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Abstract

Room reidentification (ReID) is a challenging yet essen-

tial task with numerous applications in fields such as

augmented reality (AR) and homecare robotics. Exist-

ing visual place recognition (VPR) methods, which typi-

cally rely on global descriptors or aggregate local features,

often struggle in cluttered indoor environments densely

populated with man-made objects. These methods tend

to overlook the crucial role of object-oriented informa-

tion. To address this, we propose AirRoom, an object-

aware pipeline that integrates multi-level object-oriented

information—from global context to object patches, ob-

ject segmentation, and keypoints—utilizing a coarse-to-

fine retrieval approach. Extensive experiments on four

newly constructed datasets—MPReID, HMReID, Gibson-

ReID, and ReplicaReID—demonstrate that AirRoom out-

performs state-of-the-art (SOTA) models across nearly all

evaluation metrics, with improvements ranging from 6% to

80%. Moreover, AirRoom exhibits significant flexibility, al-

lowing various modules within the pipeline to be substi-

tuted with different alternatives without compromising over-

all performance. It also shows robust and consistent perfor-

mance under diverse viewpoint variations. Project website:

https://sairlab.org/airroom/.

1. Introduction

With the rapid development of spatial computing, room rei-

dentification (ReID) has become a key area of interest, en-

abling advancements in applications like augmented reality

(AR) [37] and homecare robotics [33]. It plays a crucial

role in enhancing user experiences across various scenarios.

For instance, on devices like the Apple Vision Pro, accu-

rate room ReID enables smooth transitions between virtual

and real-world elements. Similarly, in AR-guided museum

tours, precisely identifying a user’s position within specific

rooms is essential for delivering location-sensitive content.

Unlike outdoor environments, where visual place recog-

nition (VPR) methods have matured and perform reliably

[2, 13, 16], indoor room ReID remains a challenging prob-
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Figure 1. AirRoom leverages multi-level, object-oriented features,

including global context, object patches, object segmentation, and

keypoints, to perform coarse-to-fine room reidentification.

lem. A primary reason for this difficulty is the cluttered

nature of indoor scenes, which are often densely packed

with man-made objects [45]. These densely distributed ob-

jects often pose significant challenges to existing methods,

which were originally designed for city-style and distinct

structures [23]. Consequently, these methods struggle to

fully capture the intricate details and varied spatial layouts

of indoor environments. For instance, foundation models

like DINO [9] and DINOv2 [25] can generate global de-

scriptors that capture broad scene-level features. However,

these descriptors may struggle in semantically similar en-

vironments, such as adjacent rooms with similar layouts or

decorations, where distinguishable features are minimal [7].

In contrast, methods like Patch-NetVLAD [13], AirLoc [3]

and AnyLoc [16] create a global descriptor by aggregat-

ing local features, which can enhance discriminative power.

Yet, in indoor settings densely populated with similar and

repetitive objects, these approaches may still face difficul-

ties in distinguishing between highly similar features, re-

ducing their effectiveness in such contexts [35].

Additionally, different from room categorization [18],

which relies on identifying object types to classify spaces

into semantic categories, room ReID requires accurately re-

trieving the same room instance from a reference database

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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based on a given query image. For instance, reidentifying a

particular kitchen demands a combination of global func-

tional contexts and fine-grained matching of specific ob-

ject attributes. Moreover, room ReID must handle view-

point variations, which necessitates tolerance for partial

mismatches in object arrangement and appearance. These

requirements often result in the failure of algorithms based

solely on object categorization, as they lack the precision

needed to reidentify unique room instances accurately [39].

This raises an important question: “What kinds of ob-

ject attributes are truly essential for room ReID?” To ad-

dress this, we conduct the first comprehensive study ex-

ploring multi-level object-oriented information and its im-

pact on room ReID. As shown in Figure 1, our experi-

ments show that all four levels of object-oriented informa-

tion, i.e., global context, object patches, object segmenta-

tion, and keypoints, are essential. Specifically, we find that

each level plays a unique role in room ReID. Global con-

text, such as the combination of objects like a couch and

television, conveys essential semantic information for cate-

gorizing a room as a living room. Object patches provide

finer details, enabling differentiation within a room, such as

distinguishing a bedside table in a bedroom from a desk in a

workspace. Object segmentation offers further granularity

by isolating individual items, like separating a dining table

from surrounding chairs to clarify the room layout. Finally,

keypoints on objects, such as handles on a dresser, enhance

room ReID by filtering out visually similar furniture in other

rooms. Moreover, integrating multi-level object-oriented

information adds robustness to viewpoint variations.

Based on these observations, we propose AirRoom, a

simple yet highly effective room reidentification (ReID)

system consisting of three stages: Global, Local, and Fine-

Grained. In the Global stage, a Global Feature Extractor is

used to capture global context features, which are then em-

ployed to coarsely select five functionally similar candidate

rooms. In the Local stage, instance segmentation is applied

to identify individual objects, followed by the Receptive

Field Expander to extract object patches. An Object Fea-

ture Extractor is then used to obtain both object and patch

features, which are utilized in Object-Aware Scoring to nar-

row the selection down to two candidate rooms. Finally,

in the Fine-Grained stage, feature matching is employed to

precisely identify the final room.

In summary, our contributions include:

• We introduce AirRoom, an object-aware room ReID

pipeline with two novel modules: the Receptive Field

Expander and Object-Aware Scoring, effectively lever-

aging multi-level object-oriented information to over-

come the limitations observed in previous methods.

• We have curated four comprehensive room reidenti-

fication datasets—MPReID, HMReID, GibsonReID,

and ReplicaReID—providing diverse benchmarks for

evaluating room reidentification methods.

• Extensive experiments demonstrate that AirRoom out-

performs SOTAs, maintaining robust and reliable per-

formance even under significant viewpoint variations.

2. Related Work

In this section, we review areas mostly related to our work,

i.e., image retrieval and visual place recognition.

2.1. Image Retrieval

Image retrieval is a fundamental and well-established task

in computer vision that involves searching for images sim-

ilar to a given query within a large database. The process

of image retrieval typically consists of two stages: global

retrieval and re-ranking. In the first stage, a global descrip-

tor that aggregates local features is used to retrieve k can-

didates from a large database. This is followed by spatial

verification through local feature matching to re-rank these

k candidates. Early research relied on handcrafted features

[5, 22], while current methods utilize deep networks to learn

informative representations [8, 28].

Most image retrieval methods focus on selecting diverse

relevant images to help users discover options that align

with their interests or needs in real-world applications [43].

Although these methods are effective in retrieving simi-

lar images, they often lack the emphasis on distinguish-

ing between categories or achieving precise ReID [11]. In

contrast, our approach prioritizes achieving accurate ReID.

Following a “global retrieval and re-ranking” pipeline, we

first use global context features to identify the top five

room candidates. Our object-aware mechanism then refines

the search in a coarse-to-fine manner, progressively distin-

guishing among candidates until the most similar room is

identified, yielding accurate results.

2.2. Visual Place Recognition

Visual place recognition (VPR) is often framed as a special

image retrieval problem, aiming to match a view of a loca-

tion with an image of the same place taken under different

conditions. Previous methods fall into two categories: those

that directly use global descriptors and those that aggregate

local features into a global descriptor. Earlier approaches

that relied on global descriptors primarily used CNN-based

backbones, such as ResNet [14], to generate these descrip-

tors. More recent methods, however, leverage foundation

models like DINOv2 [25] for enhanced feature represen-

tation. In the aggregation category, early techniques em-

ployed handcrafted features like SIFT [22], SURF [4], and

ORB [31]. Later advancements, including the NetVLAD

series [2, 13] and AnyLoc [16], adopted learning-based

models to extract feature maps and combine local features

into comprehensive global descriptors.
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Figure 2. The AirRoom coarse-to-fine pipeline. The pipeline begins with the Global Feature Extractor, which captures global context

features to retrieve the top-5 reference images. Instance segmentation then generates object masks, followed by the Receptive Field

Expander, which extracts object patches. The Object Feature Extractor processes both object and patch features. The Object-Aware

Scoring module narrows the selection to the top-2 candidates, and Fine-Grained Retrieval identifies the most suitable reference image.

However, the high performance of most VPR approaches

is largely attributed to large-scale training on VPR-specific

datasets [16]. Collecting extensive data for outdoor scenes

is relatively straightforward due to natural variations in day-

light, weather, and seasons. However, such data collection

is more challenging in indoor rooms, making large-scale

training on indoor datasets difficult and potentially limit-

ing their effectiveness. Our approach effectively tackles this

challenge by focusing on object-oriented feature represen-

tations, allowing us to leverage mature, pre-trained models

for object feature learning. This design enables AirRoom to

deliver robust performance without requiring any additional

training or fine-tuning on specific datasets.

3. Proposed Approach

We propose a simple yet highly effective pipeline, Air-

Room, for room reidentification that leverages multi-level

object-oriented information, as shown in Figure 2. We will

now systematically introduce each module of the pipeline,

following the sequence of stages in which they are executed.

3.1. Global Stage

In this stage, we utilize the Global Feature Extractor to cap-

ture global context features, which are derived from the col-

lective presence of objects within the room. These features

are then used for Global Retrieval, coarsely selecting se-

mantically similar candidate rooms from the database.

3.1.1. Global Feature Extractor

Indoor rooms exhibit fewer variations compared to out-

door environments. They lack diverse topographies, such as

aerial, subterranean, or underwater features, and do not ex-

perience temporal changes like day-night or seasonal vari-

ations. Consequently, collecting large datasets for each in-

door room is challenging, complicating large-scale training

as seen in many VPR methods [1, 2, 13].

However, indoor rooms are inherently rich in objects,

each contributing to the room’s overall semantic context.

By leveraging this global context information, we can re-

fine the reference search to specifically focus on rooms with

similar semantic features to those in the query image. For

this purpose, we prefer backbones pretrained on large im-

age datasets, as they provide strong generalizability and ef-

fectively capture informative global context features [17].

Our model selections, therefore, include pretrained CNN-

based models such as ResNet [14] and transformer-based

self-supervised models like DINOv2 [25].

3.1.2. Global Retrieval

Using the Global Feature Extractor, we extract global con-

text features for M query and N reference images. Let

Q ∈ R
M×Dg and R ∈ R

N×Dg denote the query and refer-

ence features, respectively, where Dg is the feature dimen-

sion. The cosine similarity matrix S is then computed as:

Sij =
Qi ·Rj

∥Qi∥∥Rj∥
. (1)

For each query, we select the top-5 most similar reference

candidates using the following formula:

Top5(Si,:) = argsort(−Si,:)[: 5], (2)

where Si,: represents the cosine similarity for the i-th query.

3.2. Local Stage

Global context features provide valuable semantic informa-

tion that helps narrow down the candidate list. However,

when faced with many semantically similar rooms, rely-

ing solely on global context is insufficient, and local fea-

tures become increasingly essential. In this stage, we adopt

a local perspective by first applying instance segmentation

and the Receptive Field Expander to identify objects and

patches. We then use the Object Feature Extractor to ex-

tract features from both objects and patches, followed by

Object-Aware Scoring to further refine the candidate list.
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3.2.1. Instance Segmentation

For each query image and its corresponding five candidates,

we employ instance segmentation methods, such as Mask

R-CNN [15] and Semantic-SAM [20], to identify and delin-

eate individual objects. This process generates each object’s

mask and bounding box. Next, we calculate the center point

c of each object using its bounding box, as shown below:

c = (
x+W

2
,
y +H

2
). (3)

In this equation, x and y represent the pixel coordinates of

the top-left corner of the bounding box, while W and H de-

note the width and height of the bounding box, respectively.

3.2.2. Receptive Field Expander

Single object information alone is not sufficiently discrim-

inative. For example, although different desks may have

distinct appearances, they can be found in both dining halls

and offices. However, when an object is connected with its

neighboring items—such as a desk alongside a computer,

keyboard, or notebook—it suggests that the room is more

likely to be an office rather than a dining hall. This insight

motivates us to expand the receptive field from a single ob-

ject to a patch containing multiple objects.

Given the center points of all objects in an image, we em-

ploy Delaunay triangulation [6] to generate a triangulated

graph of object relationships. Specifically, Delaunay trian-

gulation is applied to the set of object centers, ensuring that

no object centers are inside the circumcircle of any triangle.

This method maximizes the minimum angle of the triangles,

preventing narrow, elongated triangles and ensuring more

uniform object adjacency. By analyzing the adjacency re-

lationships among the resulting triangles, we can construct

the object adjacency matrix, which encodes the spatial and

relational proximity of objects within the room.

Figure 3. The Receptive Field Expander broadens the receptive

field from individual objects to patches rich in contextual infor-

mation. Leveraging the object adjacency matrix and each object’s

bounding box, it expands single objects such as a cupboard, win-

dow pane, and chair into object patches like a modular kitchen,

multi-pane window, and dining set, respectively.

Given the object adjacency matrix and bounding boxes in

an image, for each object, we consider the bounding boxes

of its neighboring objects and enlarge the current object’s

bounding box to encompass all adjacent objects. This ex-

pansion increases the receptive field, enabling us to capture

richer contextual information, as illustrated in Figure 3. We

then apply Non-Maximum Suppression (NMS) to select the

highest confidence bounding boxes, removing overlapping

ones based on their Intersection over Union (IoU) scores.

This results in a set of clean, informative object patches.

3.2.3. Object-Aware Refinement

The Object-Aware Refinement module is composed of three

key submodules: Object Feature Extractor, Mutual Nearest

Neighbors, and Object-Aware Scoring.

Object Feature Extractor To effectively leverage object

patches and object segmentation information, we prioritize

global features over local feature aggregation. The latter

approach may fail to capture object characteristics effec-

tively and can significantly increase computational com-

plexity and storage demands [49]. As discussed in Sec-

tion 3.1.1, we continue to rely on models pre-trained on

large image datasets. Using the Object Feature Extractor,

we obtain features for both query and reference patches and

objects. Let Qp = {pq
i }

nqp

i=1 and Qo = {oq
i }

nqo

i=1 represent

the query patch and object feature sets, respectively. For

each reference image among the query’s five candidates,

we define the reference patch and object feature sets as

Rp = {pr
i }

nrp

i=1 and Ro = {or
i }

nro

i=1.

Mutual Nearest Neighbors Given a set of query features

{fqi }
nq

i=1 and reference features {fri }
nr

i=1, we obtain fea-

ture pairs by identifying mutual nearest neighbor matches

through exhaustive comparison of the two sets. Let P de-

note the set of cosine similarity scores for these mutual near-

est neighbor matches, then we have

P = {cos(fqi , f
r
j ) | i = NNr(f

r
j ), j = NNq(f

q
i )} (4)

where

NNq(f
q
i ) = argmax

j

(

f
q
i · frj

∥fqi ∥∥f
r
j ∥

)

, (5)

NNr(f
r
i ) = argmax

j

(

fri · fqj
∥fri ∥∥f

q
j ∥

)

, (6)

cos(fqi , f
r
j ) =

f
q
i · frj

∥fqi ∥∥f
r
j ∥

. (7)

By utilizing mutual nearest neighbors, we can significantly

improve retrieval accuracy, simultaneously narrowing the

search space and enhancing overall retrieval efficiency [50].

Object-Aware Scoring The object-aware score s is the

sum of the global score sglobal (calculated in Equation 1),

the patch score spatch, and the object score sobject:

s = sglobal + spatch(Qp, Rp) + sobject(Qo, Ro). (8)
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Figure 4. Illustration of four newly constructed room reidentification datasets: MPReID, HMReID, GibsonReID, and ReplicaReID. Each

room provides only one reference image in the database, while query images for each room capture varied viewpoints.

Here, spatch and sobject can either be smean or smax, where

smean(Qt, Rt) =
1

|P (Qt, Rt)|

∑

x∈P (Qt,Rt)

x, (9a)

smax(Qt, Rt) = max
x∈P (Qt,Rt)

x. (9b)

In these equations, P denotes the set of cosine similarity

scores for mutual nearest neighbor matches, with Qt repre-

senting either Qp or Qo, and Rt representing either Rp or

Ro. The global score sglobal serves as a prior, indicating that

the initial five candidates vary in relevance. Thus, we retain

this term to account for their differing levels of relevance.

Object-Aware Refinement For each query, we select the

top-2 most similar reference candidates from the initial five

using the Object-Aware Scoring:

Top2(si) = argsort(−si)[: 2], (10)

where si is the object-aware scores for the i-th query.

3.3. Fine-Grained Stage

Patch and object features provide valuable information for

understanding the room layout; however, they may be insuf-

ficient when distinguishing highly visually similar rooms,

particularly in the presence of viewpoint variations and oc-

clusions. Keypoints on objects, by contrast, exhibit strong

robustness to texture and appearance variations, enabling

them to effectively handle partial occlusions and reject out-

liers [24]. This allows keypoints to offer a more refined ap-

proach, capturing finer details for more accurate room iden-

tification. In this stage, we use Fine-Grained Retrieval to

select the final top-1 result.

3.3.1. Fine-Grained Retrieval

Deep matchers, such as SuperGlue [34], perform well in vi-

sual localization tasks under challenging conditions, both

indoors and outdoors. However, they tend to face effi-

ciency issues. In contrast, LightGlue [21] offers high ef-

ficiency without compromising matching accuracy, making

it an ideal choice for our Fine-Grained Retrieval.

For each query image and its two candidate reference

images, we match the query to each candidate and record

the number of matching keypoint pairs. A higher number of

matches typically indicates greater overlap and consistency

between the features of the two images, suggesting a higher

degree of similarity in their content [22]. The candidate

with more matches is selected as the final result.

4. Experimental Results

4.1. Datasets
No existing indoor scene datasets are ideally suited for room

reidentification tasks, as none fully satisfy the requirements.

Datasets like ScanNet++ [46] and MIT Indoor Scenes [27]

lack room-level segmentation, resulting in multiple rooms

sharing a single scene label. The 17 Places [32] dataset

includes uniquely labeled rooms but offers limited view-

point variations, and the images are often vague. While this

dataset also includes day-night changes, these are not par-

ticularly relevant for most indoor scenarios. The Reloc110

[3] dataset is likely the most suitable option; however, its

quality is insufficient, with many images containing only

solid-colored walls or floors due to random sampling, re-

sulting in minimal contextual information.

Several high-quality indoor 3D datasets—such as Mat-

terport3D [10], Habitat-Matterport3D [30], the Gibson

Database of 3D Spaces [44], and Replica [38]—offer real-

world indoor scenes. Building on these resources and uti-

lizing the interactive Habitat Simulator [26, 36, 40], we cre-

ated four new datasets: MPReID, HMReID, GibsonReID,

and ReplicaReID, as shown in Figure 4.

Using the Habitat Simulator, we configured an agent for

each room and manually selected 5 to 10 key poses to guide

its exploration. The agent captured 640×480 RGB-D im-

ages from various angles, resulting in 300 to 800 images

1389



Methods
MPReID HMReID GibsonReID ReplicaReID

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

CVNet 17.45 29.52 17.45 19.34 11.71 25.42 11.95 13.86 12.04 24.06 12.07 14.27 15.93 20.53 15.74 16.64

DINOv2 59.36 64.68 59.36 58.91 53.91 60.52 53.73 54.69 61.01 65.88 61.78 61.71 78.06 79.68 77.97 77.44

Patch-NetVLAD 64.32 70.47 64.36 65.53 64.86 68.78 64.32 65.16 61.47 66.90 62.04 62.51 63.77 64.97 63.86 63.87

AnyLoc 92.34 93.23 92.36 92.32 89.69 90.25 89.53 89.62 85.85 87.42 86.15 86.21 88.57 89.89 88.46 88.42

AirRoom 93.96 94.52 93.98 93.91 93.80 94.01 93.55 93.62 91.68 92.41 91.79 91.63 87.18 89.39 87.08 87.24

Table 1. Overall performance comparison between AirRoom and baseline models on four newly constructed room ReID datasets.

per room, depending on the number of key poses. How-

ever, many randomly sampled images were of low quality,

often containing only walls or floors with minimal context.

To address this, we carefully filtered the images for each

room, retaining those that accurately represented the space

and provided valuable information for room ReID.

In total, the datasets are as follows: MPReID includes 15

scenes, 105 rooms, and 16,231 RGB-D images; HMReID

consists of 21 scenes, 105 rooms, and 15,781 RGB-D im-

ages; GibsonReID contains 24 scenes, 45 rooms, and 6,743

RGB-D images; and ReplicaReID includes 12 scenes, 19

rooms, and 2,862 RGB-D images.

4.2. Database Preprocess

In the room reidentification setting, we have multiple query

images and a reference database. For each dataset, we select

only one image per room to build the database. Specifically,

for all the images of each room, we first use CLIP [29] to

extract feature embeddings. Then, we apply K-means clus-

tering with the number of clusters set to 1. The image clos-

est to the cluster center is chosen as the reference image, as

it best represents the room’s visual characteristics [42].

After building the reference database, we preprocess fea-

tures. First, we use the Global Feature Extractor to ob-

tain and save the global context features. Next, we apply

the instance segmentation module to segment the objects.

Then, we use our Receptive Field Expander to obtain object

patches and the Object Feature Extractor to extract and save

the features of both the objects and the patches.

4.3. Experimental Overview

We conducted five primary experiments: overall perfor-

mance comparison, group-wise performance comparison,

pipeline flexibility evaluation, ablation studies, and runtime

analysis. For evaluation, we used accuracy, precision, re-

call, and the F1 score as metrics. Per-class precision, recall,

and F1-score were computed using a multi-class confusion

matrix, followed by macro averaging. Accuracy was mea-

sured as the ratio of correctly matched queries to the total

number of queries. A detailed runtime analysis and addi-

tional experimental results are provided in the appendix.

4.4. Overall Performance Comparison

In this section, we present a performance comparison be-

tween the best-performing version of our approach and sev-

eral state-of-the-art methods, allowing us to benchmark our

pipeline against established room reidentification models

across different feature extraction and retrieval strategies.

We selected three categories of baseline methods: im-

age retrieval (CVNet [19]), global descriptor-based visual

place recognition (VPR) (DINOv2 [25]), and VPR using

aggregated local features (Patch-NetVLAD [13] and Any-

Loc [16]). Specifically, we used the Base version of DI-

NOv2, configured CVNet with a ResNet50 [14] backbone

and a reduction dimension of 2048, selected the perfor-

mance version of Patch-NetVLAD, and set up AnyLoc with

AnyLoc-VLAD-DINOv2 using 32 VLAD clusters.

AirRoom DINOv2

Patch-NetVLADCVNet

AnyLoc

Figure 5. Given a bedroom query, AirRoom accurately retrieves

the target image by leveraging object relevance for room reidenti-

fication. In contrast, CVNet retrieves visually similar images with-

out preserving scene accuracy, DINOv2 captures semantic content

but overlooks color details, Patch-NetVLAD, using aggregated lo-

cal features to form global descriptors, retrieves images with mis-

matched semantic information, and AnyLoc considers semantic

and color attributes but neglects object importance within rooms.

Table 1 presents a quantitative comparison between Air-

Room and baseline methods, showing that AirRoom out-

performs all baselines on nearly all metrics and datasets.

In room reidentification tasks, image retrieval methods gen-

erally exhibit lower classification metrics due to their fo-

cus not being on top-1 precision, while VPR methods yield

better results. Global descriptor-based VPR methods cap-

ture only high-level semantic information, often retrieving

rooms with similar semantics but lacking detailed features.

In contrast, VPR methods using aggregated local features,

such as Patch-NetVLAD, emphasize low-level encodings

but may overlook global context, resulting in less accurate

retrievals. Figure 5 illustrates failure cases for CVNet, DI-

NOv2, Patch-NetVLAD, and AnyLoc, highlighting these

limitations. Although AnyLoc, known for its robust per-

formance in “anywhere, anytime, anyview” VPR, performs
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Methods
MPReID HMReID GibsonReID ReplicaReID

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

ResNet50 76.14 79.21 76.20 76.58 69.03 73.21 68.61 69.07 68.84 72.30 69.50 69.00 75.05 78.61 75.30 74.88

CVNet 17.45 29.52 17.45 19.34 11.71 25.42 11.95 13.86 12.04 24.06 12.07 14.27 15.93 20.53 15.74 16.64

AirRoom-ResNet50 86.16 87.69 86.19 86.16 81.23 83.90 80.76 81.23 82.53 84.91 82.86 82.54 83.51 84.85 83.54 83.17

NetVLAD 82.22 86.77 82.24 82.92 72.04 80.79 71.83 73.05 68.86 81.00 69.24 71.01 77.04 81.31 77.28 77.63

Patch-NetVLAD(4096) 64.32 70.47 64.36 65.53 64.86 68.78 64.32 65.16 61.47 66.90 62.04 62.51 63.77 64.97 63.86 63.87

Patch-NetVLAD(512) 66.62 71.85 66.67 67.62 65.63 69.28 65.01 65.57 60.95 69.16 61.43 62.46 66.00 68.75 66.25 66.22

Patch-NetVLAD(128) 65.04 70.84 65.09 66.15 61.17 66.71 60.69 61.42 58.31 66.15 58.69 59.66 61.88 66.29 62.12 62.05

AirRoom-NetVLAD 89.38 90.99 89.40 89.50 83.47 86.91 83.08 83.66 82.29 87.27 82.61 82.98 83.58 84.42 83.60 83.37

Table 2. Group-wise performance comparison with baseline models to assess the effectiveness of the object-aware mechanism.

Methods
MPReID HMReID GibsonReID ReplicaReID

Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

ViT 81.90 85.27 81.96 81.71 76.47 79.37 76.04 75.91 76.46 78.51 77.00 76.88 77.99 81.41 78.15 77.46

AirRoom-ViT 89.70 90.97 89.72 89.35 86.58 88.13 86.12 86.23 87.08 88.24 87.33 87.19 84.84 86.85 84.79 84.45

DINO 80.66 84.32 80.73 81.14 73.54 77.73 73.13 73.79 72.28 74.92 72.92 72.89 86.58 87.77 86.60 86.49

AirRoom-DINO 88.00 89.59 88.05 88.09 83.62 85.43 83.14 83.40 84.62 86.23 84.95 84.83 87.49 88.56 87.41 87.25

DINOv2 59.36 64.68 59.36 58.91 53.91 60.52 53.73 54.69 61.01 65.88 61.78 61.71 78.06 79.68 77.97 77.44

AirRoom-DINOv2 76.10 79.03 76.11 75.80 70.95 73.86 70.66 70.78 78.63 80.44 79.00 78.45 85.57 86.58 85.45 85.19

AnyLoc(16) 90.22 91.18 90.25 90.17 84.63 86.40 84.56 84.91 82.20 83.77 82.59 82.74 85.64 87.52 85.59 85.67

AirRoom-AnyLoc(16) 93.05 93.66 93.08 92.99 91.55 92.12 91.32 91.47 89.04 89.97 89.21 89.13 86.83 89.03 86.76 86.90

AnyLoc(8) 88.03 89.33 88.08 88.01 81.93 83.89 81.94 82.25 79.27 81.29 79.72 79.71 84.98 86.19 85.03 84.88

AirRoom-AnyLoc(8) 92.37 93.14 92.40 92.32 90.24 90.85 90.01 90.13 88.37 89.38 88.56 88.52 85.81 87.67 85.77 85.80

Table 3. Global Feature Extractor Flexibility.

well, AirRoom further enhances performance, achieving a

20% to 40% improvement within the available margin com-

pared to AnyLoc. For instance, AnyLoc achieves 89.69%

accuracy on HMReID, leaving approximately 10% room

for improvement. AirRoom, with an accuracy of 93.80%,

demonstrates up to a 40% improvement within this remain-

ing margin. These results highlight AirRoom’s superior

precision and refinement in room reidentification.

4.5. Group-Wise Performance Comparison

Many baseline methods adopt a “backbone + enhance-

ment mechanism” paradigm, which our approach also fol-

lows. In this section, we compare the performance of our

object-aware enhancement mechanism with that of several

state-of-the-art methods, using the same backbone as each

group’s baseline. This setup allows us to directly assess the

effectiveness of our object-aware enhancement mechanism.

For the ResNet50 backbone group, we use CVNet [19]

as the baseline. In the NetVLAD backbone group, we em-

ploy Patch-NetVLAD [13] as the baseline, testing it at three

reduction dimensions: 4096, 512, and 128.

Table 2 reveals that within each group, the single back-

bone outperforms the baseline methods that attempt to en-

hance performance through various mechanisms, indicat-

ing that these mechanisms do not effectively capture crit-

ical information in indoor rooms. In contrast, our object-

aware enhancement mechanism significantly improves the

backbone’s performance by emphasizing the importance of

objects in indoor environments.

4.6. Pipeline Flexibility Evaluation

In this section, we systematically evaluate the flexibility and

adaptability of AirRoom by testing different configurations

of its key modules. The results clearly demonstrate that

AirRoom is not reliant on any specific model and can ef-

fectively integrate a diverse range of models.

4.6.1. Global Feature Extractor
We test various Global Feature Extractors, including ViT

[12], DINO [9], DINOv2 [25], and AnyLoc-VLAD-

DINOv2 [16] with VLAD cluster sizes of 16 and 8.

As shown in Table 3, AirRoom consistently achieves

over 85% across all metrics and datasets in nearly every

case, regardless of the capabilities of the Global Feature Ex-

tractor used. Even in the single exception with DINOv2,

AirRoom still improves performance by nearly 15%. This

demonstrates that the effectiveness of our pipeline is not re-

liant on any specific Global Feature Extractor, highlighting

AirRoom’s adaptability to various backbone configurations

and underscoring its robust flexibility.

4.6.2. Instance Segmentation
We compare traditional instance segmentation methods,

such as Mask R-CNN [15], with more recent approaches,

including Semantic-SAM [20], which leverage advanced

techniques for more granular segmentation.

Table 4 shows that AirRoom consistently outperforms

the baseline by over 15%, regardless of the instance seg-

mentation module used. This demonstrates that our pipeline

is not dependent on any specific instance segmentation

method, underscoring its adaptability in this component.

Methods
HMReID

Accuracy Precision Recall F1

DINOv2 53.91 60.52 53.73 54.69

AirRoom-MaskRCNN 69.44 72.23 69.08 69.07

AirRoom-SSAM 70.95 73.86 70.66 70.78

Table 4. Instance Segmentation Flexibility.

4.6.3. Object Feature Extractor

We experiment with both traditional backbones, such as

ResNet50 [14], and more modern backbones, like DINOv2

[25], as the Object Feature Extractor.
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As shown in Table 5, AirRoom achieves substantial per-

formance improvements over the baseline, with minimal

performance variation between different Object Feature Ex-

tractors. This supports the flexibility of our pipeline in ac-

commodating a range of feature extraction methods.

Methods
HMReID

Accuracy Precision Recall F1

DINOv2 53.91 60.52 53.73 54.69

AirRoom-ResNet50 70.95 73.86 70.66 70.78

AirRoom-DINOv2 68.67 71.81 68.33 68.59

Table 5. Object Feature Extractor Flexibility.

4.6.4. Object-Aware Scoring

We evaluate both the mean (smean) and max (smax) strate-

gies for computing the patch score (spatch) and object score

(sobject), assessing their impact on the overall performance.

Table 6 shows that AirRoom’s performance remains sta-

ble regardless of the object-aware scoring method used.

This underscores the robustness of object-oriented informa-

tion in room reidentification and demonstrates AirRoom’s

flexibility in adapting to different scoring strategies.

Methods
HMReID

Accuracy Precision Recall F1

DINOv2 53.91 60.52 53.73 54.69

AirRoom-Max(patch)-Mean(object) 70.95 73.86 70.66 70.78

AirRoom-Max(patch)-Max(object) 71.02 74.02 70.72 70.85

AirRoom-Mean(patch)-Max(object) 70.85 73.85 70.55 70.70

AirRoom-Mean(patch)-Mean(object) 70.90 73.78 70.62 70.73

Table 6. Object-Aware Scoring Flexibility.

4.7. Ablation Studies

In this section, we remove certain modules from our

pipeline—including the global score sglobal, the patch score

spatch, the object score sobject, within object-aware scoring,

and the entire Fine-Grained Retrieval (FGR)—to assess the

importance and effectiveness of each component.

Table 7 shows that removing any module from our

pipeline leads to a performance drop. However, as long

as at least one module remains, our pipeline still outper-

forms the baseline. Table 8 demonstrates that when the

Global Feature Extractor (ViT) performs well, the global

score sglobal significantly enhances performance. On the

other hand, when the Global Feature Extractor (DINOv2)

is less effective, the global score sglobal has a slight nega-

tive impact, causing a small drop in performance. This re-

sult aligns with our hypothesis in Section 3.2.3, where the

global score acts as a prior to rank the priority of the five

candidates. Overall, these ablation studies confirm that ev-

ery module in our pipeline is both important and necessary.

4.8. Limitations

While AirRoom achieves state-of-the-art performance in

room reidentification under various viewpoint variations,

a limitation of our work is the inability to verify robust-

ness to indoor object rearrangements caused by movable ob-

Methods
HMReID

Accuracy Precision Recall F1

DINOv2 (AirRoom-w/o all) 53.91 60.52 53.73 54.69

AirRoom-w/o spatch 66.68 70.04 66.42 66.68

AirRoom-w/o sobject 69.77 72.84 69.48 69.64

AirRoom-w/o FGR 66.11 70.85 65.80 66.41

AirRoom-w/o spatch & sobject 62.26 66.43 62.03 62.46

AirRoom-w/o spatch & FGR 59.39 65.25 59.14 59.97

AirRoom-w/o sobject & FGR 63.44 68.68 63.14 63.84

AirRoom 70.95 73.86 70.66 70.78

Table 7. Ablation Studies (Excluding Global Score Experiments).

Methods
HMReID

Accuracy Precision Recall F1

ViT 76.47 79.37 76.04 75.91

AirRoom-ViT-w/o sglobal 84.86 86.82 84.34 84.61

AirRoom-ViT 86.58 88.13 86.12 86.23

DINOv2 53.91 60.52 53.73 54.69

AirRoom-DINOv2-w/o sglobal 71.73 74.97 71.44 71.64

AirRoom-DINOv2 70.95 73.86 70.66 70.78

Table 8. Ablation Studies on Global Score.

jects. Although our mutual nearest neighbors-based Object-

Aware Scoring method is somewhat robust to such rear-

rangements, the datasets used in our experiments lack these

cases. In contrast, recent advances in dynamic scene under-

standing [47] focus on recognizing scenes in the presence of

moving objects, potentially offering greater robustness than

our approach. Future work should consider constructing

datasets that include object rearrangements and integrating

new techniques to enhance robustness to movable objects,

thereby improving room reidentification.

5. Conclusion

Room reidentification is a challenging yet crucial research

area, with growing applications in fields like augmented re-

ality and homecare robotics. In this paper, we introduce

AirRoom, a training-free, object-aware approach for room

reidentification. AirRoom leverages multi-level object-

oriented features to capture both spatial and contextual in-

formation of indoor rooms. To evaluate AirRoom, we con-

structed four novel datasets specifically for room reidenti-

fication. Experimental results demonstrate its robustness to

viewpoint variations and superior performance over state-

of-the-art methods across nearly all metrics and datasets.

Furthermore, the pipeline is highly flexible, maintaining

high performance without relying on specific model con-

figurations. Collectively, our work establishes AirRoom as

a powerful and versatile solution for precise room reidenti-

fication, with broad potential for real-world applications.
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Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,

Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mah-

moud Assran, Nicolas Ballas, Wojciech Galuba, Russell

Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael

Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Je-
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