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Abstract

Recent video-language alignment models are trained on
sets of videos, each with an associated positive caption and
a negative caption generated by large language models. A
problem with this procedure is that negative captions may
introduce linguistic biases, i.e., concepts are seen only as
negatives and never associated with a video. While a so-
lution would be to collect videos for the negative captions,
existing databases lack the fine-grained variations needed
to cover all possible negatives. In this work, we study
whether synthetic videos can help to overcome this issue.
Our preliminary analysis with multiple generators shows
that, while promising on some tasks, synthetic videos harm
the performance of the model on others. We hypothesize this
issue is linked to noise (semantic and visual) in the gen-
erated videos and develop a method, SYNVITA, that ac-
counts for those. SYNVITA dynamically weights the con-
tribution of each synthetic video based on how similar its
target caption is w.r.t. the real counterpart. Moreover, a
semantic consistency loss makes the model focus on fine-
grained differences across captions, rather than differences
in video appearance. Experiments show that, on average,
SYNVITA improves over existing methods on VideoCon
test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard
benchmarks, being a first promising step for using synthetic
videos when learning video-language models.

1. Introduction

Video-language alignment (VLA) aims to model the rela-
tionship between video content and natural language de-
scriptions [55], a fundamental multimodal task that enables
various applications, such as video captioning [15] and
video-text retrieval [47]. This task is challenging because
it requires the models to recognize not only the entities but
also their spatial and temporal relationships.

Recent approaches exploit multimodal large language
models (MLLMs) to address VLA [3, 28, 29] by tasking the
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Figure 1. We study the problem of video-language alignment, i.e.,
modeling the relationship between video content and text descrip-
tions. Top: current methods use LLM-generated negative captions,
which may introduce certain concepts (e.g., wearing a sombrero)
only as negatives, as they are not associated with any video. Bot-
tom: we study whether overcoming this issue by pairing negative
captions with generated videos can improve VLA.

wearing a sombrero
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MLLM to answer whether a given video and description are
aligned. While effective, such MLLM:s often lack sufficient
understanding of temporal dynamics, such as action types
or temporal orders [10, 31]. This limitation also stems from
the video-and-language datasets used for the MLLM pre-
training, as they are biased towards frame-level semantics:
the appearance of a single frame is often sufficient to infer
the alignment with the textual caption [25, 35].

While a possible solution is to augment datasets with
negative captions, e.g., captions from other videos, these
negatives can be “easy” for VLA models to distinguish sim-
ply by focusing on nouns; therefore, recent works focus on
LLM-generated captions as hard negatives [3]. However,
relying solely on textual negatives may cause the MLLM
to encounter concepts only as negatives, thus developing
incorrect linguistic biases. For instance, in the VideoCon
dataset [3], words like sombrero, marshmallow, and bland
appear as textual negatives but not as positives. While

24097



a remedy is to augment the training set with videos cor-
responding to the hard negative captions, retrieving such
videos from existing databases is not a feasible solution as
they lack sufficient videos that vary only w.r.t. actions or
temporal order while remaining similar in all the other se-
mantic aspects [35]. An alternative pathway is generating
synthetic videos by feeding hard negative captions to text-
to-video generative models [7, 34, 49, 58]. While this idea
has been investigated in the image domain [36], it remains
largely unexplored for videos.

In this paper, we aim to fill this gap and investigate, for
the first time, the use of synthetic videos to improve VLA in
temporal understanding. Specifically, we propose to lever-
age negative captions generated by existing models [3] and
recent open-source text-to-video generators [7, 49, 58] to
produce the corresponding synthetic videos (see Fig. 1).
We first conduct a preliminary study to evaluate whether
these generated videos can augment the training set of real
videos and enhance performance on various video-related
tasks. Our analysis shows that, while adding synthetic
videos shows some promise, it does not consistently im-
prove performance on temporally challenging downstream
tasks, regardless of the generator. We also analyze the
effects of different misalignment types (i.e., semantically
plausible changes in the video captions) on the generated
videos. We notice that videos generated by, e.g., introduc-
ing hallucination into the captions or reversing event order,
align more with positive captions than with their target cap-
tions. Such noisy supervision signals may lead to ineffec-
tive learning, limiting improvements on downstream tasks.

Motivated by these preliminary findings, we argue that,
when using synthetic videos for VLA we should account
for (i) potential semantic inconsistency between input text
and the generated videos and (ii) appearance biases, as syn-
thetic videos may contain artifacts. We design SYNTHETIC
VIDEOS FOR VIDEO-TEXT ALIGNMENT (SYNVITA), a
model-agnostic method that can effectively tackle both
challenges. SYNVITA addresses the semantic inconsis-
tency problem by making the contribution of each synthetic
video in the training objective proportional to their video-
text alignment estimates [29]. Moreover, it accounts for
appearance biases via a semantic regularization objective
that (i) takes the common parts between the original and
negative caption; (ii) encourages the model to focus on se-
mantic changes rather than on the visual appearance differ-
ence between synthetic and real videos. We evaluate SYN-
VITA on the VideoCon [3] test sets with different Video
LLMs [27, 60], and on temporally challenging downstream
tasks, i.e., text-to-video retrieval on SSv2-Temporal [42]
and SSv2-Events [2] and video question answering on ATP-
Hard [5]. On average, SYNVITA improves over state-of-
the-art methods that do not use synthetic videos, demon-
strating that synthetic videos can help VLA.

Contributions. To summarize, our contributions are:

* We pioneer the research problem in how to effectively
leverage synthetic videos for VLA learning to improve
temporal understanding;

* We conduct extensive analysis, shedding light on the po-
tential benefits and limitations of using videos generated
by state-of-the-art text-to-video generative models;

* We propose a new learning method for VLA with syn-
thetic videos, SYNVITA, with a sample weighting strat-
egy to mitigate noisy generations and a regularization
term to enforce semantic understanding, instead of visual
differences between synthetic and real videos.

* We evaluate SYNVITA on different benchmarks with dif-
ferent Video LLMs, proving its model-agnostic effective-
ness in aiding VLA for better temporal understanding.

2. Related work

Video-language models for video understanding. Recent
approaches for video understanding exploit the capabilities
of foundation models. For instance, several works adapted
CLIP [39], a model trained to compare images and texts, for
video-language tasks, such as retrieval [14], captioning [33]
or anomaly detection [62]. Other studies leveraged LLMs
for reasoning over video captions [50, 63] or directly decode
video features in natural language [27, 56, 64]. While these
models heavily rely on pre-training on large-scale video-
text pairs [55, 56], they still lack robustness in modeling
temporal dynamics [10, 31]. Previous works addressed this
by, e.g., using LLMs to generate hard negatives [35], revers-
ing the action sequence [2], or finer-grained objectives [51].

The closest work to ours is VideoCon [3], which fine-
tunes a video LLM using temporally challenging hard tex-
tual negatives. However, our focus is different, as we
explore whether generated videos can improve video-text
alignment, complementing negative captions.

Video-language alignment evaluation. A main challenge
in VLA is quantifying the semantic alignment between text
and video frames. Early attempts used metrics based on the
CLIPScore [19, 41, 43], which computes video-text align-
ment by measuring the similarity between video frames and
their captions in the CLIP embedding space [39]. How-
ever, as VLMs struggle with temporal changes in captions
[2, 35, 51, 61], recent approaches have started measuring
video-text alignment using MLLMs for video question an-
swering [3, 26, 28, 52, 53], such as the VQAScore in [29].
In this work, we use these models to evaluate the quality
of the alignment and for the new objective of evaluating how
much a synthetic video aligns with its textual counterpart.

Using synthetic visual data as training data. Recent
works showed how augmenting training sets with synthet-
ically generated images can improve the performance of
discriminative models [17, 37, 45, 65]. Diffusion models,
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known for their ability to generate highly realistic images
and for their flexibility in dealing with different condition-
ing signals (text, depth, etc.), have significantly fostered
this research trend [9]. While most works focused on im-
age recognition tasks [36, 45, 65], recent approaches ex-
plored more challenging tasks such as few-shot recognition
[17, 40] or out-of-distribution detection [13].

Our work follows a similar underlying idea and it is mo-
tivated by recent advances in text-to-video generation [7,
34, 49, 58]. However, we are the first to explore synthetic
videos for improving video understanding models.

3. Video-language alignment

Video-language alignment aims to rate how well the con-
tent of a video matches a given text in natural language.
Formally, let us define ¢ as the given textual input in the lan-
guage space 7, and V' as a video in the space V. The goal
is to learn a function f parameterized by 6, mapping videos
and texts to their alignment scores, i.e., f : V x T — [0,1],
where 1 means high alignment and 0 the opposite.

Given the fine-grained nature of language, this task re-
quires video-language models with compositional and tem-
poral order understanding and recent approaches use video
LLMs for this task, where an LLM is used as decoder
[3, 29]. Formally, let us define an LLM-based video-
language model f via three functions: the visual encoder
fvia, the text encoder fiy:, and a decoder fge.. The
two encoders map their respective inputs into a shared d-
dimensional embedding space, i.e., fyiqa : V — R¢ and
fext © T — R% The decoder maps the visual and textual
inputs into a vector in the probability simplex A defined
over the LLM vocabulary1 W, ie., faec : RIxR% — AV,
This probability vector is then used to sample the next token
for the generative process.

Within this formulation, the alignment task becomes the
probability of predicting Yes or No as the next word after
the question 7, = Does this video entail the
description [t]?,where [¢]is the target caption. For-
mally, this translates as f being:

Py(ves|V,t)

Fv.t) = Py (Yes|V,t) + Py (No|V, t)

(D

where Py (w|V, ) = fiod (frsa(V), foxs(mq 0 1)), with g
the shared question, o string concatenation, and f(g:'c] the
likelihood of the word w € W from the decoder’s output.

VLA learning. Usually, the parameters € of f are up-
dated using a dataset D of n video-language triplets D =
{(vi,t5,t0), -+, (Vs t5,£5)}, where ¢ and t; are the

positive and negative text captions for the video V;, i.e., cap-
tions that respectively represent (tzr) and do not represent

IFor simplicity, we omit the words’ tokenization and we assume textual
prompts and videos to be treated equally and encoded in the same space.

(t; ) the video content. Exploiting the probability distribu-
tion, output of f4.c, we can define the following objective:

Lraar = — Y log f(Vi,tF) +1og (1 = f(Vist;)) . (@

i=1

This loss function forces f to sample Yes with a higher
probability if the text represents the video and No otherwise.

4. Can synthetic videos help VLA?

The main loss function in VLA learning, as expressed in
Eq. (2), considers as negative only textual inputs for a given
“anchor” video. For each positive caption tj', there is no
negative video example associated with ¢;. As such, lin-
guistic biases might be induced in the MLLM because some
concepts appear only as textual negatives. Thus, we won-
der: Can generated videos of negative captions help learn-
ing a VLA function? To answer this question, we consider
different text-to-video generator models and use them to
generate synthetic videos associated to negative captions.

VLA learning with generated videos. Formally, a text-to-
video generator G maps natural language expressions in 7
and noise in the space A to videos, i.e., G : T X N — V.
For simplicity, we define t” = tT (i.e., text positively asso-
ciated with the real video) and t* = ¢~ (i.e., negative text
for the real video, positively associated with the synthetic
one). We propose to use the generator to define an objective
over the dataset D:

Logn ==Y log f (V7 15) +log (1 f (V. 87))  (3)

i=1

where V7 = G(t5,n;), with n; ~ N being the sampled
noise. The negative text ¢; is the input text to the generator,
thus serving as the positive for the synthetic video, while
the positive text ¢ for the real video V" serves as negative
for the generated video.

Experimental analysis. To better understand the potential
of synthetic videos, we first conduct a preliminary exper-
imental analysis and leverage three state-of-the-art open-
source video generators, i.e., CogVideoX [58], LaVie [49],
and VideoCrafter2 [7], to generate synthetic videos for each
negative caption in the VideoCon dataset [3]. We aug-
ment the dataset with these generated videos and fine-tune
a video LLM, mPLUG-Owl 7B [60], using the objective
functions defined in Eq. (2) and Eq. (3) for real and syn-
thetic videos, respectively. We measure the performance
with the VLA scores estimated from Eq. (1), following
the established evaluation protocol [3] across multiple tasks
and datasets. Specifically, we consider video-language en-
tailment on the VideoCon dataset, text-to-video retrieval
on SSv2-Temporal [42] and SSv2-Events [2] datasets, and
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TEXT-TO-VIDEO VIDEO-LANGUAGE ENTAILMENT (VIDEOCON) TEXT-TO-VIDEO RETRIEVAL VIDEO QA
GENERATOR LLM Human Human-Hard | SSv2-Temporal = SSv2-Events ATP-Hard
NONE* [3] 88.39 77.16 74.76 13.00 10.37 35.46
COGVIDEOX [58] 83.93 (] 4.46) 76.89 (1. 0.27) 75.10 (1 0.34) 11.76 (| 1.24) 8.79 (1 1.58) 35.30 ¢} 0.16)
LAVIE [49] 85.26 (] 3.13) 76.96 (] 0.20) T74.63 (] 0.13) 14.26 (1 1.26) 10.80 (1 0.43) 34.82 (1 0.64)
VIDEOCRAFTER2 [7] 85.82 (1 2.57) 77.33 (1 0.17) 75.15 (1 0.39) 13.80 (1 0.80) 10.27 (1 0.10) 35.79 (1 0.33)

Table 1. Results of the preliminary study on using synthetic videos generated by different text-to-video models. Increases (1) and decreases
(J) are measured relative to the model fine-tuned without synthetic videos (i.e., NONE). * indicates our reproduced results using the
mPLUG-Owl 7B model checkpoint released in the original VideoCon repository.

MISALIGNMENT VIDEO-LANGUAGE ENTAILMENT (VIDEOCON) TEXT-TO-VIDEO RETRIEVAL VIDEO QA
LLM Human Human-Hard | SSv2-Temporal  SSv2-Events ATP-Hard

NONE* [3] 88.39 77.16 74.76 13.00 10.37 35.46
ACTION 86.10 (] 2.29) 77.43 (10.27) 74.83 (1 0.07) 15.04 (1 2.04) 10.66 (1 0.29) 36.28 (1 0.82)
ATTRIBUTE 86.51 (] 1.88) 77.61 (10.45) 75.50 (1 0.74) 13.67 (1 0.67) 11.47 (+ 1.10) 35.25 (L 0.21)
COUNT 86.10 (] 2.29) 77.66 (1 0.50) 75.27 (1 0.51) 14.27 (+1.27) 10.97 (1 0.60) 36.16 (1 0.70)
FLIP 85.69 (| 2.70) 76.04 (| 1.12) 73.53 (] 1.23) 14.94 (1 1.94) 10.73 (1 0.36) 36.06 (1 0.60)
HALLUCINATION 85.46 (] 2.93) 76.55 (1 0.61) 74.77 (10.01) 13.89 (1 0.89) 10.14 (1 0.23) 36.37 (10.91)
OBJECT 86.28 (| 2.11) 77.36 (1 0.20) 74.15 (J 0.61) 14.54 (1 1.54) 11.54 1+ 1.17) 35.48 (10.02)
RELATION 86.22 (1 2.17) 77.46 (1 0.30) 74.59 (1 0.17) 14.99 (1 1.99) 11.38 (+ 1.01) 34.65 (1 0.81)

Table 2. Average results of the preliminary study on using synthetic videos generated by different text-to-video models, for each type
of misalignment. Increases (1) and decreases ({) are measured relative to the model fine-tuned without synthetic videos (i.e., NONE). *
indicates our reproduced results using the mPLUG-Owl 7B model checkpoint released in the original VideoCon repository.

video question answering (VQA) on the ATP-Hard dataset
[5]. The evaluation metrics include the area under the re-
ceiver operating characteristic curve (AUC ROC) on video-
language entailment, mean average precision (mAP) on
text-to-video retrieval, and accuracy on VQA.

We report the results in Tab. 1, including baseline perfor-
mance without synthetic video data (NONE). From the ta-
ble, it is clear that synthetic videos harm the performance on
the task closest to the training set (i.e., average drop higher
than 3% AUC on VideoCon LLM). One core reason for this
drop is the distribution of the negatives being more similar
to the one of the training set. Thus performance may de-
crease when a model sees them as positives. On the other
hand, the results on downstream tasks suggest that synthetic
videos hold promise. For instance, VideoCrafter2 improves
the result of the baseline in 4/6 settings, while LaVie boosts
performance on SSv2-Temporal (i.e., +1.26 mAP). How-
ever, even with state-of-the-art video generators, not all
of them guarantee improvements, and no single generator
consistently outperforms the others across the tested down-
stream tasks. This can be seen with CogVideoX, which pro-
vides slight improvements on one of the tasks (i.e., entail-
ment on Human-Hard) while harming the representations
on the others (e.g., -1.58 mAP on SSv2-Events).

Are some negative captions challenging? The VideoCon
dataset [3] includes negative captions that differ from posi-
tive ones by specific types of misalignment, including mod-
ifications in actions, attributes, objects, relations, counts,
event orders (flipping), and adding hallucinations. There-
fore we also analyze whether certain types of captions are

particularly challenging for the generators to produce corre-
sponding videos. We achieve this by fine-tuning mPLUG-
Owl 7B with synthetic videos specific to each misalignment
type. The results averaged over the three video generators
are reported in Tab. 2. As shown in the table, different types
of misalignment have different impacts on the downstream
tasks. For instance, ACTION is the misalignment that re-
sults in the largest overall improvement (e.g., +2.04 mAP
on SSv2-Temporal, +0.82% accuracy on ATP-hard), while
FLIP and HALLUCINATIONS misalignments lead to some
severe decrease on the VideoCon benchmarks (e.g., -1.12
and -0.61 respectively on VideoCon Human).

We hypothesize that such a performance drop is due to
the alignment quality of synthetic videos. To evaluate our
hypothesis, we measure the quality of a synthetic video V'*,
generated from a caption t°, as a negative example for the
caption t" as f(V*,t%) — f(V* 1), where f(V,t) is com-
puted using an ensemble of VQAScores [29], obtained by
averaging the scores from three VQA models [11, 29, 30],
i.e., their average likelihood of answering Yes to the ques-
tion: Does this figure show [t]? across four
uniformly sampled frames from the video. The higher the
difference between the two scores, the higher the similar-
ity of the synthetic video to its caption ¢° than its negative
t" and, intuitively, the more relevant the synthetic video
for the VLA learning process. Fig. 2 shows the distribu-
tion of this difference for different types of misalignments.
Notably, only FLIP and HALLUCINATIONS misalignments
yield mean differences that are below zero (i.e., -0.03 and
-0.05, respectively), while the others are above (e.g., 0.09
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Figure 2. Distribution of the difference between f(V*,¢*) and f(V*,t") for each misalignment type, averaged over three text-to-video
generators. Misalignment types that result in negative differences (i.e., Flip and Hallucination) are highlighted in red. Best viewed in color.

ACTIONS, 0.15 ATTRIBUTE and OBJECT). This indicates
that synthetic videos corresponding to FLIP and HALLU-
CINATIONS negative captions are not well aligned, which
worsens the VLA learning process, as confirmed in Tab. 2.

Finding summary. Our preliminary analysis reveals that:
(i) Synthetic videos show potential for enhancing VLA,
though improvements are not consistent among different
generators. (ii) Different types of misalignment influence
various downstream tasks in distinct ways. (iii) Synthetic
videos that align closer to the positive captions of real
videos rather than the negative captions result in poor train-
ing samples, which negatively impact learning.

5. SYNVITA

As shown in the previous section, some generated videos
are closer to real captions than their target ones (Fig. 2).
This contradicts a key assumption of Eq. (3): that gener-
ated videos fully represent the content described by their
input caption t°. This often happens due to semantic incon-
sistency, i.e., generated videos fail to follow the semantic
instruction given by the input text [4, 26]. Such synthetic
videos introduce noisy supervision signals, leading to de-
graded VLA performance (Tab. 2) [32]. Moreover, even se-
mantically consistent synthetic videos may be distinguished
using visual differences (e.g., artifacts [38, 52]) rather than
intended semantic ones. In this work, we propose a model-
agnostic method to better use SYNTHETIC VIDEOS FOR
VIDEO-TEXT ALIGNMENT (SYNVITA), modeling them
via two strategies: alignment-based weighting and semantic
consistency regularization (see Fig. 3).

Alignment-based weighting. To mitigate the impact of
harmful synthetic videos and maximize the impact of valu-
able ones, we weigh the importance of each video based on
a scoring criterion ¢. Given a synthetic video V?, its cor-
responding caption ¢° and the real counterpart ¢, ¢ maps

them to a binary score in [0, 1] depending on their level
of alignment, i.e., ¢ : V x T x T — [0,1]. A simple
choice for ¢ is to directly use the alignment scores given
by our model f. In this case, ¢(V*,t5,t") = f(V*,t%).
However, this might ignore the cases where, erroneously,
F(Vetm) > f(V*,t%), ie., the generated video is closer
to the real caption ¢" than to the target one ¢°. This
phenomenon frequently happens (i.e., Fig. 2), due to e.g.,
wrong attribute/action binding [23]. For instance, if we ask
the model to generate a horse watching a person running,
it may erroneously generate a person watching a horse run-
ning, swapping the two actions. As shown in Sec. 4, this
type of mistakes harms the learning of f and its capability
to distinguish fine-grained details.

Thus, we define ¢ to account for how well the generated
video V;® represents ¢7 in comparison to its real, negative,
counterpart ¢!, defining the weight for a synthetic video as:

w? = qb(‘/isv tzsa t:)

: = max(0, F(V?,13) — F(V.#9)) ()
where f is an ensemble of VQAScores, as in Sec. 4. Note
that the more the video is aligned with the target text w.r.t.
its negative one, the higher its weight from Eq. (4).

Given this scoring criterion, we define a loss function on
synthetic videos, where ¢ acts as a dynamic weight giving

higher relevance to videos better aligned with text:

Lo = Zw

(log f (Vi*, ) +log (1 — f (Vi*, 7)) -

)
Semantic consistency regularization. A positive aspect of
having synthetic videos for negative textual inputs is that
we can make the model focus on the semantic changes be-
tween videos rather than those in appearance. Suppose we
are given a text ¢”, its negative version ¢°, a real video V",
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Figure 3. Overview of SYNVITA. Given a real video V" with its description ¢" and a negative caption ¢* (generated by an LLM), we
first generate a synthetic video V* based on ¢°. We weigh the importance of each video using the scoring criterion ¢. We also find the
shared semantic between ¢ and t° using the longest common subsequence, obtaining t'. We train fp to respond with Yes if the input
video matches its description and No otherwise. Additionally, we encourage the model to focus on the semantic difference between real
and synthetic videos, instead of the appearance difference, using their shared semantic (i.e., t').

and its generated negative version V°. If the difference be-
tween t” and t° is fine-grained, it will focus on specific
properties of the video (e.g., action, temporal order, etc.).
This implies that the two texts share most of the content but
for those fine-grained characteristics. We can thus define a
text ¢/, whose semantic is shared between t" and t°, thus
not being specific to V" or V°. We achieve this by finding
the intersection between the two texts via longest-common
subsequence [20], i.e., t' = LCS(¢", %)

Note that ¢’ has a specific property: given the real (syn-
thetic) video, ¢’ is a less accurate description than the origi-
nal caption ¢" (%), but a better one than the negative ¢° (¢").
Ideally, our model should capture this relationship, model-
ing ¢’ as semantically closer to the video than its negative
caption, but farther w.r.t. its positive. We can achieve this
by computing a triplet loss, defined as:

L= > wl(max (0,5 + f(V7, 1) — F(VF. 1))

1=1 ze{s,r}

+ max (0,7+f(Vf,tf) - f(Vf,t;)))

(6)
where the margin term ~y enforces the desired separation be-
tween the alignment probabilities, and when z = r, Z = s
and vice versa. The first term promotes better alignment of
the positive caption w.r.t. the generic caption ¢’ and the sec-
ond promotes better alignment of the latter w.r.t. the neg-
ative caption. This encourages f to focus on the seman-
tic differences between the two visual inputs, ignoring their
differences in appearance due to the synth-to-real gap.

Full objective. Considering all learning objectives together,
we obtain the following final function:

L= Lrea + LY + Ascr - Loer- (7)

where Agcr is a hyperparameter that regulates the losses. We

2Note that, in practice, ¢’ is not implemented via token removal but via
attention-level masking.

use Eq. (7) to learn the set 6 of parameters in f. Remark-
ably, our framework has only two hyperparameters, i.e., the
margin y of £, and the weight A, of £Z__.

6. Experiments

Datasets. For training SYNVITA, we use the Video-
Con dataset [3], which includes temporally-challenging
video-text triplets from MSR-VTT [57], VATEX [48], and
TEMPO [18] for two tasks: Video-Language Entailment
(VLE) and Natural Language Explanation (NLE). In VLE,
the model outputs a score of 1 if the video entails the de-
scription and 0 otherwise, while in NLE, it outputs the ex-
planation of the differences between a video and a caption.
For each negative caption in the VideoCon VLE training set,
we generate a corresponding video using three text-to-video
models: CogVideoX [58], LaVie [49], and VideoCrafter2
[7]. The inference configurations for these models and ex-
amples of generated videos are in the Supp. Mat.

For evaluation, we use the VideoCon VLE test sets: (i)
VideoCon (LLM), with 27K video-text pairs from the same
source datasets; (ii) VideoCon (Human), with 570 pairs
from ActivityNet [6] and human annotated negative cap-
tions; and (iii) VideoCon (Human-Hard), a subset of 290
temporally challenging instances. Following Bansal et al.
[3], we also evaluate our model on various downstream
tasks: (i) text-to-video retrieval with SSv2-Temporal [42],
which includes 18 action classes, each with 12 videos (in
total 216 videos), requiring temporal understanding; (ii)
SSv2-Events [2], with 49 action classes, each with 12
videos, featuring multi-event actions; and (iii) video ques-
tion answering on ATP-Hard [5], a subset of questions of
NExT-QA [54] that require causal and temporal understand-
ing of videos. We measure the performance using AUC for
entailment, mAP for retrieval, and accuracy for VQA. Ad-
ditional details on the datasets are in the Supp. Mat.

Implementation details. We implement SYNVITA on two
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video LLMs, mPLUG-Owl 7B [60] and Video-LLaVA [27],
trained on 4 NVIDIA A100 GPUs. Both models share most
of the hyperparameters with VideoCon [3] to ensure a fair
comparison, and fine-tune the projection layers of the atten-
tion blocks of the LLM with low-rank adaptation (LoRA)
[22], with r = 32, @ = 32, and dropout = 0.05. For both
models, we set 7y to 0.2, while Ager to 1072 for mPLUG-
Owl 7B and 1.0 for Video-LLaVA. Other implementation
details can be found in the Supp. Mat.

Baselines. We compare SYNVITA (mPLUG-Owl 7B) and
SYNVITA (Video-LLaVA) against two sets of models. The
first set includes off-the-shelf VLMs such as VideoCLIP
[55], ImageBind (Video-Text) [16], End-to-End VNLI [59],
mPLUG-Owl 7B [60], and Video-LLaVA [27], as well as
models fine-tuned for improved understanding of actions
and event order, i.e., VFC [35] and TACT [2]. The sec-
ond set consists of models trained on video-text triplets
from the VideoCon dataset, namely VideoCon (mPLUG-
Owl 7B) and VideoCon (Video-LLaVA) [3]. Additional de-
tails on the baselines are in the Supp. Mat.

6.1. Comparison with state of the art

Tab. 3 presents the results of our comparison on the Video-
Con evaluation sets and the downstream tasks. Overall, our
proposed method outperforms all previous baselines in five
tasks out of six. For the entailment task, on the Video-
Con Human dataset SYNVITA (Video-LLaVA) improves
its counterpart VideoCon (Video-LLaVA), trained without
synthetic video-caption pairs, by 0.77%, and achieves a
1.12% improvement on its temporally challenging subset,
Human-Hard. Similarly, SYNVITA (mPLUG-Owl 7B)
shows a 0.32% improvement on the VideoCon Human
dataset. As expected from Sec. 3, on the VideoCon (LLM)
test set, both SYNVITA (Video-LLaVA) and SYNVITA
(mPLUG-Owl 7B) underperform compared to their coun-
terparts without synthetic videos, due to the similar distri-
bution of negatives w.r.t. those present in the training set.
Thus, synthetic pairs harm the performance in this setting.
For text-to-video retrieval tasks, SYNVITA (mPLUG-
Owl 7B) outperforms VideoCon (mPLUG-Owl 7B) by
4.32% on SSv2-Temporal and 2.17% on SSv2-Events. Sim-
ilarly, SYNVITA (Video-LLaVA) shows improvements of
0.33% on SSv2-Temporal and 1.20% on SSv2-Events com-
pared to VideoCon (Video-LLaVA). These results suggest
that our model is model-agnostic and more effective at rank-
ing similar but semantically different text descriptions than
the baseline, which does not associate corresponding video
data with negative captions. Finally, for the challenging
video question-answering task on the ATP-Hard dataset,
models fine-tuned with only textual negatives see perfor-
mance drops or minimal improvement compared to their
non-finetuned version. Despite this, SYNVITA (mPLUG-
Owl 7B) improves upon VideoCon (mPLUG-Owl 7B) by
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Figure 4. Ablation study on the proposed losses.

1.85%, and SYNVITA (Video-LLaVA) shows a 1.12% im-
provement over VideoCon (Video-LLaVA). We show qual-
itative results of SYNVITA in the Supp. Mat.

6.2. Ablation study

In this section, we analyze the components of SYNVITA
considering the mPLUG-Owl 7B version. We first exam-
ine the different parts of our learning objective. We then
show the benefits of alignment-based weighting over fixed
weights and of different alignment-based scoring criteria.
Finally, we show the effect of using different text-to-video
models for generating synthetic videos. Additional results
on other designs are present in the Supp. Mat.

Learning objectives. We first analyze the effectiveness of
the two proposed components in our learning objective: the
alignment-based loss function Eg’yn (Eq. (5)) and the seman-
tic consistency regularization £2__ (Eq. (6)). As shown in

Fig. 4, excluding [,fyn leads to a drop in performance (blue
vs. orange bar). Without this loss, the objective is solely the
traditional language modeling loss. As a result, synthetic
videos that are not aligned with their captions introduce
a noisy training signal. Adding £Z_, (green bar), further
boosts the performance on 2/3 datasets, suggesting that the
model better captures the video semantics. As our model is
trained on triplets with single-event differences [3], £2., is
less effective for SSv2-Events, where captions involve mul-
tiple events. However, current open-source video generators

struggle to generate multi-event videos.

Alignment-based weighting strategy. In this section,
we evaluate our alignment-based weighting strategy (i.e.,
Eq. (4)) against other alternatives, reporting the results in
Tab. 4. As a reference, row (1) reports the results of a
fixed weight (i.e., 1) for all synthetic videos. Assigning
weights based only on alignment with the target text (i.e.,
f(V5,1%)) improves performance on retrieval (e.g., +0.92
mAP on SSv2-Events) but degrades performance on others
(e.g., on ATP-Hard, -0.28%), as it overlooks cases where
synthetic videos align more with real captions. In row (3),
we multiply the synthetic scores by the inverse similarity
with the real counterpart (i.e., (1 — f(V'*,¢"))). Introducing
the real captions into the score improves the results in var-
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VIDEO-LANGUAGE ENTAILMENT (VIDEOCON) TEXT-TO-VIDEO RETRIEVAL | VIDEO QA

LLM Human Human-Hard SSv2-Temporal SSv2-Events | ATP-Hard
VIDEOCLIP [55] 532 473 475 9.8 6.4 23.4
IMAGEBIND (VIDEO-TEXT) [16] 57.1 65.2 63.0 10.5 5.5 254
TACT [2] - - - - 7.8 27.6
VEC [35] - - - - - 314
END-TO-END VNLI [59] 67.0 72.4 65.0 14.6 10.4 39.0
MPLUG-OWL 7B [60] 57.24 67.02 64.39 11.08 6.75 37.96
VIDEO-LLAVA [27] 62.98 70.37 65.99 11.64 7.11 38.56
VIDEOCON (MPLUG-OWL 7B)* [3] 88.39 77.16 74.76 13.00 10.37 35.46
VIDEOCON (VIDEO-LLAVA) 85.86 80.09 75.74 19.77 10.01 38.76
SYNVITA (MPLUG-OWL 7B) 86.45 77.48 74.54 17.32 12.54 37.31
SYNVITA (VIDEO-LLAVA) 85.43 80.86 76.86 20.10 11.21 39.88

Table 3. Comparison of SYNVITA with both discriminative and generative VLMs. For the video-language entailment task, we report
AUC-ROC, for zero-shot text-to-video retrieval , we report mAP, and for video question-answering , we report accuracy. * indicates our

reproduced results using the mPLUG-Owl 7B model checkpoint released in the original VideoCon repository.

VIDEO-LANGUAGE ENTAILMENT (VIDEOCON) TEXT-TO-VIDEO RETRIEVAL  VIDEO QA
ALIGNMENT-BASED WEIGHTING STRATEGY LLM Human Human-Hard SSv2-Temporal SSv2-Events  ATP-Hard
1) FIXED WEIGHTING-1.00 83.95 76.91 75.05 12.54 8.48 36.23
2) f(Ve,t°) 84.87 76.46 74.12 13.43 9.40 35.95
3) f(Ve,t5) - (1= f(V5,t7)) 85.57 76.79 74.11 15.52 10.74 36.06
HL[f(VE, %) > F(VE,0)] 84.88 76.79 73.17 14.17 10.38 37.15
5) max(0, f(V*,t°) — f(VE,t7)) 86.45 77.48 74.54 17.32 12.54 37.31

Table 4. Results of the ablation study on the weighting strategy for the synthetic videos in the objective function.

TEXT-TO-VIDEO GENERATOR

NONE COGVIDEOX LAVIE VIDEOCRAFTER2 ALL

LLM 88.39 86.45 86.45 86.43 85.82
Human 77.16 77.48 77.51 77.48 77.15
Human-Hard 74.76 74.54 74.73 74.74 73.79
SSv2-Temporal | 13.00 17.32 15.98 15.47 14.06
SSv2-Events 10.37 12.54 12.36 11.72 10.90
ATP-Hard \ 35.46 37.31 36.55 36.50 36.44

Table 5. Ablation study on varying the text-to-video model.

ious settings, especially on retrieval, achieving +2.98 mAP
on SSv2-Temporal, and +2.26 mAP on SSv2-Events. As an
alternative, row (4) considers weighing all synthetic videos
as 1 if they are closer to their target caption than the real
one. This strategy shows a general degradation w.r.t. the
previous, except for ATP-Hard (+1.9%). This denotes that
a soft-weighting scheme is still more effective as it accounts
for different levels of semantic fidelity across videos. Our
proposed strategy (row (5)) combines the advantages of the
two, enforcing that synthetic videos are truly negative ex-
amples, i.e., being more similar to their caption than the
original one of the real videos. This strategy obtains the
highest results in almost all settings. For Video-LLaVA, we
use (3) as it performs slightly better.

Text-to-video generators. We analyze this aspect by com-
paring three text-to-video generators when used with our
method: CogVideoX [58], LaVie [49], and VideoCrafter2
[7]. As shown in Tab. 5, SYNVITA (mPLUG-Owl1 7B) fine-
tuned on videos generated by CogVideoX outperforms the
other alternatives across all downstream tasks and achieves
comparable results on the video-language entailment task.

While it can be challenging to determine a-priori the opti-
mal generator for a downstream task, one possibility could
be to generate videos from multiple generators and let the
model filter them. Using all generated videos performs bet-
ter than using none on the downstream tasks (e.g., +1.06%
on SSv2-Temporal), but underperforms CogVideoX (e.g., -
3.26% on SSv2-Temporal). This is likely due to the high
synth-to-real video ratio, introducing a significant domain
shift that requires careful handling. Nevertheless, we ex-
pect that the better the text-to-video models released, the
more beneficial they will be for SYNVITA.

7. Conclusion

In this work, we explored whether videos generated by text-
to-video models can help learning a better video-language
alignment (VLA) model. Our initial analysis shows that
synthetic videos can boost performance on certain down-
stream tasks, but harm others. We attribute this to (i) seman-
tic inconsistency, as synthetic videos may not follow the in-
put text, and (ii) appearance bias, where the model focuses
on visual differences in the videos rather than semantic dif-
ferences. To address these limitations, we introduced SYN-
VITA, the first VLA method exploiting synthetic videos.
SYNVITA includes an alignment-based sample weighting
strategy to mitigate noisy video generations and a seman-
tic consistency regularization to make the model focus on
semantic, rather than visual, differences. SYNVITA out-
performs baselines that do not use synthetic videos across
different video LLMs on five out of six tasks, demonstrat-
ing its potential to improve VLA across diverse models.
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