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Abstract

Image steganography can hide information in a host im-
age and obtain a stego image that is perceptually indistin-
guishable from the original one. This technique has tremen-
dous potential in scenarios like copyright protection and in-
formation retrospection. Some previous studies have pro-
posed to enhance the robustness of the methods against
image disturbances to increase their applicability. How-
ever, they generally cannot achieve a satisfying balance be-
tween the steganography quality and robustness. Instead
of image-in-image steganography, we focus on the issue of
message-in-image embedding that is robust to various real-
world image distortions. This task aims to embed infor-
mation into a natural image and the decoding result is re-
quired to be completely accurate, which increases the dif-
ficulty of data concealing and revealing. Inspired by the
recent developments in transformer-based vision models,
we discover that the tokenized representation of image is
naturally suitable for steganography task. In this paper,
we propose a novel message embedding framework, called
Robust Message Steganography (RMSteg), which is com-
petent to hide message via QR Code in a host image based
on an normalizing flow-based model. The stego image de-
rived by our method has imperceptible changes and the en-
coded message can be accurately restored even if the image
is printed out and photographed. To our best knowledge,
this is the first work that integrates the advantages of trans-
former models into normalizing flow. The code is available
at https://github.com/huayuan4396/RMSteg.

1. Introduction

Steganography, the art of hiding secret information in a car-
rier, has long been a prominent research direction. This
technique is competent to embed information like images
and text into target containers, thus achieving copyright
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Figure 1. Compared with previous methods that can only em-
bed limited bit-level information, RMSteg can achieve a much
higher embedding capacity and meanwhile has better steganog-
raphy quality. Also, it can survive various real-world distortions.

protection [10, 37] and information retrospection [48, 52].
Steganography aims to prevent people from discovering the
existence of secret data instead of obscuring meaning of
data, differentiating it from cryptography. Specifically, im-
age steganography uses image to carry secret information.

Traditional image steganography methods mainly mod-
ify the image in spatial domain [14, 17, 25, 28, 29] or trans-
form domain [2, 36, 55]. This kind of method is easy to be
detected by steganalysis techniques [9, 50], compromising
security. Recently, with the developments of deep learning,
some deep steganography methods have been proposed.
Most of them are based on autoencoder [3, 44, 52, 54] and
normalizing flow [5, 12, 16, 24, 47, 48].

Images can undergo various digital or real-world distur-
bances during dissemination. To enable the stego images to
survive these distortions, some robust steganography meth-
ods have been proposed. They consider various distortion
situations like light field messaging (LFM) [44], JPEG com-
pression [47], etc. In the field of robust steganography,
robust message embedding is very promising in many ap-
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plication scenarios like hyperlink hiding [37] and metadata
embedding [13, 52]. However, this task requires high de-
coding accuracy, which poses a challenge to the balance of
decoding performance and stego image quality, especially
when facing real-world distortions. Although some stud-
ies [10, 37] have proposed to hide messages in host images
and try to make them survive printing and photography,
which is among the most demanding situations that require
high steganography robustness, they cannot achieve enough
steganography quality and capacity at the same time.

As the most widely utilized method, normalizing flow-
based model [6, 7, 18] has achieved impressive perfor-
mance in various steganography tasks. Existing meth-
ods [5, 12, 16, 24, 47, 48] generally incorporate normaliz-
ing flow by utilizing a convolutional neural network (CNN)
based backbone. However, according to our experiments,
this kind of model design can lead to obvious artifacts in
stego images when handling robust steganography tasks due
to the lack of inner-channel feature fusion. Inspired by
the transformer-based vision models, we discover that the
tokenized representation of image is naturally suitable for
robust steganography that requires highly abstract feature
learning. As a result, we aim to take advantages of it to ad-
dress the robust message-in-image steganography problem.

In this paper, we propose a new framework for message
embedding, called Robust Message Steganography (RM-
Steg), a simple demo is demonstrated in Figure 1. We use
QR Code as the message carrier and encode it into the host
image. Unlike previous methods that directly encode the
secret image, we propose an invertible QR Code transition
as a preprocessing step, which transforms the QR Code
based on the features of the host image, lowering down
the artifacts in stego images and meanwhile maintaining a
high decoding accuracy. We outline a steganography model
called AttnFlow, which integrates tokenized image repre-
sentation into normalizing flow. We propose an attention
affine coupling block (AACB) that leverages the attention
mechanism [8, 41] instead of traditional CNN for invert-
ible steganography function learning, thus significantly im-
proving the stego image quality. Compared with previous
methods, our method can overcome the aforementioned dif-
ficulties and achieve robust, high-quality and high-capacity
message-in-image steganography. The main contributions
of this paper include three aspects:

• We use QR Code as the message carrier and propose
a transition scheme to transform the QR Code before
steganography. This process can improve the stego im-
age quality while maintaining decoding accuracy.

• We propose an invertible token fusion module that can
effectively improve the steganography quality by simply
including a small learnable matrix.

• We propose a normalizing flow-based steganography net-
work that integrates the tokenized image representation.

Our network can generate stego images with significantly
higher quality and can survive extreme distortions. We
use the case of printing and photography to validate our
method’s effectiveness.

2. Related Work

2.1. Image Steganography

Traditional Steganography Image steganography hides
information in an image by performing imperceptible
changes on a host image. Traditional methods modify
the image in spatial or transform domain [3]. Spatial-
domain steganography generally leverages least-significant-
bit (LSB) replacement [25], bit plane complexity segmen-
tation (BPCS) [17, 28] and palette reordering [14, 29]
to conceal information. However, this kind of scheme
may raise statistical anomalies that can be detected by ste-
ganalysis techniques [9, 50]. Some methods utilize high-
dimensional features [30] and distortion constraints [20] to
improve steganography security and quality. Transform-
based steganography can hide data in a transformed do-
main using discrete cosine transform (DCT) [2] and discrete
wavelet transform (DWT) [36, 55]. Due to the limited abil-
ity of feature representation and transformation, traditional
methods generally cannot achieve a satisfying quality.

Deep Steganography Recently, various deep learning-
based image steganography schemes have been proposed
and have achieved impressive performance. HiDDeN [54]
adopted the autoencoder (AE) to embed binary messages.
Baluja [3] first utilized an end-to-end network to hide a
color image in another. Some studies [10, 31, 34, 38, 39, 51]
incorporated generative adversarial network (GAN) [11] to
reduce the image artifacts and defend steganalysis. More
recently, the invertible neural network (INN) [6, 7, 18] has
been widely used for steganography. These methods suc-
cessfully hide single [5, 16, 24] or multiple [12, 45, 48] im-
ages in a carrier image. There are also some studies focus-
ing on coverless steganography [21, 23, 26, 49] that directly
transforms the secret information into a cover image. These
methods mainly focus on improving the embedding capac-
ity instead of robustness, as a result, they generally cannot
survive image distortions.

Robust Steganography Robust steganography allows
information decoding even if the images are interfered with
by digital transmission or real-world distortions, which is
meaningful for scenarios like copyright protection, secret
communication, etc. VisCode [52] hides QR Codes in host
images and can survive image brightness changes and slight
tampering. LFM [44] is robust to light field messaging.
RIIS [47] considers JPEG compression and various kinds
of noise separately based on a conditional network. StegaS-
tamp [37] and ChartStamp [10] take printing and photog-
raphy into account but can only embed very little informa-
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tion at a cost of visual quality loss. As far as we know, ex-
isting methods cannot achieve both high-quality and high-
capacity message steganography that is robust to extreme
image distortions. In this paper, we aim to take the advan-
tages of transformer-based model to address this problem.

2.2. Normalizing Flow-Based Models
Normalizing flow model was first proposed as a generative
model by Dinh et al. [6]. With further improvement by Re-
alNVP [7] and GLOW [18], it is also known as the invertible
neural network (INN). INN can learn an invertible function
using a set of affine coupling layers with shared parame-
ters to map the original data distribution to a simple dis-
tribution (e.g., Gaussian distribution). Chen et al. [4] pro-
posed an unbiased estimation for normalizing flow model.
i-RevNet [15] utilizes an explicit inversion to improve the
invertible architecture.

Recently, normalizing flow has been applied to various
downstream tasks in computer vision, such as image [46]
and video [56] super-resolution, image-to-image transla-
tion [40]. Especially, in the field of steganography, normal-
izing flow-based methods [5, 24, 48] have shown promising
performance. HiNet [16] introduces the discrete wavelet
transform to guide channel squeezing and improve the
steganography quality. DeepMIH [12] hides single or multi-
ple images with a saliency detection module. Mou et al. [27]
incorporated a key-controllable network design to imple-
ment secure video steganography. Xu et al. [47] simulated
distortions during model training to improve the robustness
and security of their method. Although previous studies
have leveraged various methods to improve the network
architecture for better performance, they cannot attend to
both image quality and steganography robustness simulta-
neously.

3. Method

3.1. Overview
Given a secret message Ts, we first encode it into a QR
Code image Iq . The concealing procedure aims to embed
Iq into a host image Ih and derive a stego image Is that is
perceptually similar to Ih. Then, Is can suffer from various
real-world image distortions, resulting in a distorted image
I ′s. After that, the revealing procedure aims to restore a QR
Code Îq from I ′s that can be successfully recognized to ob-
tain the original message.

To achieve the aforementioned targets, we first leverage
a QR Code transition scheme (Sec. 3.3) to transform the
original QR Code according to the host image, reducing
the artifacts it causes in the subsequent steganography pro-
cess. Then, we use an invertible token fusion (ITF) mod-
ule (Sec. 3.4) to improve the stego image quality. After that,
we propose an AttnFlow model (Sec. 3.5) to perform mes-

sage embedding. To make our method robust to real-world
distortions, we incorporate a distortion simulation module
during the training stage, which will be described in detail
in Sec. 3.6. Fig. 2 demonstrates an overview of the pipeline
of our RMSteg.

3.2. Preliminary: Normalizing Flow
Normalizing Flow [6, 7, 18], also called the invertible neu-
ral network (INN), is proposed to model a bijective projec-
tion from a complex distribution (e.g., images) to a tractable
distribution (e.g. Gaussian distribution and Dirac distribu-
tion). This kind of model generally comprises several in-
vertible affine coupling blocks (ACBs). The most basic
ACB architecture is proposed by NICE [6], in which the
input ui of the ith ACB is split into two parts, ui

1 and ui
2,

whose corresponding outputs are ui+1
1 and ui+1

2 , respec-
tively. For the forward process, the following transforma-
tion is performed:

ui+1
1 = ui

1 + σ(ui
2), ui+1

2 = ui
2 + δ(ui+1

1 ), (1)

where σ(·) and δ(·) are arbitrary functions. Obviously, the
backward process can be formulated as:

ui
2 = ui+1

2 − δ(ui+1
1 ), ui

1 = ui+1
1 − σ(ui

2). (2)

In the normalizing flow architecture, δ(·) and σ(·) in Equa-
tion 1 and Equation 2 can be implemented by neural net-
work modules with shared parameters and inverse calcu-
lation manner. By stacking multiple ACBs, the network
can learn an invertible transformation between two distribu-
tions. Since this scheme is inherently suitable for steganog-
raphy, many studies have utilized it for data hiding and pro-
posed various improvements. In this paper, we further ex-
tend the ability of normalizing flow and propose a new net-
work architecture for our robust message embedding task.

3.3. Invertible QR Code Transition
For the message embedding task in this paper, the hidden
QR code needs to be restored with enough accuracy to be
identified by common devices like cell phones, webcams,
etc. To balance the trade-off between the stego image qual-
ity and decoding accuracy, VisCode [52] obtains a visual
saliency map to guide the QR Code embedding while Chart-
Stamp [10] utilizes the semantic segmentation result as the
training loss guidance. Although this kind of rule-based
strategy can improve the visual quality of the stego image,
it does not consider the inherent relationship between QR
Codes and the host image.

In our method, we adopt a more direct approach, which
is modifying the QR Code image according to the host
image (shown in Figure 2 (a)). We call it invertible QR
Code transition (IQRT). The key idea of IQRT is that, the
QR Code used for steganography is not necessarily to be
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Figure 2. The pipeline of RMSteg. We first transform the QR Code encoded with the secret message to make it easier to hide through
an invertible neural network (a). After that, we perform invertible token fusion (ITF) (b) on the tokenized QR Code. We then use a
normalizing flow-based model with attention affine coupling blocks (AACBs) to implement data concealing and revealing (c). During
training, we employ a distortion simulation module (d) to simulate real-world image disturbances.

black-and-white to keep its information. Thus, a learnable
transformation can be applied to the QR Code for a bet-
ter steganography quality as long as the transformed code
is still identifiable. Formally, given a host image Ih and
a QR Code Iq with the same size, we use an off-the-shelf
INN architecture (with only two invertible blocks) proposed
by ISN [24] to learn an invertible function f(·) that derives
the transformed QR Code I∗q by I∗q = f(Iq, Ih). In the
reverse process, the restored QR Code Îq can be obtained
by Îq = f−1(I∗q , I

′
s), where f−1(·) is the inverse function

of f(·) defined by normalizing flow and I ′s is the distorted
stego image. Here I ′s is used instead of Ih since the latter is
unknown in the decoding procedure.

During network training, the transition network is jointly
trained with the subsequent steganography network. We
employ the same constraint as ArtCoder [35] to the trans-
formed QR Code to ensure that it is still identifiable. Specif-
ically, a Gaussian convolution kernel is applied to each code
module to simulate the QR Code scanning procedure. For
more details, we suggest referring to the original paper [35].
We do not use extra constraint to the transition network so
that it can learn the best transition strategy according to the
overall optimization targets. Figure 3 shows some transition
results, it can be observed that the transformed QR Codes
have lower brightness. However, with the aforementioned
constraint, the transformed QR Codes are still identifiable,
guaranteeing almost no information loss.

3.4. Invertible Token Fusion
With the transformed QR Code, we first use a ViT [8] to
obtain a tokenized representation Tq ∈ RN×D, in which N

Figure 3. Some QR Code transition results, the transformed QR
Codes are still identifiable.

is the number of tokens and D represents the token dimen-
sionality. Inspired by the invertible 1 × 1 convolution pro-
posed by GLOW [18], before feeding Tq to the subsequent
steganography network, we put forth an invertible token fu-
sion (ITF) module (as shown in Figure 2 (b)) to transform
the QR Code tokens for a better steganography quality.

Formally, we use a learnable matrix M ∈ RN×N , which
is initialized as an orthogonal matrix using Cholesky de-
composition [19], as a transform matrix for Tq . In the
steganography process, Tq is transformed by performing a
matrix multiplication: T ′

q = M · Tq . Obviously, in the de-
coding procedure, the restored tokens T̂q can be obtained
by: T̂q = M−1 · T̂ ′

q , where M−1 is the inverse matrix.

Different from GLOW [18] that utilizes the invertible
convolution to learn the channel-wise fusion strategy, our
ITF module learns a patch-wise transformation that enables
inner-channel feature interaction. Our experiments also
prove that ITF can efficiently and effectively improve the
steganography quality by simply introducing the aforemen-
tioned learnable matrix.
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3.5. Steganography with AttnFlow
Previous steganography studies based on normalizing flow
generally adopt a convolutional neural network (CNN)
based backbone, mostly DenseNet [42], to construct the
affine coupling blocks (ACBs). This kind of design only
considers the channel-wise feature fusion and can lead to
perceptible artifacts in stego images, especially in the ro-
bust steganography task. Motivated by the impressive per-
formance achieved by the transformer-based [8, 41] vision
models recently, we propose a model called AttnFlow that
introduces attention mechanism to normalizing flow to im-
plement robust steganography.

As shown in Figure 2 (c), similar to ordinary normal-
izing flow, AttnFlow contains several attention affine cou-
pling blocks (AACBs) for invertible function learning. As-
sume that the input of the ith AACB is split into T

(i−1)
h

and T
(i−1)
q , corresponding to the host image tokens and

QR Code tokens, respectively. Specifically, T (0)
h is the tok-

enized host image obtained with a basic ViT [8] and T
(0)
q

represents the QR Code image tokens output by the ITF
module. For the ith AACB, we perform the following affine
transformation:

T
(i)
h = T

(i−1)
h + ϕ(T (i−1)

q ) + C(T (i−1)
q , T

(0)
h )× αi,

T (i)
q = η(T

(i)
h ) + T (i−1)

q ⊙ exp(ρ(T
(i)
h )),

(3)

in which ϕ(·), η(·), ρ(·) are self-attention blocks [41]
followed by a feedforward multilayer perceptron (MLP),
C(q, kv) represents the cross-attention block [41], exp(·) is
the exponential function, ⊙ indicates the Hadamard product
and αi is a dependent trainable coefficient for each AACB.
We calculate the attention value with:

Attn(Q,K, V ) = M · V, M = Softmax(
QKT

√
d

), (4)

where Q, K, V are derived from the learned projections and
d is the dimension of the projected tokens. As described
in Equation 3, in addition to the self-attention value, we
also calculate the cross-attention value of the initial host im-
age tokens T

(0)
h upon the QR code tokens T

(i−1)
q for each

AACB. Then, we add these values to T
(i−1)
h to help AACBs

gradually integrate the information from the QR code into
the image. For the QR Code tokens, we choose to adopt a
generally incorporated [5, 16, 24, 48] affine transformation
and replace the original convolutional blocks with η(·) and
ρ(·). After n AACBs, T (n)

h further goes through a detok-
enizer1, resulting in the final stego image. Although some
methods further map T

(n)
h and T

(n)
q as a conditional dis-

tribution for better performance, here we choose to adopt

1The detailed architecture of the tokenizers and detokenizers are de-
scribed in the appendix.

the same assumption as HiNet [16], which is simply posit-
ing that T (n)

q obeys a Gaussian distribution. We follow this
scheme since it would not increase calculation overload by
including extra networks and we empirically find it would
make almost no performance loss in our task.

In the revealing process, we aim to restore the original
QR Code from a distorted stego image I ′s, we first use a
UNet [32] for feature enhancement and tokenize it to derive
T̂

(n)
h . Then, we obtain T̂

(n)
q by sampling from a standard

Gaussian distribution. After that, we perform the inverse
AACB transformation by going through them with inverse
calculation manner:

T̂ (i−1)
q = (T̂ (i)

q − η(T̂
(i)
h ))⊙ exp(−ρ(T̂

(i)
h )),

T̂
(i−1)
h = T̂

(i)
h − ϕ(T̂ (i−1)

q )− C(T̂ (i−1)
q , T̂

(0)
h )× αi,

(5)

in which T̂
(0)
h is obtained by tokenizing I ′s since Ih is un-

known in the decoding process. Then, T̂ (0)
q is detokenized

and fed into the reversed QR Code transition (introduced in
Sec. 3.3) with I ′s to get the final decoded QR Code image.

3.6. Optimization Target and Training Strategy
Distortion Simulation Module We use a module to simu-
late the distortions that the stego images may undergo dur-
ing printing and photography. In this paper, we choose
to use the same simulation module proposed by StegaS-
tamp [37] that considers color shifting, blurring, noising,
etc. We mainly modify the standard deviation of Gaussian
noise from 0.02 to 0.07 and increase the JPEG compres-
sion quality from 25 to 60 for our task. During training, we
perform random distortion combinations on stego images to
simulate real-world image disturbances.

Loss Function The aforementioned three networks
(IQRT, ITF and AttnFlow) are trained jointly. We use the
following loss functions to guide the training process:

LL1
steg = ∥Ih − Is∥1 , (6)

Lssim
steg = ssim(Ih, Is), (7)

Llpips
steg = lpips(Ih, Is), (8)

Lqr = ∥Iq − Îq∥1, (9)

in which ssim(·) represents the structural similarity in-
dex [43] and lpips(·) indicates the perception loss [53]. Be-
sides, as introduced in Sec. 3.3, an additional QR Code tran-
sition loss Lt is incorporated. The overall loss function is
the weighted sum of the above functions:

Ltotal = αLL1
steg + βLssim

steg + γLlpips
steg + δLqr + ϵLt, (10)

where α, β, γ, δ, ϵ are weight coefficients.
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Table 1. Steganography quality under different situations. Here σ represents the standard deviation of Gaussian noise (given the image
pixel values range in [0, 1]). The best and second-best results are marked in red and blue colors, respectively.

Method Stego Image σ = 0.1 σ = 0.15 JPEG Q = 20 JPEG Q = 40 Mixed Printing
PSNR↑ SSIM↑ LPIPS↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓

ISN† 32.175 0.8765 0.3266 0.728 1.563 0.178 5.020 0.991 0.721 0.999 0.184 0.713 3.131 0.960 1.125
HiNet† 31.629 0.8662 0.3423 0.827 1.077 0.162 3.724 0.986 0.573 0.997 0.099 0.677 3.426 0.970 1.619

StegaStamp 21.215 0.7027 0.3055 0.051 6.152 0.000 10.57 0.951 1.259 0.977 0.798 0.557 3.843 0.750 3.214
StegaStamp† 21.173 0.6903 0.3418 0.481 3.298 0.015 6.500 0.953 1.104 0.969 0.833 0.693 2.975 0.900 1.917

Ours 32.883 0.9109 0.0707 0.794 1.235 0.216 3.306 0.995 0.117 1.000 0.038 0.859 0.861 1.000 0.606

Figure 4. Stego images and decoded QR Codes under different
distortions. QR Codes with green borders can be recognized while
those with red borders cannot. Zoom in for better observation.

4. Experiment

4.1. Experimental Settings
Datasets Our training and testing datasets of host images
are the train2017 (118K) and test2017 (41K) datasets of
COCO [22], respectively. For QR Code images, we manu-
ally construct the training (50K) and testing (41K) datasets
with random encoded messages. We generate the QR Code
images by adopting the scheme of QR Code version 5 [1]
with highest error correction (ECC) level of ‘H’. We incor-
porate this code version for most of our experiments except
the evaluation in Sec. 4.3. The image used for training and
testing is 224 × 224 and the patch size of ViT [8] is 16.

Metrics Our experiments focus on two aspects: stego
image quality and decoding accuracy. For stego image
quality, we use the peak signal-to-noise ratio (PSNR),
SSIM [43] and LPIPS [53] to measure the difference be-
tween host images and stego images. For decoding accu-
racy, we adopt the text recovery accuracy (TRA) [48, 52],
which is the ratio of the successfully decoded QR Codes. In
addition, we calculate the error module rate (EMR), which
represents the error rate (in percentage) of the modules in
the QR Code.

Baselines We compare our method with some state-of-
the-art methods2, including ISN [24], HiNet [16] and Ste-
gaStamp [37]. Since these methods are not designed specif-

2Since RIIS [47] and StampOne [33] has not released its source code
or pre-trained model, we cannot compare with it.

Figure 5. Stego images generated by different methods.

ically for our task, we train these models on our datasets for
a fair comparison. Moreover, for ISN and HiNet, since they
are not robust steganography methods, we incorporate the
distortion simulation module when training them. The re-
trained models of these two methods are illustrated as ISN†

and HiNet†, respectively. For StegaStamp, we also addi-
tionally train it by using the same distortion level as our
method, represented as StegaStamp†.

4.2. Steganography Quality
Steganography quality indicates both stego image quality
and decoding accuracy. To compare the robustness of dif-
ferent methods against image distortions, we first consider
several manually created situations3: Gaussian noise, JPEG
compression and random noise combinations. We generate
random noise combinations (represented by Mixed ) with
the distortion simulation module introduced in Sec. 3.6. We
then consider the printing and photography case to validate
the methods’ robustness against real-world distortions since
it is one of the most extremely severe distortion situations
and contains mixed disturbance factors. We randomly se-
lect 100 host images and embed random message in them.
We then use a inkjet printer to print the encoded images out
and take photos with a cell phone. To eliminate the poten-
tial errors caused by factors like print quality, we repeat the
experiment for 5 times and choose the best result.

Table 1 shows the experiment results, Figure 4 and Fig-
ure 5 demonstrate some qualitative results. It can be ob-
served that our method can achieve higher stego image qual-
ity, especially for LPIPS that represents the perceptual sim-

3The experiments under more situations are presented in the appendix.
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Figure 6. Photos of printed stego images and their decoding errors under different shooting situations. The actual image used for decoding
is cropped out and resized from the photo. Photos shown in this figure are intended for an intuitive demonstration of the shooting results.
QR Codes with green borders can be recognized while those with red borders cannot. Zoom in for better observation.

EM
R

TR
A

Figure 7. TRA and EMR under different levels of distortions.

ilarity. StegaStamp incorporates adversarial training [11] to
make the generated stego image more realistic and it does
work when facing low-level distortions. However, with the
distortion used during training increases, StegaStamp† fails
to preserve a sound visual quality and instead lead to hue
shifting and artifacts. In addition, adversarial training can
sometimes bring severe artifacts in some regions, as shown
in the 3rd and 4th row of Figure 4. For HiNet and ISN that
both leverage normalizing flow, due to the lack of inner-
channel interaction by using CNN-based affine block, the
stego images they derive have obvious QR Code-like arti-
facts, making the existence of secret message easy to de-
tect. In terms of decoding accuracy, although HiNet† out-
performs our method in some cases, we achieve the best
performance in the mixed noise and printing tests, which
are more close to the real-world application scenarios.

Figure 7 shows the decoding accuracy under more levels
of distortions, which are Gaussian Noise whose standard
deviation ranges from 0.02 to 0.2 and JPEG compression

with quality ranging from 10 to 90. It can be observed that
our method demonstrates a stable and good performance
under these situations.

In practical application scenarios, the shooting condition
may vary from time to time and a good message embed-
ding method should keep its robustness in most cases. As a
result, we further measure the decoding accuracy under dif-
ferent shooting situations. We mainly consider the shooting
distance and angle (the offset relative to vertical shooting).
Given the default printed image side length / shooting dis-
tance ratio and angle of this paper are 5.4cm / 11cm and 0◦,
we gradually increase the distance and angle, the test results
are shown in Table 2. It can be found that, with the shoot-
ing distance and angle grow, the EMRs exhibit a significant
increase for all methods. However, for TRA that directly re-
flects the identifiability of QR Codes, our method maintains
a fair performance. The comparison shown in Figure 6 also
indicates that RMSteg can achieve high decoding accuracy
under different shooting situations.

4.3. Quality under Different Embedding Capacity

To validate the generality of our method, we test it under
different embedding capacity, i.e., using QR Codes with
different versions for training. We demonstrate the model
performance on code versions from v5 to v8 in Table 3.
Although the steganography quality is getting worse with
the embedding capacity increases, the artifacts in the stego
images are still not perceptible, especially when the image
is printed out, as shown in Figure 8. In addition, RMSteg
keeps a TRA of more than 0.8 even for code v8 whose em-
bedding capacity is two more times higher than v5. Com-
pared with StegaStamp [37] that is also designed for robust
message embedding, its PSNR is lower than 25 when en-
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Figure 8. Stego images (the residual is shown in the upper right) and decoding results for printing situation with different code versions.

Table 2. Decoding accuracy under different shooting situations. Here d indicates the shooting distance (measured by cm) and α is the
shooting angle offset (measured by degree). The best and second-best results are marked in red and blue colors, respectively.

Method d = 11, α = 0 d = 13 d = 15 α = 10 α = 20 α = 30
TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓ TRA↑ EMR↓

ISN† 0.960 1.125 0.920 2.173 0.790 2.780 0.910 1.859 0.820 2.394 0.590 3.389
HiNet† 0.970 1.619 0.850 3.033 0.680 3.909 0.880 2.396 0.800 3.362 0.660 3.828

StegaStamp 0.750 3.214 0.610 4.131 0.350 5.321 0.540 3.784 0.360 4.258 0.040 5.916
StegaStamp† 0.900 1.917 0.790 2.469 0.710 2.922 0.860 2.272 0.840 2.413 0.570 3.978

Ours 1.000 0.606 1.000 0.891 0.980 1.269 1.000 0.953 1.000 1.163 0.960 1.680

Table 3. Model performance under different QR Code versions.
The numbers in parentheses indicate the encoding capacity in bit.

Version
Stego Image Mixed Printing

PSNR↑ SSIM↑ LPIPS↓ TRA↑ EMR↓ TRA↑ EMR↓
v5 (368) 32.883 0.9109 0.0707 0.859 0.861 1.000 0.606
v6 (480) 31.363 0.8903 0.0892 0.859 0.934 1.000 0.877
v7 (528) 31.167 0.8880 0.0902 0.782 1.216 0.890 1.290
v8 (688) 30.765 0.8762 0.1020 0.743 1.370 0.820 1.476

coding 200 bits in a 400×400 image according to the origi-
nal paper. In contrast, our method is able to keep a PSNR of
around 30 when encoding more than 600 bits in a 224×224
image. Thus, RMSteg can achieve a higher steganography
quality and meanwhile a much larger embedding capacity.

4.4. Ablation Study
We conduct an ablation study to validate the effectiveness
of the IQRT procedure, the ITF module and the AttnFlow
model. The results are shown in Table 4.

IQRT The model without IQRT performs slightly better
than the full model in decoding accuracy. This is because
IQRT may sometimes cause information loss, e.g., some
code module could be wrongly transformed during this pro-
cedure, although the QR Code is still identifiable. On the
other hand, IQRT can largely improve stego image quality.

ITF Module As discussed in Sec. 3.4, the ITF module
can learn a transformation for image tokens and thus leading
to better stego image quality. We also find that the ITF mod-
ule can help derive a better distribution of artifacts brought
by message embedding. As shown in Figure 9, the stego im-
age generated using ITF has less distortion in homogenous
regions (the sky), achieving a better visual quality.

Tokenized Representation We replace the AttnFlow
model with ISN and HiNet (two CNN-based normalizing
flow model), respectively, to validate the effectiveness of
introducing tokenized image representation (the IQRT mod-
ule is retained). The result shows that, compared with CNN-
based scheme, incorporating tokenized image representa-
tion makes normalizing flow more competent for robust
steganography task.

AACB Number We also train our model with different

Table 4. Ablation study result. Here CAT indicates cross attention,
TR represents tokenize representation. The best and second-best
results are marked in red and blue colors, respectively.

Method Stego Image Mixed
PSNR↑ SSIM↑ LPIPS↓ TRA↑ EMR↓

w/o IQRT 30.662 0.8651 0.1059 0.871 0.828
w/o ITF 31.422 0.8771 0.0919 0.833 0.947

w/o TR + ISN 32.444 0.8856 0.3209 0.692 3.698
w/o TR + HiNet 31.513 0.8674 0.3370 0.714 3.321

1 AACB 30.426 0.8728 0.1076 0.798 1.135
2 AACBs 31.083 0.8972 0.0831 0.819 0.924
3 AACBs 31.649 0.9008 0.0796 0.819 0.924

Ours Full Model 32.883 0.9109 0.0707 0.856 0.861

 w. ITF residual × 2  w/o ITF residual × 2Host Image
Figure 9. The generated stego images using and not using ITF.

AACB numbers ranging from 1 to 4. The result shows that,
with the increase of the block number, both the stago image
quality and the recovery accuracy are gradually improved.

5. Conclusion
We propose a robust message embedding framework based
on an attention flow-based model, called RMSteg. Our
method is capable of generating stego images that can sur-
vive various real-world distortions, especially for printing
and photography. To our best knowledge, RMSteg is the
first method that introduces the transformer-based attention
mechanism into normalizing flow. Our experiments show
that this scheme is competent in steganography tasks. Com-
pared with existing methods, RMSteg can achieve a bet-
ter performance in robust and high-quality message embed-
ding. We believe this is to a large extent due to the incor-
poration of the tokenized image representation and we hope
this scheme can inspire subsequent studies.
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