92.68 24.67

RTL++ [8] 76.18 76.49 ± 0.49 71.49 ± 0.35 90.53 ± 0.39 44.39 ± 1.19
TULIP [1] 76.18 77.52 ± 0.06 64.96 ± 0.08 88.03 ± 0.02 48.01 ± 0.02

OODD 76.18 72.66 ± 0.16 71.41 ± 0.27 93.84 ± 0.44 27.63 ± 1.16

[31], ViM [7], RTL++ [8], and TULIP [1]. In addition, to
the best of our knowledge, TULIP—the test-time method
achieving state-of-the-art performance on the OpenOOD
benchmark—was also included in our comparison.
Remark on the implementation. We implemented our
method in PyTorch and conducted all experiments on a
single NVIDIA GeForce RTX 4090 GPU. The ID dictio-
nary only needs to be extracted once before deploying the
trained model. Additionally, unlike KNN-based OOD scor-
ing, which uses faiss.IndexFlatL2 with Euclidean distance,
we compute the OOD score through GPU-accelerated matrix
multiplication in PyTorch to obtain cosine similarity scores
directly, so our approach is more memory-efficient and faster
than the former. In all experiments, we set the batch size to
512. In the main results presented in Tables 1 and 2, we use
an inlier sampling ratio of α% = 50% with M = 4, K̂ = 5.
For CIFAR-10/100, due to the smaller dataset size, we set
the priority queue size l to 128/512 respectively, and the
memory bank size mb is 5. Additionally, for CIFAR-10, we

use K = 5 and for CIFAR-100, K = 10. For larger datasets
ImageNet-200/1K, we increase l to 2048 and mb to 128, and
K = 100.

6. Main Results.

CIFAR Benchmarks. Firstly, we compare the proposed
methods using C-Out (Cropping Outliers) with state-of-the-
art OOD detection methods. The main experimental re-
sults on CIFAR-10/100 are shown in Table 1, from which
the following conclusions can be drawn: (i) The proposed
method OODD outperforms other methods in most cases.
For example, on CIFAR-100, the Far OOD AUROC of
our method reaches 93.64%, while the second-best method
(KNN) achieves 82.40%. (ii) Our method maintains a com-
parable ability for Near OOD detection. While the tail distri-
butions of Near OOD and ID samples overlap considerably,
our proposed approach does not significantly impair Near
OOD detection performance. On CIFAR-100, our method

30634

even achieves state-of-the-art AUROC, though it does not
lead in FPR95. However, AUROC provides a more com-
prehensive assessment than FPR95, which evaluates only a
single point.
ImageNet Benchmarks. For ImageNet-200/1K, prior works
[16, 35] show that many advanced methods developed on CI-
FAR benchmarks struggle with the large semantic space
of ImageNet. Nevertheless, as shown in Table 2, our
method achieves leading performance in both Near OOD
and Far OOD detection on ImageNet-200. Additionally, al-
though KNN performs moderately well on ImageNet-1K,
our method significantly enhances performance in Far OOD
without compromising its near OOD detection capability.

6.1. Ablation Study
In this section, we conduct ablation experiments on
ImageNet-200 to analyze the effectiveness of each mod-
ule and explore the impact of various hyperparameters. The
main ablation study results are shown in Table 3, which
demonstrate the effectiveness of our proposed informative
inlier sampling and dynamic OOD dictionary strategies.

Table 3. The main ablation study results on ImageNet-200. IIS
denotes informative inlier sampling, PR denotes priority queue, and
MB denotes memory bank.

IIS PR MB
Near OOD Far OOD

FPR95 AUROC FPR95 AUROC

✗ ✗ ✗ 60.57 80.73 30.35 91.47
✓ ✗ ✗ 58.92 81.67 26.97 92.83
✗ ✓ ✗ 53.85 85.69 21.47 95.45
✗ ✗ ✓ 59.14 81.30 37.09 88.89
✓ ✓ ✓ 53.70 85.74 20.89 95.47

The effectiveness of informative inlier sampling. To exam-
ine this, we employ a naive KNN OOD detection [31], adjust-
ing both the sampling ratio α% and the hyper-parameter K,
which defines the K-th largest cosine similarity in Sin(x

∗).
When choosing sampling ratio α% for training data for near-
est neighbor search, K is selected from {1, 5, 10, 20, 50,
100, 200, 500, 1000} accordingly to the validation dataset
OpenImage-O. As shown in Figure 3, the ablation results
highlight how variations in α influence performance.
The effectiveness of the priority queue. In Figure 4, we
systematically analyze the effect of the priority queue size
l under the conditions of not using a memory bank, with a
batch size of 512. We vary the queue size l. Several key
observations can be made: (i) In non-extreme cases, our
method is not sensitive to l, with the results for both Near
OOD and Far OOD showing a significantly lower FPR95
compared to the naive KNN method. (ii) When l is partic-
ularly large, the effect of the priority queue becomes less
prominent. Under this situation, the accumulation of ID data

10 20 40 60 80 100
 vs. Near-FPR95

55

58

61

64

67
naive KNN
IIS

10 20 40 60 80 100
 vs. Far-FPR95

25

27

29

31

33
naive KNN
IIS

Figure 3. Results of varying α on ImageNet-200 ID. IIS refers to
the implementation of Informative Inlier Sampling based on the
naive KNN method [31]. The value of α is on the horizontal axis,
and the FPR95 is on the vertical axis.

being added to the OOD dictionary increases, which leads
to a decline in OOD detection.

512 1024 2048 10k 20k
Queue Size vs. AUROC

80

85

90

95

100

83.95
84.82

85.80
84.17

83.21

95.15 95.46 95.47

92.10

89.26

Near
Far

Figure 4. Comparison of AUROC detection performance using
different queue sizes.

C-Out T-Out D-Out None
Different types of outliers vs. AUROC

80

85

90

95

100

85.74

87.79

85.65 85.69

95.47
96.53

95.36 95.45

Near
Far

Figure 5. AUROC comparison using different types of outliers
(C-Out, T-Out, D-Out, None) to initialize the OOD dictionary.

The different initializations of OOD dictionary. In Figure
5, we show results for initializing the OOD dictionary on the
ImageNet-200 benchmark with various types of outliers (C-
Out, T-Out, D-Out, None). The experimental results indicate
that the choice of initialization method has minimal impact
on overall performance. To further investigate how initializa-
tion methods affect test-time performance, we set up a new
experiment: selecting 10,000 samples from ImageNet-200
as ID dataset and mixing them with 100 OOD samples from
OpenImage-O, shuffled randomly for testing. This experi-
ment was repeated five times, and we recorded the AUROC
for each of the first 10 iterations, as shown in Figure 6. The
results reveal that, without outliers to initialize the prior
queue, OOD detection exhibits larger fluctuations in the first

30635

1 2 4 6 8 10
C-Out

50

60

70

80

90

100

1 2 4 6 8 10
T-Out

50

60

70

80

90

100

1 2 4 6 8 10
D-Out

50

60

70

80

90

100

1 2 4 6 8 10
None

50

60

70

80

90

100

Figure 6. AUROC of test-time performance over the first 10 iterations for 10,000 ID samples from ImageNet-200 mixed with 100 OOD
samples from OpenImage-O, averaged across five experimental runs with standard deviation.

few iterations. However, as the iterations progress, AUROC
values stabilize across different initialization methods, show-
ing minimal differences. Notably, while the lack of prior
OOD knowledge results in lower early performance com-
pared to T-Out, our proposed C-Out initialization method
achieves the most stable performance. More experimental
results can be seen in Table 8 of the supplementary material.

How to choose K and K̂? Following prior work [31] and
the OpenOOD benchmark [38], we first select the parameter
K based on the OOD validation set provided by OpenOOD.
Specifically, for CIFAR-10/100, the OOD validation set is
tiny ImageNet-200, while for ImageNet-200/1K, the OOD
validation set is OpenImage-O. All validation set data does
not overlap with the test set data. Then, we are surprised
to find that a relatively small value of K̂ yielded strong
performance across all experiments. As a result, we fixed
K̂ = 5 for all our experiments.

Table 4. Time cost comparison of different OOD detection methods.

Method CIFAR-10 ImageNet-200 Time cost factor

MaxLogits 1.20 s 1.45 s 1x
KNN 9.61 30.17 s 15x

RTL++ 82.07 s 103.80 s 70x
OODD 3.98 s 10.13 s 5x

Time Cost. To provide a more intuitive and fair comparison
of computational overhead in OOD detection, we specifically
measured the time cost from obtaining the image encoder’s
features to generating the final OOD scores. As shown in
Table 4, Maxlogits exhibits the shortest processing time as
it only involves a single linear classifier operation. RTL++
incurs the longest time cost due to the need to solve a Lasso
regression between the latent features and the OOD scores
[8]. Meanwhile, KNN demands 15 times more computa-
tional time than Maxlogits. In comparison to KNN, our
proposed method reduces the time cost by a factor of 3,
highlighting its practical applicability.

7. Further Discussion

7.1. Integrate with the CLIP-based methods

When using the Contrastive Language-Image Pre-training
(CLIP) model as the encoder [27], our method can be ef-
fectively integrated into various CLIP-based OOD detection
methods, such as MCM [24] and NegLabel [17]. As shown
in Table 5, when combined with these CLIP-based meth-
ods, OODD significantly enhances performance across most
datasets.

Table 5. OOD detection performance for ImageNet-1K as ID

iNaturalist SUN Places Texture
Method FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11

+OODD 2.22 99.36 21.49 95.01 44.76 87.10 30.69 93.27
Improve ∇-28.69 △+4.75 ∇-16.10 △+2.44 △+0.07 ∇-2.67 ∇-27.08 △+7.16

NegLabel 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22
+OODD 0.85 99.79 12.94 97.17 30.68 92.51 30.67 94.51
Improve ∇-1.06 △+0.30 ∇-7.59 △+1.68 ∇-4.91 △+0.87 ∇-12.89 △+4.29

7.2. The Temporal Drift OOD Scenarios

Since OODD is a test-time method, it is crucial to address
temporal drift where OOD scenarios evolve over time. For
example, consider a temporal drift with time points t0, t1,
t2, and t3. The temporal drift of OOD scenarios goes from
Textures (t0-t1) to Places365 (t1-t2) and then to SVHN (t2-
t3), denoted as T → P → S in Table 6. After incorporating
our OODD method under the temporal drift OOD scenarios,
we observe improvements across all datasets. Furthermore,
the earlier a dataset is encountered, the greater the gain,
demonstrating the effectiveness of our approach.

Table 6. Results for the temporal drift OOD scenario settings using
CIFAR-100 as ID dataset. T represents Texture, P for Places365,
and S for SVHN.

Textures Places365 SVHN Mean
Temporal Drift FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
T → P → S 35.33 91.80 53.61 83.27 18.68 97.13 35.87 90.73
P → S → T 45.42 86.25 50.60 85.16 17.76 97.31 37.93 89.57
S → T → P 42.40 87.77 58.63 80.19 8.12 98.69 36.39 88.88
w/o OODD 53.56 83.66 60.70 79.43 51.75 84.15 55.34 82.41

30636

7.3. Combine with More Post-hoc Methods
Our approach further enhances the effectiveness of vari-
ous post-hoc OOD detection methods. We explore multiple
post-hoc methods to identify latent OOD features. As shown
in Table 7, models equipped with the OOD dictionary con-
sistently outperform their counterparts (i.e., original OOD
detection performance), validating the effectiveness of the
OOD dictionary mechanism. Notably, KNN with the OOD
dictionary demonstrates a significant improvement, while
the gains for MaxLogits and Energy methods are relatively
modest. This discrepancy may be attributed to our OOD
dictionary storing latent features, which have limited bene-
fits for logits-based OOD detection methods. We hope that
future work will focus on designing a more comprehensive
OOD dictionary to enhance these methods further.

Table 7. AUROC performance comparison for whether the model
is equipped with our proposed OOD dictionary.

In Dataset CIFAR-10 CIFAR-100 ImageNet-200 ImageNet-1K
Method Near Far Near Far Near Far Near Far
MaxLogits 87.52 91.10 81.05 79.67 82.90 91.11 76.46 89.57
+Ours 88.34 91.36 81.01 86.56 83.87 92.03 77.44 90.08
Improve △+0.82 △+0.26 ∇-0.04 △+6.89 △+0.97 △+0.92 △+0.98 △+0.51
Energy 87.58 91.21 80.91 79.77 82.50 90.86 75.89 89.47
+Ours 88.41 91.59 80.98 87.74 83.61 91.86 76.92 89.97
Improve △+0.83 △+0.38 △+0.07 △+7.97 △+1.11 △+1.00 △+1.03 △+0.50
KNN 90.64 92.96 80.18 82.40 81.57 93.16 71.10 90.18
+Ours 90.96 95.77 82.10 93.64 85.74 95.47 72.66 93.84
Improve △+0.32 △+2.81 △+1.92 △+11.24 △+4.17 △+2.31 △+1.56 △+3.66

7.4. A Closer Look at KNN-based OOD Detection
For OOD detection, cosine similarity equals Euclidean
distance after feature normalization but is more efficient.
The KNN-based OOD detection [31] shows that ID data
tends to have larger Euclidean distances before normaliza-
tion, which undermines assumptions about KNN distances
in high-dimensional space. Fortunately, the latent features of
ID data have larger ℓ2-norm values than those of OOD data,
which effectively mitigates the dimension curse when calcu-
lating Euclidean distances. Thus, given two vectors z1 and
z2, we first apply ℓ2-norm normalization to each vector to
obtain their normalized forms, ẑ1 and ẑ2, where ẑi =

zi

∥zi∥2

for i = 1, 2. After normalization, the Euclidean distance and
cosine similarity between ẑ1 and ẑ2 are closely related. For
the above two normalized vectors, the Euclidean distance
dE can be expressed as a function of their cosine similarity
as follows:

dE (ẑ1, ẑ2) = ∥ẑ1 − ẑ2∥2 =
√
2− 2 cos (z1, z2) (5)

We are surprised to find that the cosine similarity cos (z1, z2)
used in our method has a monotonic relationship with OOD
score −dE (ẑ1, ẑ2) employed by KNN. For OOD detection,
this monotonic relationship implies that the two functions
are equivalent at the decision level. Moreover, after normal-
ization, directly using cos (z1, z2) only requires dot product

operations, significantly reducing computational overhead,
especially when calculated in parallel.

0.2 0.0 0.2 0.4 0.6
(a) Ours

0

1

2

3

4

5

D
en

si
ty

CIFAR-100
CIFAR-10
SVHN

0.6 0.7 0.8 0.9 1.0
(b) KNN

0

2

4

6

D
en

si
ty

CIFAR-100
CIFAR-10
SVHN

Figure 7. The density of the obtained ID and OOD score with the
proposed method (left) and KNN [31] (right). CIFAR-100 is ID,
Near OOD is CIFAR-10, and SVHN is Far OOD.

OOD Score Density: Our Method vs. KNN. We further
use CIFAR-100 as ID and plot the density of the OOD scores
using a kernel density estimate (KDE) to analyze the impact
of Near OOD (CIFAR-10) and Far OOD (SVHN). Besides,
we provide a theoretical analysis comparing our method with
KNN as an OOD score function for OOD detection in Sec-
tion B of the Supplementary Material. We observe that the
proposed method effectively captures the features of OOD
samples. Specifically, in Figure 7, we make the following
observations: (i) Thanks to the calibration of OOD scores
by the OOD dictionary, the distribution of ID scores is more
concentrated. (ii) In Figure 7(b), we observe that for the left-
tail distribution, the intersection over union (IoU) between
Far OOD and ID is smaller. As a result, the overall distri-
bution of Far OOD scores shifts more to the left, achieving
greater calibration gains.

8. Conclusion
We present a test-time OOD detection method called OODD
that leverages a dynamic dictionary of OOD features to
achieve high detection performance without fine-tuning or
complex calibration processes. By integrating a priority
queue and employing inlier and outlier sampling strategies,
OODD effectively adapts to diverse OOD distributions. Our
method not only outperforms the state-of-the-art OOD de-
tection method but also demonstrates strong computational
efficiency, as verified on the OpenOOD benchmark. These
findings highlight OODD’s potential to enhance model un-
certainty awareness at test time—an essential capability for
deploying robust models in open-world scenarios.

Acknowledgement
This research is supported by Shanghai Artificial Intelligence
Laboratory, National Natural Science Foundation of China
under Grant (No.62106139) and State Key Laboratory of
High Performance Computing, National University of DT
(No.202401-11). The authors also gratefully acknowledge
the insightful comments provided by the anonymous review-
ers.

30637

References
[1] Anonymous. TULip: Test-time uncertainty estimation via

linearization and weight perturbation. In Submitted to The
Thirteenth International Conference on Learning Representa-
tions, 2024. under review. 1, 2, 5

[2] Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon,
Robert D Nowak, and Yixuan Li. Feed two birds with one
scone: Exploiting wild data for both out-of-distribution gen-
eralization and detection. In International Conference on
Machine Learning, pages 1454–1471. PMLR, 2023. 2

[3] Julian Bitterwolf, Maximilian Müller, and Matthias Hein. In
or out? fixing imagenet out-of-distribution detection evalua-
tion. arXiv preprint arXiv:2306.00826, 2023. 4

[4] Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh
Jha. Atom: Robustifying out-of-distribution detection using
outlier mining. In Machine Learning and Knowledge Dis-
covery in Databases. Research Track: European Conference,
ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part III 21, pages 430–445. Springer, 2021. 1, 2

[5] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3606–3613, 2014. 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 4

[7] Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and
Rosanne Liu. Extremely simple activation shaping for out-
of-distribution detection. arXiv preprint arXiv:2209.09858,
2022. 1, 5

[8] Ke Fan, Tong Liu, Xingyu Qiu, Yikai Wang, Lian Huai, Zeyu
Shangguan, Shuang Gou, Fengjian Liu, Yuqian Fu, Yanwei
Fu, et al. Test-time linear out-of-distribution detection. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 23752–23761, 2024. 1,
2, 5, 7

[9] Camila González, Karol Gotkowski, Moritz Fuchs, Andreas
Bucher, Armin Dadras, Ricarda Fischbach, Isabel Jasmin
Kaltenborn, and Anirban Mukhopadhyay. Distance-based
detection of out-of-distribution silent failures for covid-19
lung lesion segmentation. Medical image analysis, 82:102596,
2022. 1

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 4

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part IV
14, pages 630–645. Springer, 2016. 4

[13] Dan Hendrycks and Kevin Gimpel. A baseline for detect-

ing misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016. 1

[14] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich.
Deep anomaly detection with outlier exposure. arXiv preprint
arXiv:1812.04606, 2018. 1, 2

[15] Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou,
Joe Kwon, Mohammadreza Mostajabi, Jacob Steinhardt, and
Dawn Song. Scaling out-of-distribution detection for real-
world settings. arXiv preprint arXiv:1911.11132, 2019. 4,
5

[16] Rui Huang and Yixuan Li. Mos: Towards scaling out-of-
distribution detection for large semantic space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8710–8719, 2021. 6

[17] Xue Jiang, Feng Liu, Zhen Fang, Hong Chen, Tongliang Liu,
Feng Zheng, and Bo Han. Negative label guided ood detec-
tion with pretrained vision-language models. arXiv preprint
arXiv:2403.20078, 2024. 7

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4

[19] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 4

[20] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
4

[21] Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A
simple unified framework for detecting out-of-distribution
samples and adversarial attacks. Advances in neural informa-
tion processing systems, 31, 2018. 1, 4, 5

[22] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing
the reliability of out-of-distribution image detection in neural
networks. arXiv preprint arXiv:1706.02690, 2017. 4, 5

[23] Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li.
Energy-based out-of-distribution detection. Advances in neu-
ral information processing systems, 33:21464–21475, 2020.
1, 4, 5

[24] Yifei Ming, Ziyang Cai, Jiuxiang Gu, Yiyou Sun, Wei Li,
and Yixuan Li. Delving into out-of-distribution detection
with vision-language representations. Advances in neural
information processing systems, 35:35087–35102, 2022. 7

[25] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011. 4

[26] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
427–436, 2015. 1

[27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PmLR, 2021. 7

[28] Sebastian Schmidt, Leonard Schenk, Leo Schwinn, and
Stephan Günnemann. A unified approach towards active

30638

learning and out-of-distribution detection. arXiv preprint
arXiv:2405.11337, 2024. 2

[29] Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Gold-
stein, Anima Anandkumar, and Chaowei Xiao. Test-time
prompt tuning for zero-shot generalization in vision-language
models. Advances in Neural Information Processing Systems,
35:14274–14289, 2022. 2

[30] Peng Sun, Bei Shi, Daiwei Yu, and Tao Lin. On the diversity
and realism of distilled dataset: An efficient dataset distilla-
tion paradigm. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9390–
9399, 2024. 3, 4

[31] Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-
of-distribution detection with deep nearest neighbors. In
International Conference on Machine Learning, pages 20827–
20840. PMLR, 2022. 1, 2, 3, 5, 6, 7, 8

[32] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and
detection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769–8778,
2018. 4

[33] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman.
Open-set recognition: A good closed-set classifier is all you
need? arXiv preprint arXiv:2110.06207, 2021. 4

[34] Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang.
Vim: Out-of-distribution with virtual-logit matching. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4921–4930, 2022. 4

[35] Qizhou Wang, Junjie Ye, Feng Liu, Quanyu Dai, Marcus
Kalander, Tongliang Liu, Jianye Hao, and Bo Han. Out-
of-distribution detection with implicit outlier transformation.
arXiv preprint arXiv:2303.05033, 2023. 1, 6

[36] Puning Yang, Jian Liang, Jie Cao, and Ran He. Auto: Adap-
tive outlier optimization for online test-time ood detection.
arXiv preprint arXiv:2303.12267, 2023. 1, 2

[37] Jingyang Zhang, Nathan Inkawhich, Randolph Linderman,
Yiran Chen, and Hai Li. Mixture outlier exposure: Towards
out-of-distribution detection in fine-grained environments. In
Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 5531–5540, 2023. 1, 2

[38] Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi
Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng
Du, Kaiyang Zhou, Wayne Zhang, et al. Openood v1. 5:
Enhanced benchmark for out-of-distribution detection. arXiv
preprint arXiv:2306.09301, 2023. 2, 4, 7, 3

[39] Qingyang Zhang, Qiuxuan Feng, Joey Tianyi Zhou, Yatao
Bian, Qinghua Hu, and Changqing Zhang. The best of
both worlds: On the dilemma of out-of-distribution detec-
tion. arXiv preprint arXiv:2410.11576, 2024. 2

[40] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. IEEE transactions on pattern analysis
and machine intelligence, 40(6):1452–1464, 2017. 4

[41] Jianing Zhu, Geng Yu, Jiangchao Yao, Tongliang Liu, Gang
Niu, Masashi Sugiyama, and Bo Han. Diversified outlier
exposure for out-of-distribution detection via informative ex-
trapolation. arXiv preprint arXiv:2310.13923, 2023. 1, 2

30639

