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a man standing next to an airplane, engaged in a conversation on his cell phone ... wearingsunglasses and a black top .. talking seriously ... airplane has a green 
striperunning along its side, and there is a large engine visible behind his ...

... a man ... his gaze focused and intense as he holds the basketball ... dressed in athletic gear ... The basketball is positioned firmly in his hands as he gradually 
puts it down ... urban street court, with the fading light of dusk casting a soft glow over the scene. The man's serious expression and steady grip on the ball ...

a young boy sitting at a table, eating a piece of food. He appears to be enjoying his meal, as he takes a bite and chews it. The boy is wearing a blue shirtand has 
short hair ...background is dark, with some light coming from the left side of the frame. There is a straw visible on the right side of the frame ... 

Text

Reference Image

Reference Image

Reference Image

Reference Image

a young woman with long blonde hair ... front of a lush, green bush...white flowers ... wearing a black top ... smiling and looking at the camera while gently touching 
the flowers on the bush ... then bends downslightly and smells one of theflower...

Figure 1. Examples of identity-preserving video generation (IPT2V) by our ConsisID. Given a reference image, our method can
generate realistic and personalized human-centered videos while preserving identity. Red indicates that attributes in long instructions.

Abstract

Identity-preserving text-to-video (IPT2V) generation aims
to create high-fidelity videos with consistent human iden-
tity. It is an important task in video generation but re-
mains an open problem for generative models. This paper
pushes the technical frontier of IPT2V in two directions that

have not been resolved in the literature: (1) A tuning-free
pipeline without tedious case-by-case finetuning, and (2)
A frequency-aware heuristic identity-preserving Diffusion
Transformer (DiT)-based control scheme. To achieve these
goals, we propose ConsisID, a tuning-free DiT-based con-
trollable IPT2V model to keep human-identity consistent
in the generated video. Inspired by prior findings in fre-
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quency analysis of vision/diffusion transformers, it employs
identity-control signals base on frequency domain, since fa-
cial features can be decomposed into low-frequency global
features (e.g., profile, proportions) and high-frequency in-
trinsic features (e.g., identity markers that remain unaf-
fected by pose changes). Extensive experiments demon-
strate that our frequency-aware heuristic scheme provides
an optimal control solution for DiT-based models, making
strides towards more effective IPT2V.

1. Introduction
Large-scale pre-trained video diffusion models [30, 66, 77,
78] have facilitated a variety of downstream applications
[49, 54, 69, 70, 72, 74], particularly in identity-preserving
text-to-video (IPT2V) [7, 38, 58, 60, 61]. However, ex-
isting methods face significant challenges, particularly the
high overhead associated with the need for case-by-case
finetuning, which diminishes their applicability. Within the
open-source community, only the ID-Animator [15] can im-
plement tuning-free IPT2V, but it can only generate videos
similar to talking head [57] and has poor id preservation.

Additionally, the above efforts are predominantly based
on U-Net and cannot be adapted to the emerging DiT-based
video model [30, 63, 66, 77, 78]. This challenge may stem
from the inherent limitations of DiT compared to U-Net, in-
cluding greater difficulty in training convergence and weak-
ness in perceiving facial details. From some prior findings
in frequency analysis of vision/diffusion transformers [2–
4, 45, 50, 55, 71], we can know that the reason is: Find-
ing 1: Shallow (e.g., low-level, low-frequency) features are
essential for pixel-level prediction tasks in diffusion mod-
els, as they ease model training. U-Net facilitates model
convergence by aggregating shallow features to the decoder
via long skip connections, a mechanism that DiT does not
incorporate; Finding 2: Transformers have limited percep-
tion of high-frequency information, which is important for
preserving facial features. The encoder-decoder architec-
ture of U-Net naturally possesses multi-scale features (e.g.,
richness in high-frequency), while DiT lacks a comparable
structure. To develop a DiT-based control model, these must
be addressed first. Please see Appendix for more details.

For ID-preserving video generation, the challenges stem
from the requirement for each frame to incorporate both
high-frequency (e.g., age- and make-up-independent iden-
tity markers) and low-frequency information (e.g., facial
shape) derived from the reference image, which can just
be used to make up for the DiT defects mentioned above.
Therefore, we propose ConsisID, to keep the identity con-
sistency in video generation by frequency decomposition,
based on the previously Findings of DiT in frequency anal-
ysis. Thanks to the large-scale pre-trained DiT, we can
use its powerful capabilities to achieve tuning-free effects.

ConsisID decouples identity features into high- and low-
frequency signals, which are injected into specific loca-
tions within the DiT, facilitating efficient IPT2V generation.
Specifically, in line with Finding 1, we first convert the ref-
erence image and the facial key points to the low-frequency
signal, then concatenate them with input noise latent to ease
the training. Following Finding 2, we utilize a dual-tower
feature extractor to capture high-frequency facial informa-
tion, which is integrated with vision tokens within the trans-
former block, thereby enhancing the DiT’s high-frequency
perception capabilities. Finally, to transform the pre-trained
model into an IPT2V model and improve its generalization,
we further introduce a hierarchical training strategy.

Our contributions can be summarized as follows:
• We introduce ConsisID, a tuning-free identity-preserving

DiT-based IPT2V model, which preserves the identity of
the main subject of the video using control signals from
frequency decomposition.

• We propose a hierarchical training strategy, including
coarse-to-fine training, dynamic mask loss, and dynamic
cross-face loss, which work together to facilitate training
and enhance generalization effectively.

• Extensive experiments demonstrate that our ConsisID
can generate high-quality, editable, consistent identity-
preserving videos, benefiting from our frequency-aware
identity-preserving T2V DiT-based control scheme.

2. Related Work
Tuning-based Identity-preserving T2V Models. Dif-
fusion models are widely recognized for their strong gen-
erative capabilities [19, 34–37, 44, 72, 73], significantly
advancing the development of identity-preserving genera-
tive models [8, 39, 59, 74]. Initially, the researchers used
tuning-based methods to generate content that matched
the input ID. This process requires finetuning pretrained
model for each new person during inference. For exam-
ple, DreamBooth [47] introduced a novel loss function to
fine-tune the entire network, embedding identity informa-
tion while preserving the original generative capabilities.
LoRA [21], similar to DreamBooth [47], requires training
only a small subset of network parameters. In contrast,
Textual Inversion [11] freezes the pretrained network and
embeds identity information into a trainable word embed-
ding. Subsequent tuning-based methods, including both im-
age and video models based on U-Net or DiT architectures
[7, 26, 48, 58, 60–62, 65, 76], generally follow three main
approaches. While these models demonstrate substantial ef-
fectiveness, the requirement to fine-tune for each new iden-
tity restricts their practical applicability.
Tuning-free Identity-preserving T2V Models. To ad-
dress the issue of high resource consumption, several
tuning-free diffusion models have recently emerged in the
field of image generation [13, 14, 29, 56, 67]. These models
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Figure 2. Overview of the proposed ConsisID. Based on Findings of DiT, low-frequency facial information is embedded into the shallow
layers, while high-frequency information is incorporated into the vision tokens within the attention blocks. The ID-preserving Recipe is
applied to ease training and improve generalization. The cross face, DropToken and Dropout are executed based on probability.

do not require finetuning parameters for newly introduced
IDs during inference. For instance, IP-Adapter [67] uti-
lizes the CLIP [43] features of the identity image through
cross-attention to guide the pretrained model in generating
identity-preserving images. InstantID [56] extends this ap-
proach by replacing CLIP [43] features with Arcface [10]
features and integrating a pose network to adjust facial pro-
portions. Unlike these initial methods, which introduce con-
trol signals via visual tokens, PhotoMaker [29] and Imag-
ine Yourself [16] leverage text tokens. Specifically, Pho-
toMaker [29] concatenates identity features obtained from
the CLIP encoder [43] to the text embedding, while Imagine
Yourself [16] uses element-wise addition for feature fusion.
In the domain of video generation, only MovieGen [42]
and ID-Animator [15] currently support ID-preserving text-
to-video (IPT2V) generation. MovieGen is closed-source,
whereas ID-Animator is open-source but uses a methodol-
ogy similar to image models, leading to lower-quality iden-
tity preservation in the generated videos. We select the
emerging DiT architecture [30, 33, 66, 77] and optimize
it for IPT2V, drawing on conclusions from prior frequency
analyses [2–4, 45, 50, 55]. This enables high-quality, ed-
itable, and consistent ID-preserving video generation.

3. Methodology
3.1. Preliminaries
Diffusion Model. Text-to-video generation models usu-
ally utilize the diffusion paradigm, which gradually trans-
forms noise ϵ into a video x0. Originally, denoising was
conducted directly within the pixel space [20, 51, 52]; how-
ever, due to significant computational overheads, recent
methods predominantly employ latent space [12, 25, 46,

72]. The optimization process is defined:

La = Ex0,t,y,ϵ

[
∥ϵ− ϵθ (x0, t, τθ(y))∥22

]
, (1)

where y is text condition, ϵ is sampled from a standard nor-
mal distribution (e.g., ϵ ∼ N (0, 1)), and τθ(·) is the text
encoder. By replacing x0 with E (x0), the latent diffusion is
derived, which is used by ConsisID.
Diffusion Transformer. The DiT-based video generation
model shows significant potential in simulating the physical
world [6, 66, 78]. Despite being a novel architecture, re-
search on controllable generation has been limited, and cur-
rent methods [9, 13, 42, 75] largely resemble U-Net based
approaches [11, 39, 74]. However, no study has yet exam-
ined why this approach works with DiT. Drawing from prior
analyses of Diffusion and Transformer from a frequency do-
main perspective [2–4, 45, 50, 55], we conclude that: (1)
Low-frequency (e.g., shallow-layer) features are essential
for pixel-level prediction tasks in diffusion models, which
helps facilitate model training; (2) Transformers have lim-
ited perception for high-frequency information, which is
important for controllable generation. Based on these, we
decouple ID features into high- and low-frequency parts
and inject them into specific locations, achieving effective
identity-preserving text-to-video generation.

3.2. ConsisID: Keep Your Identity Consistent

The overview is illustrated in Figure 2. Given a reference
image, the global facial extractor and local facial extrac-
tor inject both high- and low-frequency facial information
into model, which then generates identity-preserving videos
with the assistance of the consistency training strategy.
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3.2.1. Low-frequency View: Global Facial Extractor
In light of Finding 1, enhancing low-level (e.g., shallow,
low-frequency) features accelerates model convergence. To
easily adapt a pre-trained model for the IPT2V task, the
most direct approach is concatenating the reference face
with the noise input latent [5]. However, the reference
face contains both high-frequency details (e.g., eye and lip
textures) and low-frequency information (e.g., facial pro-
portions and contours). From Finding 2, prematurely in-
jecting high-frequency information into the Transformer is
inefficient and may hinder the model’s processing of low-
frequency information, as the Transformer focuses primar-
ily on low-frequency features. In addition, feeding the refer-
ence face directly into the model could introduce irrelevant
noise such as lighting and shadows. To mitigate this, we ex-
tract facial key points, convert them to an RGB image, and
then concatenate it with the reference image, as shown in
Figure 2. This strategy focuses the model’s attention on the
low-frequency signals in the face, while minimizing the im-
pact of extraneous features. We found that when this com-
ponent is discarded, the model is difficult to convergen. The
objective function is changed to:

Lb = Ex0,t,y,f,ϵ

[
∥ϵ− ϵθ (x0, t, τθ(y), ψθ(f))∥22

]
, (2)

where ψθ(·) is a variational autoencoder, f represents the
reference image, we ignore key points here for simplicity.

3.2.2. High-frequency View: Local Facial Extractor
In light of Finding 2, we recognize that Transformers have
limited sensitivity to high-frequency information. It can be
concluded that relying solely on global facial extractor is
insufficient for IPT2V generation, as global facial features
lack of high-frequency information. So we use a face recog-
nition backbone [10] to extract high-frequency features, as
these are invariant to non-ID attributes (e.g., expression,
posture, and shape). We refer to these features as intrin-
sic identity features (e.g., high-frequency), since age and
makeup do not alter an individual’s core identity. Follow-
ing [14], we utilize the penultimate layer of the backbone,
rather than its output, as it retains more spatial information
pertinent to identity. However, our experiments reveal that
while the face recognition backbone improves identity con-
sistency, it lacks the semantic features required for editing.
This task demands not only maintaining identity consis-
tency but also incorporating the ability to edit, such as gen-
erating videos of faces with the same identity but varying
age and makeup. Previous research [15, 16] relies solely on
the CLIP encoder [43] to enable editing capabilities. How-
ever, since CLIP is not specifically trained on face datasets,
the features it extracts include irrelevant non-face informa-
tion, which can compromise identity fidelity [29, 56, 67].

To address these challenges, we first use a facial recog-
nition backbone to extract features that strongly represent
intrinsic identity, and a CLIP image encoder to capture se-
mantically rich features. We then employ the Q-Former

[27, 28, 64] to fuse these features, resulting in intrinsic iden-
tity representations enriched with high-frequency semantic
information. To mitigate the impact of irrelevant features
from CLIP, dropout [1, 22] is applied post-processing. Ad-
ditionally, we follow [14] to concatenate the shallow, multi-
scale features from the facial recognition backbone (after
interpolation) with the CLIP features. This approach en-
sures that the model captures essential intrinsic identity fea-
tures while filtering out extraneous noise unrelated to iden-
tity. Finally, we apply cross-attention to facilitate interac-
tion between this feature set and the visual tokens produced
by each attention block of the pre-trained model, thereby
enhancing the high-frequency information in the DiT:

Z ′
i = Zi + Attention(Qv

i ,K
f
i , V

f
i ), (3)

where i represents the layer number of the attention block,
Qv = ZiW

q
i , Kf = FW k

i , and V f = FW v
i , where Zi

is the visual token, F represents the intrinsic identity fea-
tures, and Wq , Wk, and Wv are trainable parameters. The
objective function is changed to:

Lc = Ex0,t,y,f,ϵ

[
∥ϵ− ϵθ (x0, t, τθ(y), ψθ(f), φθ(f))∥22

]
, (4)

where φθ(·) is the local facial extractor.

3.2.3. Consistency Training Strategy
During training, we randomly select a frame from the train-
ing frames and apply the Crop & Align [10] to extract the fa-
cial region as reference images, which is subsequently used
as an identity-control signal, alongside the text as control.
Coarse-to-Fine Training. Compared to Identity-
preserving image generation, video generation requires
maintaining consistency in both spatial and temporal di-
mensions, ensuring that high and low-frequency facial in-
formation matches the reference image. To mitigate the
complexity of training, we propose a hierarchical strategy
where the model learns information globally before refining
it locally. In the coarse-grained phase (e.g., corresponding
Finding 1), we employ the global facial extractor, enabling
the model to prioritize low-frequency features, such as fa-
cial contours and proportions, thereby ensuring rapid acqui-
sition of identity information from the reference image and
consistency across the video sequence. In the fine-grained
phase (e.g. corresponding to Finding 2), the local facial ex-
tractor shifts the model’s focus to high-frequency details,
such as the texture details of eyes and lips (e.g., intrinsic
identification), improving the fidelity of facial expressions
and the overall similarity of the generated face.
Dynamic Mask Loss. The objective of our task is to en-
sure that the identity of the person in the generated video re-
mains consistent with the input reference image. However,
Equation 1 considers the entire scene, encompassing both
high- and low-frequency identity information as well as re-
dundant background content, which introduces noise that
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Figure 3. User Study between ConsisID and state-of-the-art
methods. ConsisID is preferred by voters in all dimensions.

interferes with model training. To address this, we propose
to focus the model’s attention on face regions. Specifically,
we first extract the facial mask from the video, apply trilin-
ear interpolation to map it to the latent space, and finally use
this mask to constrain the computation of Lc:

Ld =M ⊙ Lc, (5)

whereM represents a mask with the same shape as ϵ. How-
ever, if Equation 5 is used as the supervisory signal for all
training data, the model may fail to generate a natural back-
ground during inference. To mitigate this issue, we apply
Equation 5 with a probability p of α, resulting in:

Le =

{
Ld, if p > α

Lc, if p ≤ α
(6)

Dynamic Cross-Face Loss. After training with Equation
6, we observed that the model struggled to generate satisfac-
tory results for persons not present in the data domain dur-
ing inference. This issue arises because the model, trained
exclusively on faces from the training frames, tends to over-
fit by adopting a "copy-paste" shortcut—essentially repli-
cating the reference image without alteration. To improve
the model’s generalization capability, we introduce slight
Gaussian noise ζ to the reference images and use cross-face
(e.g., reference images are sourced from video frames out-
side the training frames) as inputs with probability β:

Lf =

{
Le where x0 · ζ, if p > β

Le where xc · ζ, if p ≤ β
(7)

where x0 is the reference image extracted from the training
frames, and xc is extracted from outside the training frames.

4. Experiments
4.1. Setup
Implementation details. ConsisID selects DiT-based
generation architectures CogVideoX-5B [66] as our base-
line for validation. We use an in-house human-centric

FaceSim-Arc ↑ FaceSim-Cur ↑ CLIPScore ↑ FID ↓
ID-Animator [15] 0.32 0.33 24.97 117.46

ConsisID 0.58 0.60 27.93 151.82

Table 1. Quantitative comparison with state-of-the-art meth-
ods. ConsisID achieve well-aligned results across most metrics.
"↓" denotes lower is better. "↑" denotes higher is better.

dataset for training, which differs from previous datasets
[40, 57, 68] that focus only on the face. In the training
phase, we set the resolution to 480×720 and extracted 49
consecutive frames at a stride of 3 from each video as train-
ing data. We set the batch size to 80, the learning rate to
3 × 10−6, and the total number of training steps to 1.8k.
The randomly discarded text rate is set to 0.1, with AdamW
serving as an optimizer and cosine_with_restarts as a learn-
ing rate scheduler. The training strategy is the same as Sec-
tion 3.2.3. We set α and β in the dynamic cross-face loss
(Le) and dynamic mask loss (Lf ) to 0.5, respectively. In
the inference phase, we employ DPM [51] with a sampling
step of 50, and a classifier free guidance ratio of 6.0. For
more detials and results, please refer to Appendix.
Benchmark. Since there is an absence of an evalua-
tion dataset, we select 30 persons who were not included
in the training data and sourced five high-quality images
for each ID from the internet. We then design 90 dis-
tinct prompts, encompassing a variety of expressions, ac-
tions, and backgrounds for evaluation. Building on previ-
ous works [15, 42], we evaluate four dimensions: (1). Iden-
tity Preservation: We use FaceSim-Arc [10] and introduce
FaceSim-Cur, which assesses identity preservation by mea-
suring feature differences between face regions in the gen-
erated videos and those in real face images within the Arc-
Face [10] and CurricularFace [23] feature spaces. (2) Visual
Quality: We utilize FID [18] by calculating feature differ-
ences in the face regions between the generated frames and
real face images within the InceptionV3 [53] feature space.
(3) Text Relevance: We utilize CLIPScore [17] to measure
the similarity between the generated videos and the input
prompts. (4). Motion Amplitude: Due to the lack of reli-
able metrics [24, 73], we evaluate through the user study.

4.2. Qualitative Analysis
In this section, we compare our method, ConsisID, with ID-
Animator [15] (e.g., the only available open-source model)
for tuning-free IPT2V tasks. We randomly select images
and text prompts of four individuals for qualitative analysis,
all of which are absent from the training data. As shown in
Figure 4, ID-Animator cannot generate human body parts
beyond the face and is unable to generate complex actions
or backgrounds in response to text prompts (e.g., action, at-
tribute, background), which significantly limits its practi-
cal application. In addition, the preservation of the identity
is inadequate; for example, in case 1, the reference image
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the eyes. ... The open field around him is 

expansive, covered in wildflowers that sway 

gently in the breeze, under a vast, clear blue 

sky ...

Reference

Image

... a woman sitting at an office desk ... dressed 

in a formal suit ... focused on her computer 

screen ... with shelves filled with binders ... The 

woman is holding a red cup ... which she drinks 

from before setting it down on the desk ... she 

then proceeds to type on the keyboard ...

Reference

Image

... a young woman sitting at a wooden desk, 

deeply engrossed in her work ... wearing 

glasses and has long hair that falls over her 

shoulders. ... as she writes with a pen ... The 

desk is cluttered with numerous stacks of 

papers and documents ...

Reference

Image

... a man sitting at a desk in front of a large 

screen displaying an American flag ... 

wearing a plaid shirt and appears to be 

delivering a news report … speaking, 

gesturing with his hands as he talks ... a 

newsroom or studio environment ...

Reference

Image

Figure 4. Qualitative analysis between ConsisID and ID-Animator [15]. ID-Animator can only generate videos of the face region,
and the identity Preservation is poor (e.g., shape, texture). Additionally, it cannot generate specified content according to the text prompt
(e.g., action, decoration, background). ConsisID achieves advantages in identity preservation, visual quality, motion amplitude, and text
relevance. Moreover, our ConsistID can generate more frames rather than ID-Animator (49 480×720p frames v.s. 16 512×512p frames).

appears to be processed with skin smoothing. In case 2,
wrinkles have been introduced which detract from the aes-
thetic quality. In cases 3 and 4, the face is distorted due to
the lack of low frequency information, which compromises
identity consistency. In contrast, the proposed ConsisID
consistently produces high-quality, realistic videos that ac-
curately match the reference identity and adhere to prompt.

4.3. Quantitative Analysis
We present a comprehensive quantitative evaluation of dif-
ferent methods, with results displayed in Table 1. Consis-
tent with Figure 4, our method outperforms state-of-the-
art methods across five metrics. For identity preservation,
ConsisID achieves a higher score by designing appropri-

ate identity signals for DiT from a frequency perspective.
By contrast, ID-Animator [15] is not optimized for IPT2V
and only partially retains facial features, resulting in lower
FaceSim-Arc [10] and FaceSim-Cur scores. For Text Rele-
vance, ConsisID not only controls expressions via prompts
but also adjusts actions and backgrounds, achieving higher
CLIPScore [17]. Regarding visual quality, the FID is pre-
sented solely as a reference due to its limited alignment
[31, 32, 41, 73] with human perception. Please refer to Fig-
ure 4 and 3 for qualitative analysis of the visual quality.

4.4. User Study
Building on previous work, we conduct a human evaluation
using a binary voting strategy, with each questionnaire con-
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Figure 5. Effect of Different Components via Qualitative Anal-
ysis. Removing any component may result in the loss of high- or
low-frequency facial information, or hinder the ability to modify
video content based on the text prompt.

taining only 80 questions. Participants are required to view
40 video clips, a setup designed to improve both engage-
ment and questionnaire validity. For the IPT2V task, each
question requires participants to separately judge which op-
tion performs better in terms of Identity Preservation, Visual
Quality, Text Alignment, and Motion Amplitude. This com-
position ensures the accuracy of the human evaluation. Ow-
ing to the extensive participant base required for this eval-
uation, we successfully gathered 103 valid questionnaires.
The results, depicted in Figure 3, demonstrate a significant
superiority of our method over ID-Animator [15], verifying
the effectiveness of the designed DiT for IPT2V generation.

4.5. Effect of the Identity Signal Injection in DiT
To assess the effectiveness of Finding 1 and Finding 2, we
perform ablation studies on different methods of injecting
control signals into DiT. Specifically, these experiments in-
volved (a) injecting only low-frequency face information
with key points into the noise latent, (b) injecting only high-
frequency face signals within the attention block, (c) com-
bining (a) and (b), (d) based on (c), but the low-frequency
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Figure 6. Effect of Different Control Signal Injection Way via
Qualitative Analysis. Only (c), which injects both high & low-
freq face signals into the suitable location, performs best.

FaceSim-Arc ↑ FaceSim-Cur ↑ CLIPScore ↑ FID ↓
w/o GFE 0.05 0.05 34.86 269.88
w/o LFE 0.66 0.68 34.48 104.34
w/o CFT 0.54 0.58 34.47 144.62
w/o DML 0.62 0.67 34.23 187.78
w/o DCL 0.65 0.69 32.21 117.80
ConsisID 0.73 0.75 36.77 127.42

Table 2. Effect of Local Facial Extractor (LFE), Global Facial
Extractor (GFE), coarse-to-fine training (CFT), dynamic mask
loss (DML) and dynamic cross-face loss (DCL) by Automatic
Metrics. Removing any of the above methods significantly re-
duces identity preservation, text relevance, and visual quality.

face information does not contain key points, and (e - f)
based on (c), but the high-frequency signal is injected at the
output or input of the attention block. (g) injecting only
high-frequency face signals before the attention block. To
reduce overhead, for each identity, we only select 2 refer-
ence images each with 90 text prompts for the evaluation.
The results are shown in Figure 6 and Table 3. For Finding
1, we observe that only injecting high-frequency signals (a)
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Plan FaceSim-Arc ↑ FaceSim-Cur ↑ CLIPScore ↑ FID ↓
a 0.05 0.05 34.86 269.88
b 0.66 0.68 34.48 104.34
c 0.73 0.75 36.77 127.42
d 0.64 0.68 30.69 177.65
e 0.62 0.66 33.61 164.15
f unstable training process
g unstable training process

Table 3. Effect of Different Control Signal Injection Way via
Quantitative Analysis. Only plan c, which injects both high and
low-frequency face information into the model, performs best.

greatly increases the training difficulty, causing the model to
fail to converge due to the lack of low-frequency signal in-
jection. In addition, the inclusion of facial key points (d) al-
lows a greater focus on low-frequency information, thereby
facilitating training and improving model performance. For
Finding 2, when only low-frequency signals are injected
(b), the model lacks high-frequency information. This re-
liance on low-frequency signals causes the generated face
in the video to copy the reference image, making it dif-
ficult to control facial expressions, movements, and other
features through prompts. Furthermore, injecting identity
signals into the attention block input (f - g) disrupts the in-
tended frequency domain distribution of DiT, resulting in a
gradient explosion. Embedding control signals in the atten-
tion block (c) is preferable to embedding them in the output
(e) because attention block processes predominantly low-
frequency information. By embedding high-frequency in-
formation internally, the attention block is guided to high-
light intrinsic facial features, whereas injecting it into the
output merely concatenates features without directing fo-
cus, reducing DiT’s modeling capacity. Moreover, we apply
a Fourier transform to the generated videos (only the face
region) to visually compare the influence of different com-
ponents to extract facial information. As shown in Figure 7,
the Fourier spectrum and the log amplitude of the Fourier
transform reveal that injecting high or low-frequency sig-
nals can indeed enhance the corresponding frequency infor-
mation of the generated face. Moreover, the low-frequency
signal can be further enhanced by matching with the face
key points, and injecting the high-frequency signal into the
attention block has the highest feature utilization rate. Our
method (c) shows strongest high and low frequency, further
validating the efficiency benefit from Findings 1 and 2.

4.6. Ablation on the Consistency Training Strategy
To reduce overhead, for each identity, we only select 2 refer-
ence images for the following experiments. To demonstrate
the benefits of the proposed consistency training strategy,
we perform ablation experiments on coarse-to-fine training
(CFT), dynamic mask loss Le (DML), and dynamic cross-
face loss Lf (DCL), with the results presented in Figure

(c) high & low freq

(d) high & low† freq

(a) only high-freq (b) only low-freq

(f) Relative log amplitudes of Fourier transformed videos(e) high† & low freq

Figure 7. (a - e) Fourier spectrum of different id signal injec-
tion. The center area represents low frequencies and the surround-
ing area represents high frequencies. (f) Relative log amplitudes
of Fourier transformed generated videos. A larger response
value indicates a higher inclusion of frequency information. (a
- f) verify the effect of our frequency decomposition.

5 and Table 2. When CFT is removed, GFE and LFE ex-
hibit competing behaviors, complicating the model’s abil-
ity to prioritize high and low-frequency information accu-
rately, leading to convergence at suboptimal points. Re-
moving DML required the model to simultaneously focus
on both foreground and background elements, with back-
ground noise negatively affecting training and reducing fa-
cial consistency. Similarly, the exclusion of DCL impaired
the generalization capability, reducing fidelity for faces, not
in the training set and reducing its effectiveness in generat-
ing identity-preserving videos as intended.

5. Conclusion
In this paper, we present ConsisID, a unified framework
for keeping faces consistent in video generation by fre-
quency decomposition. It can seamlessly integrate into ex-
isting DiT-based text-to-video models, for generating high-
quality, editable, consistent identity-preserving videos. Ex-
tensive experiments show that ConsisID outperforms the
current state-of-the-art identity-preserving T2V models. It
reveals that our frequency-aware heuristic DiT-based con-
trol scheme is an optimal solution for IPT2V generation.

6. Acknowledgments
We thank all the anonymous reviewers for their constructive
comments. This work was supported in part by the Natural
Science Foundation of China (No. 62202014, 62332002,
62425101, 62088102).

12985



References
[1] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong

Chuang, Shih-Fu Chang, Yin Cui, and Boqing Gong. Vatt:
Transformers for multimodal self-supervised learning from
raw video, audio and text. NeurIPS, 34:24206–24221, 2021.

[2] Dosovitskiy Alexey. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:
2010.11929, 2020.

[3] Jiawang Bai, Li Yuan, Shu-Tao Xia, Shuicheng Yan, Zhifeng
Li, and Wei Liu. Improving vision transformers by revis-
iting high-frequency components. In ECCV, pages 1–18.
Springer, 2022.

[4] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li,
Hang Su, and Jun Zhu. All are worth words: A vit backbone
for diffusion models. In CVPR, pages 22669–22679, 2023.

[5] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable video
diffusion: Scaling latent video diffusion models to large
datasets. arXiv preprint arXiv:2311.15127, 2023.

[6] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue,
Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luh-
man, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. Video generation models as world simulators. In
openai, 2024.

[7] Hila Chefer, Shiran Zada, Roni Paiss, Ariel Ephrat, Omer
Tov, Michael Rubinstein, Lior Wolf, Tali Dekel, Tomer
Michaeli, and Inbar Mosseri. Still-moving: Customized
video generation without customized video data. arXiv
preprint arXiv:2407.08674, 2024.

[8] Li Chen, Mengyi Zhao, Yiheng Liu, Mingxu Ding,
Yangyang Song, Shizun Wang, Xu Wang, Hao Yang, Jing
Liu, Kang Du, et al. Photoverse: Tuning-free image
customization with text-to-image diffusion models. arXiv
preprint arXiv:2309.05793, 2023.

[9] Soon Yau Cheong, Duygu Ceylan, Armin Mustafa, Andrew
Gilbert, and Chun-Hao Paul Huang. Boosting camera mo-
tion control for video diffusion transformers. arXiv preprint
arXiv:2410.10802, 2024.

[10] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In CVPR, pages 4690–4699, 2019.

[11] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022.

[12] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and
Bo Dai. Animatediff: Animate your personalized text-to-
image diffusion models without specific tuning. ICLR, 2024.

[13] Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, and Qian
He. Pulid: Pure and lightning id customization via con-
trastive alignment. arXiv preprint arXiv:2404.16022, 2024.

[14] Junjie He, Yifeng Geng, and Liefeng Bo. Unipor-
trait: A unified framework for identity-preserving single-

and multi-human image personalization. arXiv preprint
arXiv:2408.05939, 2024.

[15] Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu,
Ke Cao, Keyu Yan, Man Zhou, and Jie Zhang. Id-animator:
Zero-shot identity-preserving human video generation. arXiv
preprint arXiv:2404.15275, 2024.

[16] Zecheng He, Bo Sun, Felix Juefei-Xu, Haoyu Ma, Ankit
Ramchandani, Vincent Cheung, Siddharth Shah, Anmol
Kalia, Harihar Subramanyam, Alireza Zareian, et al. Imagine
yourself: Tuning-free personalized image generation. arXiv
preprint arXiv:2409.13346, 2024.

[17] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning. arXiv preprint arXiv:2104.08718,
2021.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. NeurIPS, 2017.

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 33:6840–6851, 2020.

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[22] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Com-
puter Vision–ECCV 2016: 14th European Conference, Am-
sterdam, The Netherlands, October 11–14, 2016, Proceed-
ings, Part IV 14, pages 646–661. Springer, 2016.

[23] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
Curricularface: adaptive curriculum learning loss for deep
face recognition. In CVPR, pages 5901–5910, 2020.

[24] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si,
Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin,
Nattapol Chanpaisit, et al. Vbench: Comprehensive bench-
mark suite for video generative models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21807–21818, 2024.

[25] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama,
Jonathan Huang, Rachel Hornung, Hartwig Adam, Hassan
Akbari, Yair Alon, Vighnesh Birodkar, et al. Videopoet: A
large language model for zero-shot video generation. arXiv
preprint arXiv:2312.14125, 2023.

[26] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customiza-
tion of text-to-image diffusion. In CVPR, pages 1931–1941,
2023.

[27] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
pages 12888–12900. PMLR, 2022.

[28] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with

12986



frozen image encoders and large language models. In ICML,
pages 19730–19742. PMLR, 2023.

[29] Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-
Ming Cheng, and Ying Shan. Photomaker: Customizing re-
alistic human photos via stacked id embedding. In CVPR,
pages 8640–8650, 2024.

[30] Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu,
Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Li-
uhan Chen, et al. Open-sora plan: Open-source large video
generation model. arXiv preprint arXiv:2412.00131, 2024.

[31] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang,
Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng, Ray-
mond Chan, and Ying Shan. Evalcrafter: Benchmarking and
evaluating large video generation models. arXiv preprint
arXiv:2310.11440, 2023.

[32] Yuanxin Liu, Lei Li, Shuhuai Ren, Rundong Gao, Shicheng
Li, Sishuo Chen, Xu Sun, and Lu Hou. Fetv: A bench-
mark for fine-grained evaluation of open-domain text-to-
video generation. NeurIPS, 36, 2024.

[33] Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Zi-
wei Liu, Yuan-Fang Li, Cunjian Chen, and Yu Qiao. Latte:
Latent diffusion transformer for video generation. arXiv
preprint arXiv:2401.03048, 2024.

[34] Yue Ma, Xiaodong Cun, Yingqing He, Chenyang Qi, Xin-
tao Wang, Ying Shan, Xiu Li, and Qifeng Chen. Magic-
stick: Controllable video editing via control handle transfor-
mations. arXiv preprint arXiv:2312.03047, 2023.

[35] Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran
Chen, Xiu Li, and Qifeng Chen. Follow your pose: Pose-
guided text-to-video generation using pose-free videos. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 4117–4125, 2024.

[36] Yue Ma, Yingqing He, Hongfa Wang, Andong Wang,
Chenyang Qi, Chengfei Cai, Xiu Li, Zhifeng Li, Heung-
Yeung Shum, Wei Liu, et al. Follow-your-click: Open-
domain regional image animation via short prompts. arXiv
preprint arXiv:2403.08268, 2024.

[37] Yue Ma, Hongyu Liu, Hongfa Wang, Heng Pan, Yingqing
He, Junkun Yuan, Ailing Zeng, Chengfei Cai, Heung-Yeung
Shum, Wei Liu, et al. Follow-your-emoji: Fine-controllable
and expressive freestyle portrait animation. In SIGGRAPH
Asia 2024 Conference Papers, pages 1–12, 2024.

[38] Ze Ma, Daquan Zhou, Chun-Hsiao Yeh, Xue-She Wang, Xi-
uyu Li, Huanrui Yang, Zhen Dong, Kurt Keutzer, and Jiashi
Feng. Magic-me: Identity-specific video customized diffu-
sion. arXiv preprint arXiv:2402.09368, 2024.

[39] Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian
Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie. T2i-
adapter: Learning adapters to dig out more controllable
ability for text-to-image diffusion models. arXiv preprint
arXiv:2302.08453, 2023.

[40] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew
Zisserman. Voxceleb: Large-scale speaker verification in the
wild. Computer Speech & Language, 60:101027, 2020.

[41] Mayu Otani, Riku Togashi, Yu Sawai, Ryosuke Ishigami,
Yuta Nakashima, Esa Rahtu, Janne Heikkilä, and Shin’ichi
Satoh. Toward verifiable and reproducible human evaluation

for text-to-image generation. In CVPR, pages 14277–14286,
2023.

[42] Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra,
Animesh Sinha, Ann Lee, Apoorv Vyas, Bowen Shi, Chih-
Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of
media foundation models. arXiv preprint arXiv:2410.13720,
2024.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, pages 8748–8763, 2021.

[44] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, pages 8821–
8831, 2021.

[45] Chen Rao, Guangyuan Li, Zehua Lan, Jiakai Sun, Jun-
sheng Luan, Wei Xing, Lei Zhao, Huaizhong Lin, Jian-
feng Dong, and Dalong Zhang. Rethinking video deblur-
ring with wavelet-aware dynamic transformer and diffusion
model. arXiv preprint arXiv:2408.13459, 2024.

[46] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022.

[47] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, pages 22500–22510, 2023.

[48] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Wei Wei,
Tingbo Hou, Yael Pritch, Neal Wadhwa, Michael Rubinstein,
and Kfir Aberman. Hyperdreambooth: Hypernetworks for
fast personalization of text-to-image models. In CVPR, pages
6527–6536, 2024.

[49] Yujun Shi, Jun Hao Liew, Hanshu Yan, Vincent YF Tan, and
Jiashi Feng. Instadrag: Lightning fast and accurate drag-
based image editing emerging from videos. arXiv preprint
arXiv:2405.13722, 2024.

[50] Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu.
Freeu: Free lunch in diffusion u-net. In CVPR, pages 4733–
4743, 2024.

[51] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, pages 2256–
2265. PMLR, 2015.

[52] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. arXiv preprint arXiv, 2020.

[53] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, pages 2818–2826,
2016.

[54] Zhenyu Tang, Junwu Zhang, Xinhua Cheng, Wangbo Yu,
Chaoran Feng, Yatian Pang, Bin Lin, and Li Yuan. Cy-
cle3d: High-quality and consistent image-to-3d genera-
tion via generation-reconstruction cycle. arXiv preprint
arXiv:2407.19548, 2024.

[55] Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu,
and Yunhe Wang. U-dits: Downsample tokens in u-shaped

12987



diffusion transformers. arXiv preprint arXiv:2405.02730,
2024.

[56] Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and An-
thony Chen. Instantid: Zero-shot identity-preserving gener-
ation in seconds. arXiv preprint arXiv:2401.07519, 2024.

[57] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot
free-view neural talking-head synthesis for video conferenc-
ing. In CVPR, pages 10039–10049, 2021.

[58] Zhao Wang, Aoxue Li, Enze Xie, Lingting Zhu, Yong Guo,
Qi Dou, and Zhenguo Li. Customvideo: Customizing text-
to-video generation with multiple subjects. arXiv preprint
arXiv:2401.09962, 2024.

[59] Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei
Zhang, and Wangmeng Zuo. Elite: Encoding visual con-
cepts into textual embeddings for customized text-to-image
generation. In ICCV, pages 15943–15953, 2023.

[60] Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhi-
heng Liu, Yu Liu, Yingya Zhang, Jingren Zhou, and Hong-
ming Shan. Dreamvideo: Composing your dream videos
with customized subject and motion. In CVPR, pages 6537–
6549, 2024.

[61] Jianzong Wu, Xiangtai Li, Yanhong Zeng, Jiangning Zhang,
Qianyu Zhou, Yining Li, Yunhai Tong, and Kai Chen. Mo-
tionbooth: Motion-aware customized text-to-video genera-
tion. arXiv preprint arXiv:2406.17758, 2024.

[62] Jing Xiong, Gongye Liu, Lun Huang, Chengyue Wu,
Taiqiang Wu, Yao Mu, Yuan Yao, Hui Shen, Zhongwei Wan,
Jinfa Huang, et al. Autoregressive models in vision: A sur-
vey. arXiv preprint arXiv:2411.05902, 2024.

[63] Jiaqi Xu, Xinyi Zou, Kunzhe Huang, Yunkuo Chen, Bo Liu,
MengLi Cheng, Xing Shi, and Jun Huang. Easyanimate:
A high-performance long video generation method based on
transformer architecture. arXiv preprint arXiv:2405.18991,
2024.

[64] Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,
Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu, Yu-
tong Dai, Michael S Ryoo, et al. xgen-mm (blip-3): A
family of open large multimodal models. arXiv preprint
arXiv:2408.08872, 2024.

[65] Shuo Yang, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao,
Yong-Hong Tian, Yi-Bing Song, and Li Yuan. Is param-
eter collision hindering continual learning in llms? arXiv
preprint arXiv:2410.10179, 2024.

[66] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024.

[67] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-
adapter: Text compatible image prompt adapter for text-to-
image diffusion models. arXiv preprint arXiv:2308.06721,
2023.

[68] Jianhui Yu, Hao Zhu, Liming Jiang, Chen Change Loy, Wei-
dong Cai, and Wayne Wu. Celebv-text: A large-scale facial
text-video dataset. In CVPR, pages 14805–14814, 2023.

[69] Wangbo Yu, Chaoran Feng, Jiye Tang, Xu Jia, Li Yuan,
and Yonghong Tian. Evagaussians: Event stream assisted

gaussian splatting from blurry images. arXiv preprint
arXiv:2405.20224, 2024.

[70] Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li,
Zhipeng Huang, Xiangjun Gao, Tien-Tsin Wong, Ying Shan,
and Yonghong Tian. Viewcrafter: Taming video diffusion
models for high-fidelity novel view synthesis. arXiv preprint
arXiv:2409.02048, 2024.

[71] Yongsheng Yu, Ziyun Zeng, Hang Hua, Jianlong Fu, and
Jiebo Luo. Promptfix: You prompt and we fix the photo.
arXiv preprint arXiv:2405.16785, 2024.

[72] Shenghai Yuan, Jinfa Huang, Yujun Shi, Yongqi Xu, Ruijie
Zhu, Bin Lin, Xinhua Cheng, Li Yuan, and Jiebo Luo. Mag-
ictime: Time-lapse video generation models as metamorphic
simulators. arXiv preprint arXiv:2404.05014, 2024.

[73] Shenghai Yuan, Jinfa Huang, Yongqi Xu, Yaoyang Liu,
Shaofeng Zhang, Yujun Shi, Rui-Jie Zhu, Xinhua Cheng,
Jiebo Luo, and Li Yuan. Chronomagic-bench: A benchmark
for metamorphic evaluation of text-to-time-lapse video gen-
eration. NeurIPS, 37:21236–21270, 2025.

[74] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
ICCV, pages 3836–3847, 2023.

[75] Zhenghao Zhang, Junchao Liao, Menghao Li, Long Qin,
and Weizhi Wang. Tora: Trajectory-oriented diffu-
sion transformer for video generation. arXiv preprint
arXiv:2407.21705, 2024.

[76] Mingzhe Zheng, Yongqi Xu, Haojian Huang, Xuran Ma,
Yexin Liu, Wenjie Shu, Yatian Pang, Feilong Tang, Qifeng
Chen, Harry Yang, et al. Videogen-of-thought: A collab-
orative framework for multi-shot video generation. arXiv
preprint arXiv:2412.02259, 2024.

[77] Zangwei Zheng, Xiangyu Peng, and Yang You. Open-sora:
Democratizing efficient video production for all. In Github,
2024.

[78] Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. Al-
legro: Open the black box of commercial-level video gener-
ation model. arXiv preprint arXiv:2410.15458, 2024.

12988


