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Figure 1. Reconstruction samples of TexTok compared with Baseline (w/o text) on ImageNet 256×256 using different number of image
tokens. TexTok enables the tokenizer to encode finer visual details into image tokens, achieving better reconstruction quality across various
token counts, such as improved text in images, car wheels, and bird beaks. The improvement is particularly significant in the low-token
domain. The yellow-boxed regions highlight the significant enhancements.

Abstract

Image tokenization, the process of transforming raw im-
age pixels into a compact low-dimensional latent represen-
tation, has proven crucial for scalable and efficient image
generation. However, mainstream image tokenization meth-
ods generally have limited compression rates, making high-
resolution image generation computationally expensive. To
address this challenge, we propose to leverage language
for efficient image tokenization, and we call our method
Text-Conditioned Image Tokenization (TexTok). TexTok is a
simple yet effective tokenization framework that leverages
language to provide a compact, high-level semantic rep-
resentation. By conditioning the tokenization process on
descriptive text captions, TexTok simplifies semantic learn-
ing, allowing more learning capacity and token space to
be allocated to capture fine-grained visual details, leading
to enhanced reconstruction quality and higher compression

* Work done during an internship at Google DeepMind.

rates. Compared to the conventional tokenizer without text
conditioning, TexTok achieves average reconstruction FID
improvements of 29.2% and 48.1% on ImageNet-256 and -
512 benchmarks respectively, across varying numbers of to-
kens. These tokenization improvements consistently trans-
late to 16.3% and 34.3% average improvements in gener-
ation FID. By simply replacing the tokenizer in Diffusion
Transformer (DiT) with TexTok, our system can achieve a
93.5× inference speedup while still outperforming the orig-
inal DiT using only 32 tokens on ImageNet-512. TexTok
with a vanilla DiT generator achieves state-of-the-art FID
scores of 1.46 and 1.62 on ImageNet-256 and -512 respec-
tively. Furthermore, we demonstrate TexTok’s superiority
on the text-to-image generation task, effectively utilizing the
off-the-shelf text captions in tokenization.

1. Introduction
Image generation has made remarkable progress in recent
years, enabling high-quality synthesis across diverse appli-
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cations [9, 11, 32, 37]. Central to this success is the evolu-
tion of image tokenization, a process that compresses raw
image data into a compact yet expressive latent representa-
tion through training an autoencoder. Tokenization allows
generative models, such as diffusion models [9, 32, 37] and
autoregressive models [11, 28, 43] to operate directly in this
compressed latent space instead of the high-dimensional
pixel space, significantly improving computational effi-
ciency while enhancing generation quality and fidelity.

Despite various image tokenization efforts aimed at im-
proving training objectives [11, 36, 45] and refining the
autoencoder architecture [47, 50], current methods remain
fundamentally limited by a trade-off between compression
rate and reconstruction quality, especially in high-resolution
generation. High compression reduces computational costs
but often sacrifices reconstruction quality, while prioritizing
quality leads to prohibitively high computational expenses.

Addressing this limitation requires a fundamental shift in
the tokenization process. At its core, tokenization involves
finding a compact and effective representation of an image.
The most concise and meaningful representation of an im-
age often comes from its language description–i.e., caption-
ing. When describing an image, humans naturally start with
high-level semantics before elaborating on finer details. In-
spired by this insight, we introduce Text-Conditioned Im-
age Tokenization (TexTok), a novel framework that leverages
text captions to guide the tokenizer in learning image se-
mantics. This simplifies semantic learning, allowing more
learning capacity and token space to be allocated to capture
fine-grained visual details, thereby enhancing reconstruc-
tion quality without compromising compression rate.

To the best of our knowledge, we are the first to condi-
tion on detailed captions in the tokenization stage, an ap-
proach typically reserved for the generation phase. Text
captions are easy to obtain from online image-text pairs or
using a vision-language model to caption the images. Since
text conditioning is widely used in image generation, e.g.,
text-to-image generation, our method can seamlessly incor-
porate these captions into the tokenization process without
incurring additional annotation overhead.

We demonstrate the effectiveness of TexTok across a di-
verse set of tasks and settings. Compared to conventional
tokenizers without text conditioning, TexTok achieves sub-
stantial gains in reconstruction quality, with average recon-
struction FID improvements of 29.2% and 48.1% on Im-
ageNet 256×256 and 512×512 resolutions, respectively.
These enhancements in tokenization lead to consistent
boosts in generation performance, with average improve-
ments of 16.3% and 34.3% in generation FID for the two
resolutions. By simply replacing the tokenizer in Diffu-
sion Transformer (DiT) with TexTok, our system achieves a
93.5× inference speedup while still outperforming the orig-
inal DiT using only 32 tokens on ImageNet 512×512. Our

best TexTok variant with a vanilla DiT generator achieves
state-of-the-art FID scores of 1.46 and 1.62 on ImageNet
256×256 and 512×512 respectively.

We further demonstrate that incorporating text during
the tokenization stage significantly enhances text-to-image
generation, achieving 2.82 FID and 29.23 CLIP score on
ImageNet 256×256. Since text captions are inherently
available for this task, TexTok boosts performance without
adding any extra annotation overhead.

2. Related Work
Image tokenization. Image tokenizers build a bidirec-
tional mapping between high-resolution pixels and a low-
dimensional latent space, significantly improving the learn-
ing efficiency of downstream tasks, such as image gen-
eration [4, 11, 26, 49], and understanding [47, 49]. Im-
age tokenizers are usually formulated as an AutoEncoder
(AE) [1] framework with an optional quantizer [45] and po-
tentially in a variational [23] setup. These AutoEncoders
are trained to minimize the discrepancy between the out-
put and input images, measured by pixel-space distances,
latent-space distances [52], or jointly trained discrimina-
tors [11]. Architectural variants for the encoder and decoder
include ResNet [15] and vision transformers [10]. Spatial
correspondence has been a common property of modern to-
kenizer designs, where one token largely refers to a square
neighborhood of pixels. Recently, there has also been de-
velopment of transformer-based models producing global
tokens as a more compact representation [50]. In this work,
we follow this paradigm to tokenize an image into a set of
global tokens to flexibly control token budgets. However,
unlike prior work, we are the first to propose to condition
the tokenization process on image captions, which greatly
improves the reconstruction quality and compression rate.

Image generation. Generative learning of pixels has been
explored under adversarial [3, 40], autoregressive [6], and
diffusion [9, 18, 22] setups. For higher resolutions, genera-
tive learning in compressed latent spaces has become pop-
ular given its efficiency advantages. Among them, autore-
gressive [11, 26] and masked prediction [4, 49] models of-
ten operate in discrete token spaces following the practice
of GPT [34] and BERT [8] in language modeling. Recent
variants [28] could also use continuous latent spaces, akin
to those used in latent diffusion models (LDMs) [37]. For
LDMs, the architecture has evolved from convolution-based
U-Net [38] to transformer-based DiT [32]. In this paper, we
focus on diffusion-based image generation with DiT archi-
tecture, leveraging the flexible token lengths of TexTok.

Leveraging external semantic information in image gen-
eration and tokenization. Many recent studies start to
leverage external semantic information, such as image rep-
resentations and semantic maps, to improve image genera-
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tion [27, 33, 51]. Unlike these methods, which use exter-
nal semantics to aid the generation process, our approach
focuses on enhancing the tokenization process through con-
ditioning on text semantics. Some recent efforts [29, 30,
48, 53] also consider aligning image tokens with text se-
mantics in image tokenization to improve multimodal un-
derstanding. They either directly map images to text tokens
in a frozen LLM codebook [30, 48, 53] or align the fea-
tures of image tokens with text features [29], to produce se-
mantically meaningful tokens. However, by enforcing strict
image-text alignments, these works suffer from limited im-
age reconstruction quality due to the inherent divergence
between vision and language representations, resulting in
undesirable image generation quality. In contrast, our work
takes a complementary approach. We leverage text as exter-
nal semantic conditioning, significantly boosting the image
reconstruction and generation performance.

3. Method
3.1. Preliminary
Based on the format of latent representation, image tokeniz-
ers can be broadly classified into: 1) Vector-Quantized (VQ)
Tokenizers, such as VQ-VAE [45] and VQGAN [11], which
represent images using a set of discrete tokens, and 2) Con-
tinuous Latent Tokenizers [37] which use a variational au-
toencoder (VAE) [23] to embed images into a continuous
latent space. In this work, we focus primarily on contin-
uous latent tokenizers. As shown in Appendix A, TexTok
also works well on VQ tokenizers.

The standard continuous latent tokenizer typically con-
sists of an encoder (tokenizer) E and a decoder (detok-
enizer) D. Given an image I ∈ RH×W×3, the encoder E
compresses it into a 2D latent space Z = E(I) ∈ Rh×w×d,
where h = H

f , w = W
f , and f is the spatial downsam-

pling factor. Each latent embedding z ∈ Rd is treated as
a continuous token, with the image represented by a total
of hw tokens. For decoding, these embeddings Z are fed
into the decoder D to reconstruct the image Î = D(Z). Re-
cently, 1D tokenizers [50] were introduced to allow flexible
token budgets for image representation, directly compress-
ing I into 1D latent embeddings Z1D = E(I) ∈ RN×d with
N tokens. Reconstruction, perceptual [52], and GAN [11]
losses are applied to train the tokenizer by minimizing the
distance between I and Î.

In this work, we adopt the 1D tokenizer paradigm to
allow more flexible compression rates, demonstrating Tex-
Tok’s efficacy and efficiency across varying token budgets.

3.2. TexTok: Text-Conditioned Image Tokenization
We introduce Text-Conditioned Image Tokenization (Tex-
Tok), a simple yet effective tokenization framework. Unlike
existing methods that compress all visual information into
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Caption: A playful Pembroke Welsh 
Corgi trots through a sunlit field, 
its reddish-brown coat gleaming. 
The dog's short legs, long body, 
and perky ears create a distinctive 
silhouette. Its fluffy tail curls 
up in a cheerful plume.
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Figure 2. TexTok architecture. During training, a frozen text
encoder (e.g., T5 [35]) extracts text embeddings (tokens) from the
given image caption. The image patches, learnable image tokens,
and text tokens are fed into the tokenizer (a ViT [10]) to produce
the image tokens. During detokenization, the image tokens are
concatenated with the same text tokens fed to the tokenizer and
learnable patch tokens to reconstruct the image. For generation,
only image tokens need to be generated.

latent tokens, we use text captions to represent high-level
semantics and guide the tokenization process.

Tokenization stage. Given an image caption, we use a
frozen T5 [35] text encoder to extract text embeddings.
These embeddings are injected into both the tokenizer and
detokenizer to providing semantic guidance throughout the
tokenization process.

As shown in Figure 2, TexTok adopts a Vision Trans-
former (ViT) backbone for both the encoder (tokenizer) E
and the decoder (detokenizer) D to enable flexible con-
trol of token numbers. The input to the tokenizer is a
concatenation of three components: 1) image patch tokens
P ∈ Rhw×D from patchifying and flattening the input im-
age with a projection layer, where h = H

s , w = W
s , and s

is the patch size, 2) N randomly-initialized learnable image
token L ∈ RN×D, where N is the number of output image
tokens, and 3) linearly projected text tokens, T ∈ RNt×D,
derived from the text embeddings, where Nt is the number
of text tokens. In the tokenizer’s output, only the learned
image tokens are retained and linearly projected to produce
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the output image tokens Z ∈ RN×d.
The detokenizer also takes three concatenated inputs: 1)

hw learnable patch tokens P′ ∈ Rhw×D, 2) linearly pro-
jected image tokens Z′ ∈ RN×D from the input image to-
kens, and 3) linearly projected text tokens T′ ∈ RNt×D that
come from the same text tokens fed to the tokenizer. In the
detokenizer’s output, only the learned image patch tokens
are retained, unpatchified, and projected to reconstruct the
image patches.

We train the tokenizer and detokenizer using the combi-
nation of ℓ2 reconstruction, GAN, perceptual, and LeCAM
regularization [44] losses, following [49].

By directly injecting text tokens containing high-level
semantic information into both the tokenizer and detok-
enizer, TexTok alleviates the need for the tokenizer and
detokenizer to learn image semantics.

Generation stage. Since this work focuses on continuous
latent tokens, we use the Diffusion Transformer (DiT) [32]
as the generation framework and train the DiT on top of
the latent tokens produced by TexTok. Note that only latent
image tokens need to be generated in the generation stage,
while the text tokens will be provided in detokenization.

DiT is trained to model the distribution of TexTok latent
tokens, conditioned either on a class category (for class-
conditional generation) or on the text embeddings (for text-
to-image generation).

During inference, the process differs by the generation
task. For text-to-image generation, we use the provided
captions for both generation and detokenization, feeding
the text embeddings and generated latent image tokens into
the detokenizer to produce the output image. For class-
conditional generation, DiT generates latent tokens based
on the specified class; we then sample an unseen caption
for that class from a pre-generated list, and inject it into the
detokenizer along with the generated latent tokens to pro-
duce the final image. Notably, only the class category is
used during generation, in line with standard practice.

4. Experiments
4.1. Implementation Details
The implementation details of TexTok are described below.
Please refer to Appendix C for further details.

Text caption acquision. Text captions are readily avail-
able for text-to-image generation tasks, where they can be
directly used in the tokenization process. For other genera-
tion tasks without captions, such as our use of ImageNet [7],
we employ a vision language model (VLM), Gemini v1.5
Flash [42], to generate detailed captions offline. For the
training set, we caption each given image. For the evalu-
ation set, in class-conditional generation, we pre-generate
unseen captions for each category using a sampled caption
list of this category from the training set as reference. By

default, each image is captioned with up to 75 words, which
are encoded into a 128-token sequence using the T5 text en-
coder [35] (XL for ImageNet-256 and XXL for ImageNet-
512 experiments). Please see Appendix D for more details.

Tokenization & generation. By default, all TexTok ex-
periments employ ViT-Base for both tokenizer and detok-
enizer, each comprising 12 layers with a hidden size of 768
and 12 attention heads (∼176M parameters). For the GAN
loss, we follow [47] and use the StyleGAN discrimina-
tor [19](∼24M parameters). Unless otherwise specified, the
image token channel dimension in TexTok is set to d = 8.

We use Diffusion Transformer (DiT) [32] as our default
generator due to its effectiveness and flexibility of handling
1D tokens. We use a DiT patch size of 1 for all TexTok gen-
eration experiments, and by default, we train DiT for 350
epochs. Specifically, for class-conditional generation, we
use the original DiT architecture. For text-to-image genera-
tion, referring to [5], we modify DiT architecture by adding
an additional multi-head cross-attention layer following the
multi-head self-attention layer in the DiT block to accept
text embeddings. We refer to this architecture as “DiT-T2I”.

4.2. Experiment Setup
Model variants. We compare two setups to demonstrate
the effectiveness of using text conditioning: TexTok incor-
porates text tokens in both the tokenizer and detokenizer,
corresponding to the architecture shown in Figure 2. In con-
trast, Baseline (w/o text) does not condition on text tokens
in both the tokenizer and detokenizer. For each image, we
tokenize it into “#tokens” number of latent tokens and train
the generator to generate these tokens.

Evaluation protocol. To evaluate reconstruction perfor-
mance of the tokenizer, we report reconstruction Frechet in-
ception distance (rFID) [17], reconstruction inception score
(rIS) [39], peak signal-to-noise ratio (PSNR), structural
similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) [52] on 50K samples from
ImageNet training set. To evaluate class-conditional gener-
ation performance, we report generation Frechet inception
distance (gFID) [17], generation inception score (gIS) [39],
precision and recall [24] following the evaluation proto-
col and suite provided by ADM [9]. To evaluate text-to-
image generation performance, we report FID and CLIP
Score [16] on 50K samples from ImageNet validation set.

4.3. Effectiveness of Text Conditioning
We begin by evaluating the effectiveness of text condition-
ing in image tokenization and generation. We compare our
method, TexTok, with a Baseline (w/o text) that uses the
same settings but excludes text conditioning, on ImageNet
at resolutions of 256×256 and 512×512. We experiment
with varying numbers of tokens, presenting the quantitative
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Reconstruction Generation

tokenizer # tokens rFID ↓ rIS↑ PSNR↑ SSIM ↑ LPIPS↓ gFID ↓ gIS ↑

(a) ImageNet 256×256

SD-VAE-f8 [37] 1024 (d=4) 1.20† - - - - 9.62 121.5

Baseline-32 (w/o text) 32 (d=8)
3.82 117.1 17.67 0.4281 0.3270 4.97 170.3

TexTok-32 (w/ text) 2.40 156.2 18.32 0.4463 0.2884 3.55 205.3

Baseline-64 (w/o text) 64 (d=8)
2.04 147.2 19.52 0.4801 0.2343 3.30 188.9

TexTok-64 (w/ text) 1.53 169.8 20.10 0.4971 0.2126 2.88 209.2

Baseline-128 (w/o text) 128 (d=8)
1.49 160.5 20.51 0.5102 0.1913 3.19 190.1

TexTok-128 (w/ text) 1.04 183.3 22.05 0.5618 0.1499 2.75 210.9

Baseline-256 (w/o text) 256 (d=8)
0.91 178.3 23.05 0.5950 0.1225 2.91 197.2

TexTok-256 (w/ text) 0.69 192.6 24.38 0.6454 0.0998 2.68 219.6

(b) ImageNet 512×512

SD-VAE-f8 [37] 4096 (d=4) - - - - - 12.03 105.3

Baseline-32 (w/o text) 32 (d=8)
7.68 82.6 16.21 0.5046 0.4771 9.22 119.0

TexTok-32 (w/ text) 2.33 161.5 18.55 0.5488 0.3772 3.61 215.6

Baseline-64 (w/o text) 64 (d=8)
4.81 104.0 17.81 0.5341 0.4029 7.26 141.8

TexTok-64 (w/ text) 1.52 171.7 20.19 0.5786 0.3093 3.30 210.2

Baseline-128 (w/o text) 128 (d=8)
1.45 163.2 21.59 0.6086 0.2624 3.64 191.1

TexTok-128 (w/ text) 0.97 185.5 22.27 0.6230 0.2365 3.16 210.7

Baseline-256 (w/o text) 256 (d=8)
1.07 174.9 23.15 0.6410 0.2180 3.14 204.2

TexTok-256 (w/ text) 0.73 192.0 24.45 0.6682 0.1875 2.87 218.5

Table 1. Image reconstruction and generation performance comparison of TexTok with
Baseline (w/o text) on ImageNet 256×256 and 512×512. TexTok consistently delivers sig-
nificant improvements in image reconstruction and generation performance, with more pro-
nounced gains as the number of tokens decreases. Class-conditional generation results are
reported without classifier-free guidance (Baseline and TexTok use DiT-L as the generator,
while SD-VAE uses DiT-XL/2). †: number taken from [28].

37.2%

25.0%

30.2%

24.2%

(a) ImageNet 256×256

69.7%

68.4%

30.2%
24.2%

(b) ImageNet 512×512

Figure 3. Reconstruction FID of TexTok v.s. Baseline
(w/o text) on ImageNet 256×256 and 512×512 for differ-
ent number of image tokens. With text conditioning, Tex-
Tok can use half, 1/4 of the token number (2×, 4× com-
pression rates) to achieve similar rFID compared to Base-
line (w/o text) on ImageNet-256 and -512 respectively.

results in Table 1 and visualizing the relative improvement
in rFID in Figure 3.

On ImageNet 256×256, across all settings, TexTok sig-
nificantly enhances both reconstruction and generation per-
formance. Specifically, TexTok achieves 37.2%, 25.0%,
30.2%, 24.2% improvements in rFID using 32, 64, 128,
and 256 tokens respectively, which consistently translates
to 28.6%, 12.7%, 13.8%, and 7.9% improvements in gFID.
Notably, the fewer tokens used, the higher the gains from
text conditioning. As shown in Figure 2a, TexTok can
achieve similar rFID using half the number of tokens com-
pared to the baseline (2× compression rate). We note that
our Baseline (w/o text) is highly competitive. As shown in
Table 1(a), with 8× fewer number of tokens, Baseline (w/o
text) outperforms the widely used SD-VAE tokenizer [37]
in both reconstruction and generation.

On higher resolution images, i.e., ImageNet 512×512,
TexTok exhibits stronger efficacy. As shown in Table 1 and
Figure 2b, TexTok achieves more significant improvement
in the reconstruction quality and enables higher compres-
sion rates under this high-resolution setting. Specficially, it
achieves 69.7%, 68.4%, 30.2%, and 24.2% improvements
in rFID and 60.8%, 54.5%, 13.2% and 8.6% improvements
in gFID, across 32, 64, 128 and 256 tokens respectively.
As shown in Figure 2b, TexTok achieves similar rFID to
the baseline using only 1/4 of the token number (4× com-
pression rate).

Finally, the qualitative results in Figure 1 across varying
token counts show that TexTok significantly enhances re-

construction quality, particularly for text within images and
specific visual details, such as car wheels and beaks. This
indicates that TexTok encodes finer visual details using the
same number of tokens.

4.4. System-level Image Generation Comparison
We experiment with image generation using TexTok as the
tokenizer and adopt a vanilla DiT image generator [32] (de-
noted by TexTok + DiT), to study how this system performs
against other leading image generation systems. We evalu-
ate on class-conditional ImageNet 256×256 and 512×512
settings with varying number of tokens (compression rates).

On ImageNet 256×256 class-conditional image gener-
ation, as shown in Table 2(a), our TexTok-256 + DiT-XL
achieves an FID of 1.46, surpassing previous state-of-the-
art systems, even though using a simpler, vanilla DiT as the
image generator. As we reduce the number of tokens and
increase image compression rate, TexTok + DiT maintains
generation performance. Notably, TexTok-64 + DiT-XL,
where the diffusion transformer generates only 64 image
tokens, outperforms the original DiT-XL/2, which uses 256
tokens after patchification in the diffusion transformer.

On higher resolution images, i.e., ImageNet 512×512, as
shown in Table 2(b), TexTok-256 + DiT-XL also achieves
state-of-the-art 1.62 gFID compared with previous meth-
ods, using only 256 image tokens. On the most compressed
side, TexTok-32 + DiT-XL only uses 32 tokens yet achieves
better generation performance than the original DiT that
uses 1024 tokens after patchification.
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(a) ImageNet 256×256 (b) ImageNet 512×512

Model #Params (G) #Params (T) FID↓ IS↑ Precision↑ Recall↑ #tokens FID↓ IS↑ Precision↑ Recall↑ #tokens

GAN
StyleGAN-XL [40] 168M - 2.30 265.1 0.78 0.53 - 2.41 267.8 0.77 0.52 -

pixel diffusion
ADM-U [9] 731M - 3.94 215.8 0.83 0.53 - 3.85 221.7 0.84 0.53 -
simple diffusion [18] 2B - 2.44 256.3 - - - 3.02 248.7 - - -
VDM++ [22] 2B - 2.12 267.7 - - - 2.65 278.1 - - -

masked image modeling
MaskGIT [4] 227M 66M 6.18 182.1 0.80 0.51 256 7.32 156.0 0.78 0.50 1024
RCG [27] 512M 66M 2.25 300.7 - - 256 - - - - -
TiTok-L-32 [50] 177M 644M 2.77 - - - 32 - - - - -
TiTok-64 (B/L) [50] 177M 202M / 644M 2.48 - - - 64 2.74 - - - 64
TiTok-128 (S/B) [50] 287M / 177M 72M / 202M 1.97 - - - 128 2.13 - - - 128
MAGVIT-v2 [49] 307M 116M 1.78 319.4 - - 256 1.91 324.3 - - 1024
MaskBit [46] 305M 54M 1.52 328.6 - - 256 - - - - -

autoregressive
VQGAN [11] 1.4B 23M 15.78 78.3 - - 256 - - - - -
ViT-VQGAN [47] 1.7B 64M 4.17 175.1 - - 1024 - - - - -
LlamaGen-3B [41] 3.1B 72M 2.18 263.3 0.81 0.58 576 - - - - -
VAR (d30/d36-s) [43] 2B / 2.4B 109M 1.92 323.1 0.82 0.59 256 2.63 303.2 - - 1024
MAR (H/L) [28] 943M / 481M 66M 1.55 303.7 0.81 0.62 256 (d=16) 1.73 279.9 - - 1024 (d=16)

latent diffusion
LDM-4 [37] 400M 55M 3.60 247.7 0.87 0.48 4096 (d=3) - - - - -
U-ViT-H [2] 501M 84M 2.29 263.9 0.82 0.57 1024∗ (d=4) 4.05 263.8 0.84 0.48 4096∗ (d=4)

DiT-XL/2 [32] 675M 84M 2.27 278.2 0.83 0.57 1024∗ (d=4) 3.04 240.8 0.84 0.54 4096∗ (d=4)

DiffiT [14] - - 1.73 276.5 0.80 0.62 - 2.67 252.1 0.83 0.55 -
MDTv2-XL/2 [12] 676M 84M 1.58 314.7 0.79 0.65 1024∗ (d=4) - - - - -
REPA + SiT-XL/2 [51] 675M 84M 1.80 284.0 0.81 0.61 1024∗ (d=4) - - - - -
EDM2-XXL [21] 1.5B 84M - - - - - 1.81 - - - 4096 (d=4)

Ours
TexTok-32 + DiT-XL 675M 176M 2.75 294.6 0.83 0.56 32 (d=8) 2.74 303.2 0.83 0.56 32 (d=8)

TexTok-64 + DiT-XL 675M 176M 2.06 290.0 0.81 0.60 64 (d=8) 1.99 301.9 0.82 0.6 64 (d=8)

TexTok-128 + DiT-XL 675M 176M 1.66 294.4 0.80 0.61 128 (d=8) 1.80 305.4 0.81 0.63 128 (d=8)

TexTok-256 + DiT-XL 675M 176M 1.46 303.1 0.79 0.64 256 (d=8) 1.62 313.8 0.80 0.64 256 (d=8)

Table 2. System-level comparison of class-conditional image generation on ImageNet 256×256 and 512×512. TexTok-256 + DiT-XL achieves state-
of-the-art performance on both image resolutions. All entries use classifier-free guidance if applicable. Note that our method is orthogonal to both latent
generation models and classifier-free guidance techniques, more advanced latent generators [31] and guidance mechanisms [20, 25] can also be applied to
TexTok to further improve our performance. “#Params (G)”: the number of generator’s parameters. “#Params (T)”: the number of tokenizer’s parameters.
“#tokens”: the number of latent image tokens used during generation. “/” in the first three columns indicates different configurations used at different image
resolutions respectively. ∗ denotes the number of tokens before patchification.

14.3x faster
34.0% FID 

improvement

(a) ImageNet 256×256

93.5x faster

46.7% FID
improvement

(b) ImageNet 512×512

Figure 4. Speed/performance tradeoff of TexTok + DiT-XL compared to the original DiT-XL/2 on
ImageNet 256×256 and 512×512. TexTok achieves the same generation performance 14.3×/93.5×
faster, or gains 34.0%/46.7% FID improvements using similar inference time. As image resolution
scales up, this improvement is more pronounced. Each curve is obtained by using different sampling
steps (50, 75, 150, 250). The inference time includes latent token generation, T5 text embedding
extraction (for TexTok), and detokenization, measured on a single TPUv5e chip with a batch size of 32.

Tokenizer FID↓ CLIP Score↑

Baseline-32 5.09 28.08
TexTok-32 4.36 28.73

Baseline-64 3.74 28.49
TexTok-64 3.34 28.92

Baseline-128 3.01 28.95
TexTok-128 2.82 29.23

Table 3. Text-to-image generation per-
formance comparison of TexTok with Base-
line (w/o text) using DiT-XL-T2I on ImageNet
256×256. TexTok achieves better FID and CLIP
scores on all 32/64/128-token settings, indicat-
ing that TexTok produces image tokens that im-
prove text-to-image generation results using the
exactly same image generation setups. Classifier-
free guidance is applied.
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32 64 128

Caption (Prompt): A vibrant scarlet macaw, with a 
striking black and white beak, perches on a 
weathered, grey wooden branch against a backdrop of 
lush green foliage. Its feathers display a gradient 
of red, with hints of blue and green near its tail, 
creating a textured and iridescent effect. The 
macaw's large size and bright colors make it stand 
out in its natural-looking environment, appearing 
alert and possibly watchful of its surroundings.
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Caption (Prompt): A towering, multi-hued cliff 
of red, tan, and gray rock faces a serene, 
turquoise ocean under a brilliant blue sky.  The 
cliff's rough, layered texture contrasts with the 
smooth, white sand beach below, where gentle 
waves lap against dark, rocky outcrops. The 
expansive beach stretches alongside the cliff, 
forming a picturesque coastal scene under the 
vast, clear sky.

Number of Tokens

Figure 5. Qualitative text-to-image generation results of TexTok compared with Baseline (w/o text) on ImageNet 256×256. TexTok generates higher-
quality images that better follow the prompts compared to Baseline (w/o text). It even captures some fine-grained visual details presented in the reference
images. The first row shows reference images from the ImageNet validation set along with their captions. Both TexTok and Baseline (w/o text) use the same
generation settings and are conditioned on the same captions.

Figure 6. Qualitative class-conditional image generation results on
ImageNet 512×512. TexTok generates semantically meaningful images
with delicate fine-grained details. Results are generated with our class-
conditional TexTok-256 + DiT-XL model.

Our system not only achieves superior generation per-
formance, but is also very efficient given its great compres-
sion rates. We plot in Figure 4a the speed v.s. performance
tradeoffs of TexTok + DiT-XL compared to the original DiT
on ImageNet 256×256. Simply replacing the tokenizer in
DiT with TexTok can achieve a 14.3× speedup with bet-
ter FID, or 34.3% FID improvement with similar infer-
ence time. This verifies the effectiveness and efficiency of
TexTok. This improved speed/performance tradeoff is fur-
ther reflected on ImageNet 512×512 (Figure 4b), where we
demonstrate that simply replacing the tokenizer in DiT with

TexTok variants, it achieves a 93.5× speedup with better
FID using 32 tokens, or 46.7% FID improvement with 3.7×
less inference time using 256 tokens. This shows that as im-
age resolution increases, providing the tokenization process
with explicit text semantics yields greater improvements in
generation performance and inference speedup.

Qualitative samples in Figure 6 demonstrate that TexTok
enables class-conditional generation of semantically rich
images with fine-grained details. More qualitative samples
can be found in Appendix E.

4.5. Text-to-Image Generation

We now demonstrate TexTok’s superiority on text-to-image
generation. We use the same VLM-generated captions on
ImageNet 256×256 with our modified DiT-T2I architecture
(detailed in Section 4.1). During training, the tokenizer and
generator share the same text embeddings extracted by the
T5 text encoder. During inference, we generate images con-
dition on captions from ImageNet validation set. We calcu-
late FID between these generated images and the original
ImageNet validation set. As shown in Table 3, compared
with Baseline (w/o text), TexTok consistently and signif-
icantly improves text-to-image generation, across varying
numbers of image tokens. Since text captions are already
available for text-to-image tasks and the tokenizer can di-
rectly use the same text embeddings used in the generator,
TexTok’s performance boost comes at no additional cost for
captioning and text embedding extraction.
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Text conditioning rFID↓ PSNR↑

none 1.49 20.51
class category 1.14 21.56

class text 1.15 21.58
25-word caption 1.08 21.63
75-word caption 1.04 22.05

(a) Text conditioning. More descriptive text cap-
tions yield better results.

T5 model size rFID↓ PSNR↑

Small 1.06 22.01
XL 1.04 22.05

XXL 0.99 22.28

(b) T5 text encoder size. Larger text encoder model
size is better.

Conditioning architecture rFID↓ PSNR↑

none 1.49 20.51
cross-attention layer 1.31 21.42

in-context conditioning 1.04 22.05

(c) Conditioning architecture. In-context con-
ditioning in the self-attention layers is better than
adding a cross-attention layer in each ViT block.

Conditioning location rFID↓ PSNR↑

none 1.49 20.51
tokenizer only 1.38 21.29

tokenizer & detokenizer 1.04 22.05

(d) Conditioning location. Injecting text conditioning to both
tokenizer and detokenizer obtains the best results.

Model size Layers Hidden size Heads #Params rFID↓ PSNR↑

TexTok-Small 8+8 512 8 54M 1.35 21.43
TexTok-Base 12+12 768 12 176M 1.04 22.05
TexTok-Large 24+24 1024 16 612M 1.03 22.09

(e) TexTok model size. TexTok-Base has the best performance/efficiency tradeoff.

Table 4. Ablation studies. We ablate key design choices affecting TexTok’s reconstruction performance on ImageNet 256×256. Default setting: TexTok-
Base-128, 75-word captions, T5-XL text encoder, with in-context conditioning applied to both tokenizer and detokenizer.

Qualitative samples in Figure 5 show that TexTok’s gen-
eration is more realistic and follows the prompts better.
More qualitative samples can be found in Appendix E.

4.6. Tokenization/Generation Inference Efficiency
We have demonstrated that TexTok significantly enhances
reconstruction, class-conditional generation, and text-to-
image generation quality. In text-to-image tasks, our text
conditioning incurs no additional cost for text embedding
extraction, as text embeddings are also used as conditioning
in generation. For other tasks, it introduces minimal compu-
tational overhead to generate text embeddings and use them
during tokenization. As shown in Table 5, this overhead is
negligible (∼0.01 s/img). More importantly, the resulting
reduction in generation computational cost compensates for
this small increase, as evidenced by the comparison of com-
putational costs between SD-VAE, Baseline (w/o text) and
TexTok in Table 5 and the speedup results in Figure 4.

4.7. Ablation Studies
We ablate TexTok to analyze the contribution of our design
choices. We use the following default settings: TexTok-
128, Base model size, and T5-XL text encoder. Captions
are 75 words long and applied to both the tokenizer and
detokenizer using in-context conditioning.
Amount of text conditioning. In Table 4a, we ablate var-
ious types of class/text conditioning: (1) a learnable class
embedding based on the class category, (2) text embeddings
from a short text template with class names, (3) text embed-
dings from 25-word captions, and (4) (ours) text embed-
dings from 75-word captions. Our results show that more
descriptive text conditioning improves performance.
T5 text encoder size. In Table 4b, we study the effect of
the text encoder model size. We find that a larger encoder
leads to better reconstruction quality. We use T5-XL as the
default setting on ImageNet-256 for its efficiency.
Conditioning architecture. Another design choice is
how we inject text into the tokenizer and detokenizer. In Ta-
ble 4c, we find that in-context conditioning (concatenating

ImageNet 256×256 ImageNet 512×512

tokenizer Tokenization Generation Tokenization Generation

SD-VAE-f8 [37] 0.047 0.289 0.182 1.078

Baseline-32 0.051 0.030 0.169 0.031
TexTok-32 0.054 0.031 0.172 0.033

Baseline-64 0.051 0.066 0.171 0.067
TexTok-64 0.054 0.067 0.174 0.072

Baseline-128 0.052 0.110 0.175 0.109
TexTok-128 0.054 0.111 0.178 0.113

Baseline-256 0.052 0.289 0.181 0.282
TexTok-256 0.055 0.292 0.183 0.295

Table 5. Tokenization & generation inference time. We evaluate the
tokenization and generation inference time of different tokenizers with a
DiT-L generator. The tokenzation inference time includes T5 text embed-
ding extraction (for TexTok), tokenization, and detokenization. The gen-
eration inference time includes latent token generation, T5 text embedding
extraction (for TexTok), and detokenization. Both are measured on a single
TPUv6e chip with a batch size of 32 (unit: second per image).

text embeddings with other input tokens and feeding them
into the self-attention layers) outperforms adding an addi-
tional multi-head cross-attention layer in each ViT block.
Conditioning location. In Table 4d, we ablate the loca-
tions for text conditioning injection and find that applying it
to both the tokenizer and detokenizer yields the best results.
TexTok model size. In Table 4e, we investigate the influ-
ence of TexTok model size. We find using TexTok-Base
performs much better than TexTok-Small, but increasing
the model size further provides marginal improvements.
Hence, we choose TexTok-Base as our default model size.

5. Conclusion
We present Text-Conditioned Image Tokenization (TexTok),
a new framework that leverages captions to guide the to-
kenizer in learning image semantics, allowing more learn-
ing capacity and token space to be allocated to capture vi-
sual details. TexTok significantly improves both reconstruc-
tion and generation performance, achieving state-of-the-art
results in conditional and text-to-image generation on Im-
ageNet with computational efficiency. By mitigating the
trade-off between reconstruction quality and compression
rate, TexTok enables more efficient image generation.
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Photorealistic video generation with diffusion models. In
ECCV, 2024. 1

[14] Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and
Arash Vahdat. Diffit: Diffusion vision transformers for im-
age generation. In ECCV, 2024. 6

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2

[16] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. CLIPScore: A reference-free evaluation
metric for image captioning. In EMNLP, 2021. 4

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs trained by
a two time-scale update rule converge to a local nash equi-
librium. In NeurIPS, 2017. 4

[18] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. sim-
ple diffusion: End-to-end diffusion for high resolution im-
ages. In ICML, 2023. 2, 6

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, 2019. 4

[20] Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko
Lehtinen, Timo Aila, and Samuli Laine. Guiding a diffusion
model with a bad version of itself. In NeurIPS, 2024. 6

[21] Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten,
Timo Aila, and Samuli Laine. Analyzing and improving the
training dynamics of diffusion models. In CVPR, 2024. 6

[22] Diederik Kingma and Ruiqi Gao. Understanding diffusion
objectives as the ELBO with simple data augmentation. In
NeurIPS, 2024. 2, 6

[23] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. In ICLR, 2014. 2, 3

[24] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved precision and recall met-
ric for assessing generative models. In NeurIPS, 2019. 4

[25] Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli
Laine, Timo Aila, and Jaakko Lehtinen. Applying guidance
in a limited interval improves sample and distribution quality
in diffusion models. In NeurIPS, 2024. 6

[26] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive image generation using
residual quantization. In CVPR, 2022. 2

[27] Tianhong Li, Dina Katabi, and Kaiming He. Self-
conditioned image generation via generating representations.
In NeurIPS, 2024. 3, 6

[28] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and
Kaiming He. Autoregressive image generation without vec-
tor quantization. arXiv:2406.11838, 2024. 2, 5, 6

[29] Guotao Liang, Baoquan Zhang, Yaowei Wang, Xutao Li,
Yunming Ye, Huaibin Wang, Chuyao Luo, Kola Ye, et al.
Lg-vq: Language-guided codebook learning. In NeurIPS,
2024. 3, 2

[30] Hao Liu, Wilson Yan, and Pieter Abbeel. Language quan-
tized autoencoders: Towards unsupervised text-image align-
ment. In NeurIPS, 2024. 3, 2

[31] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M
Boffi, Eric Vanden-Eijnden, and Saining Xie. SiT: Explor-
ing flow and diffusion-based generative models with scalable
interpolant transformers. In ECCV, 2024. 6

[32] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In ICCV, 2023. 2, 4, 5, 6, 1

15721



[33] Pablo Pernias, Dominic Rampas, Mats L Richter, Christo-
pher J Pal, and Marc Aubreville. Würstchen: An efficient
architecture for large-scale text-to-image diffusion models.
In ICLR, 2024. 3

[34] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018. 2

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. In JMLR, 2020. 3, 4

[36] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with VQ-VAE-2. In
NeurIPS, 2019. 2

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 5,
6, 8

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In MICCAI, 2015. 2

[39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. In NeurIPS, 2016. 4

[40] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-
XL: Scaling StyleGAN to large diverse datasets. In SIG-
GRAPH, 2022. 2, 6

[41] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue
Peng, Ping Luo, and Zehuan Yuan. Autoregressive model
beats diffusion: LLaMA for scalable image generation.
arXiv:2406.06525, 2024. 6

[42] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell,
Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent,
Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of con-
text. arXiv:2403.05530, 2024. 4

[43] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. In NeurIPS, 2024. 2, 6

[44] Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and
Weilong Yang. Regularizing generative adversarial networks
under limited data. In CVPR, 2021. 4

[45] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. In NeurIPS, 2017. 2, 3

[46] Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xi-
aohui Shen, Daniel Cremers, and Liang-Chieh Chen.
Maskbit: Embedding-free image generation via bit tokens.
arXiv:2409.16211, 2024. 6

[47] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang,
James Qin, Alexander Ku, Yuanzhong Xu, Jason Baldridge,
and Yonghui Wu. Vector-quantized image modeling with
improved VQGAN. arXiv:2110.04627, 2021. 2, 4, 6

[48] Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolf-
gang Macherey, Yanping Huang, David Ross, Irfan Essa,
Yonatan Bisk, Ming-Hsuan Yang, et al. SPAE: Semantic
pyramid autoencoder for multimodal generation with frozen
llms. In NeurIPS, 2024. 3, 2

[49] Lijun Yu, Jose Lezama, Nitesh Bharadwaj Gundavarapu,
Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Agrim Gupta, Xiuye Gu, Alexander G Hauptmann, Boqing
Gong, Ming-Hsuan Yang, Irfan Essa, David A Ross, and Lu
Jiang. Language model beats diffusion - tokenizer is key to
visual generation. In ICLR, 2024. 2, 4, 6, 1

[50] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen,
Daniel Cremers, and Liang-Chieh Chen. An image is worth
32 tokens for reconstruction and generation. In NeurIPS,
2024. 2, 3, 6

[51] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon
Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie.
Representation alignment for generation: Training diffusion
transformers is easier than you think. arXiv:2410.06940,
2024. 3, 6

[52] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 2, 3, 4

[53] Lei Zhu, Fangyun Wei, and Yanye Lu. Beyond text: Frozen
large language models in visual signal comprehension. In
CVPR, 2024. 3, 2

15722


	Introduction
	Related Work
	Method
	Preliminary
	TexTok: Text-Conditioned Image Tokenization

	Experiments
	Implementation Details
	Experiment Setup
	Effectiveness of Text Conditioning
	System-level Image Generation Comparison
	Text-to-Image Generation
	Tokenization/Generation Inference Efficiency
	Ablation Studies

	Conclusion
	Effectiveness of TexTok on Discrete Tokens
	Additional Training Analysis
	Additional Implementation Details
	ImageNet Captioning Details
	Additional Qualitative Results
	Additional Discussion on Related Work



