
Closed-Loop Supervised Fine-Tuning of Tokenized Traffic Models

Zhejun Zhang1 Peter Karkus1 Maximilian Igl1
Wenhao Ding1 Yuxiao Chen1 Boris Ivanovic1 Marco Pavone1,2

1NVIDIA Research 2Stanford University
{zhejunz, pkarkus, migl, wenhaod, yuxiaoc, bivanovic, mpavone}@nvidia.com

pavone@stanford.edu

Abstract

Traffic simulation aims to learn a policy for traffic agents
that, when unrolled in closed-loop, faithfully recovers the
joint distribution of trajectories observed in the real world.
Inspired by large language models, tokenized multi-agent
policies have recently become the state-of-the-art in traf-
fic simulation. However, they are typically trained through
open-loop behavior cloning, and thus suffer from covariate
shift when executed in closed-loop during simulation. In
this work, we present Closest Among Top-K (CAT-K) roll-
outs, a simple yet effective closed-loop fine-tuning strategy
to mitigate covariate shift. CAT-K fine-tuning only requires
existing trajectory data, without reinforcement learning or
generative adversarial imitation. Concretely, CAT-K fine-
tuning enables a small 7M-parameter tokenized traffic sim-
ulation policy to outperform a 102M-parameter model from
the same model family, achieving the top spot on the Waymo
Sim Agent Challenge leaderboard at the time of submis-
sion. The code is available at https://github.com/
NVlabs/catk.

1. Introduction

Traffic modeling is a cornerstone of autonomous driving
simulation and evaluation, typically formulated as learning
a multi-agent policy that imitates the behavior of traffic par-
ticipants in the real world. Given a set of historical agent
trajectories and scene context (map, traffic light states, etc.),
the policy generates actions for all simulated agents. The
task gives rise to an imitation learning (IL) problem, with
two key challenges: multimodality and covariate shift.

Traffic agent behavior is highly multimodal, and faith-
fully recovering accurate behavior distributions is a key
challenge in the field. Inspired by large language mod-
els [2, 32], recent works introduce next-token-prediction
(NTP) models where the policy reduces to a classifier over
a discrete set of trajectory tokens, which makes it easier
to represent highly-multimodal distributions. Accordingly,

Ground-Truth

Possible
Policy Rollouts

CAT-K Rollout

Figure 1. Closest Among Top-K (CAT-K) rollouts. The key idea
of our approach is to unroll the policy during fine-tuning in a way
that visited states remain close to the GT. At each time step, CAT-
K first takes the top-K most likely action tokens according to the
policy, then chooses the one leading to the state closest to the GT.
As a result, CAT-K rollouts follow the mode of the GT (e.g., turn-
ing left), while random or top-K rollouts can lead to large devia-
tions (e.g., going straight or right). Since the policy is essentially
trained to minimize the distance between the rollout states and the
GT states, the GT-based supervision remains effective for CAT-K
rollouts, but not for random or top-K rollouts.

the Waymo Open Sim Agent Challenge (WOSAC) leader-
board [21] is heavily populated by tokenized traffic mod-
els [9, 35, 43, 47].

Covariate shift is a well-known challenge of IL arising
from the gap between open-loop training and closed-loop
deployment. When a model is trained on a fixed dataset of
expert demonstrations, it can face a distribution mismatch
between the states seen during training and those encoun-
tered during deployment, as small errors compound and
lead to unseen states where the policy performs poorly. A
classic approach to tackle this problem is Dataset Aggrega-
tion (DAgger) [27], which unrolls the policy and queries an
expert to generate new demonstrations, but querying experts
is not readily available for traffic simulation. Prior work has
proposed closed-loop training using hand-crafted recovery
controllers [1] or reinforcement learning (RL) [19, 23, 37].
However, it is inherently difficult to design rewards with
high behavioral realism or recovery controllers robust to di-
vergent modes. Consequently, such approaches are not cur-
rently competitive on WOSAC realism metrics.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5422

https://github.com/NVlabs/catk
https://github.com/NVlabs/catk

Contributions: We introduce Closest Among Top-K
(CAT-K) rollouts, a simple yet highly efficient fine-tuning
strategy to address the open-loop to closed-loop gap. The
key idea, illustrated in Fig. 1, is to unroll the multimodal
policy during training in a way that the policy-visited states
remain close to the ground-truth (GT) demonstration. CAT-
K achieves this by first finding the K most likely modes of
the policy and then choosing the mode closest to the GT.
At inference time, actions are sampled from the policy ac-
cording to the predicted likelihoods. During training, how-
ever, random sampling would lead to large deviations from
the demonstrations, making them invalid and degrading the
final policy performance. Our CAT-K rollout strategy bal-
ances being on-policy and staying close to GT demonstra-
tions, such that they remain a valid supervision signal.

Experiments on the Waymo Open Motion Dataset
(WOMD) demonstrate the efficacy of CAT-K. Notably, fine-
tuning the SMART-7M [35] next-token-prediction traffic
model enables it to outperform the 14x larger State-of-The-
Art (SoTA) SMART-102M from the same model family,
achieving the #1 spot on the public WOSAC leaderboard at
the time of submission. To further demonstrate the poten-
tial of employing CAT-K fine-tuning for different tasks and
policy representations, we apply it to an ego-motion plan-
ning task using a Gaussian Mixture Model (GMM) policy,
yielding significant gains in closed-loop behavior, reducing
collisions by 25.7% and off-road driving by 33.9%.

2. Related work

2.1. Traffic simulation

Prior work explored various architectures for traffic models,
including conditional variational autoencoders [13, 31, 36],
motion forecasting Transformers [6, 22, 30, 46], and diffu-
sion models [11, 15, 18, 26, 44, 45]. However, long-term
stability is an open challenge for these models due to co-
variate shift when transitioning from open-loop training to
closed-loop deployment. Various ways have been proposed
to mitigate covariate shift. BITS [36] and Symphony [12]
introduce hierarchy, with high-level intent and low-level be-
havior prediction. TrafficBots [40, 42] incorporates config-
urable behaviors through destination and personality. Most
diffusion models use guiding to generate rule-abiding be-
havior; however, they often struggle with computational ef-
ficiency and long horizons. The latest advances come from
NTP models, which predict the next action as a token, e.g.,
Trajeglish [24], GUMP [9], KiGRAS [43], MotionLM [28],
and SMART [35]. Notably, SMART is the current SoTA on
the WOSAC leaderboard. In addition to the strong scalabil-
ity and flexibility, NTP models also show better closed-loop
stability than regression-based models, thanks to their dis-
crete action space. However, achieving generalization and
reducing compounding errors continue to be challenges.

2.2. Data augmentation for behavior cloning

Data augmentation is a simple yet effective way to improve
the generalizability of traffic simulation models. Chauf-
feurNet [1] showed that carefully perturbing the vehicle tra-
jectory and designing a recovery trajectory could alleviate
the covariate shift suffered by behavior cloning (BC). How-
ever, this technique is difficult to apply to traffic simula-
tion with complicated scenarios, including pedestrians and
cyclists; and adding handcrafted recovery trajectories may
negatively impact behavioral realism. Recently, NTP works
such as Trajeglish [24] and SMART [35] have explored sim-
ilar ideas by using noisy tokenization to perturb trajectories
during training, but their data augmentation did not lead to
significant improvements in performance. Our method is
related to Trajeglish’s noisy tokenization, but importantly,
instead of blindly sampling tokens close to the GT without
considering the policy, our CAT-K rollout selects the token
from the most likely K tokens predicted by the policy that is
closest to the GT. It can be considered as a closed-loop vari-
ants of the “winner-takes-all” training strategy [20] widely
applied to open-loop motion prediction models [22, 29, 41].

2.3. Closed-loop fine-tuning

As mentioned above, covariate shift is a major challenge
faced by traffic simulation models, since most of them are
trained in open-loop and evaluated in closed-loop. Even
with data augmentation, the issue is not fully resolved as
the augmented noisy data does not reflect the compounded
error during closed-loop rollout. Therefore, some existing
works explored the use of closed-loop fine-tuning.

As a classic remedy for the covariate shift, DAgger has
been applied to end-to-end driving [25, 38, 39], yet its appli-
cation in traffic simulation is limited, as it requires interac-
tive demonstrations from human drivers or an expert policy.
As an expert-free variant of DAgger, Data As Demonstrator
(DAD) [34] obtains recovery actions using a pair of trajec-
tories: a forward simulation (i.e., rollout) trajectory and a
GT trajectory. At each time step, the policy is trained to
return to the GT next state from the simulated current state.
However, DAD fails when the rollout deviates from the GT
trajectory. Our CAT-K rollout directly addresses this prob-
lem, enabling the use of DAD for closed-loop fine-tuning of
traffic simulation and ego-vehicle policies.

Another popular approach is to use RL. BC is combined
with RL to improve the robustness of a policy in [19]. Yet,
it also exposes RL’s weakness in improving realism as it
is difficult to handcraft a reward that promotes realism. Its
follow-up work [23] learns a joint traffic model capable of
rolling out the entire scenario by itself. The reward/loss
are typically handcrafted, and can be distilled from explicit
traffic rules [37]. With human preference data, RL from hu-
man feedback (RLHF) has also been applied to traffic model
training for better user alignment [4, 10]. Finally, Sym-

5423

phony [12] adds a Generative Adversarial Imitation Learn-
ing (GAIL) loss to encourage the rollout states to stay in
distribution; however, the well-known issue of training sta-
bility and discriminator overfitting remains a challenge.

3. Background

3.1. Problem formulation

A multi-agent traffic simulation policy can be typically for-
mulated as ωω(at|ht,M), where ε denotes the trainable
model parameters, ht = st→H:t is the state history of
length H , M is the context, including for example high-
definition (HD) maps and traffic light states, t is the cur-
rent time step, at = [a1

t
, ..., a

N

t
] and st = [s1

t
, ..., s

N

t
] are

respectively the actions and states of N agents at the cur-
rent time step. The dimensions of actions a and states s

are respectively denoted as Da and Ds, i.e., a → RDa and
s → RDs . From the current states and actions at step t, the
next states are computed using the per-agent forward dy-
namics st+1 = f(st,at) =

[
f(si

t
, a

i

t
)
]N
i=1

. We assume that
f(si

t
, a

i

t
) is deterministic, and can be queried during train-

ing, which is the case for traffic simulation. Extensions to
stochastic dynamics would be possible in future work. We
define a rollout of T steps starting at t = 0 as a sequence of
states s0:T = [s0, . . . , sT], while the GT trajectories of all
agents are denoted as ŝ0:T . For the training, we are given a
dataset D = {ŝj0:T ,Mj}|D|

j=1 of such real-world trajectories
that we want to emulate with their corresponding contexts.

3.2. Next Token Prediction (NTP) policies

NTP policies, such as SMART [35] and Trajeglish [24],
are parameterized as a probability distribution over a vo-
cabulary of action tokens denoted as V = {xc | c =
1, 2, . . . , |V |}, where |V | is the size of the vocabulary,
xc → RDa are template actions and c → N is the token
index. Hence, an autoregressive NTP policy for traffic sim-
ulation can equivalently be written as an agent-factorized
categorical distribution at each timestep t, i.e.,

ωω(ct | ht,M) =
N∏

i=1

ωω(c
i

t
| ht,M) =

N∏

i=1

Cat(ci
t
),

where Cat(ci
t
) is the categorical distribution over the ac-

tion token index for agent i (and not to be confused with
our method CAT-K). Given the sampled output ct =
[c1

t
, ..., c

N

t
], the actions at = [xc

1
t
, ..., xc

N
t
] are obtained us-

ing the token vocabulary V .

4. Method

Two key challenges in learning a policy from real-world tra-
jectories are the multimodal nature of the trajectory distri-
bution and the problem of covariate shift when policies are

Algorithm 1 CAT-K fine-tuning
1: Input: Policy ωω, action token vocabulary V , dataset D
2: Pre-train ωω(ct | ĥt,M) with BC until convergence
3: repeat ϑ Closed-loop supervised fine-tuning
4: Sample a traffic scenario {ŝ0:T ,M}
5: Init rollout state s0 = ŝ0 ϑ CAT-K Rollout
6: for t in [0, . . . , T ↑ 1] do ϑ T steps
7: for i in [1, . . . , N] do ϑ N agents
8: Get action index for rollout ci

t
. (Eq. 1)

9: Get next rollout state s
i

t+1. (Eq. 3)
10: Compute target ĉi

t
. (Eq. 4)

11: end for

12: end for

13: Update ε by minimizing Lω(s0:T , ĉ1:T ,M). (Eq. 5)
14: until convergence

trained open-loop, resulting in a distribution mismatch be-
tween expert states seen during training and states visited
during policy deployment. Covariate shift can be overcome
by closed-loop training, i.e., by training on trajectories sam-
pled from the learned policy. However, this requires the
generation of expert actions (or other notions of optimality)
to be used as training targets along those trajectories [27].
Querying a human expert is infeasible at scale, RL-based
methods require hard-to-define rewards, and methods such
as GAIL [7] are prone to mode collapse. Consequently, they
fail to achieve good performance in the WOSAC challenge.

An alternative strategy for generating “expert” actions is
to construct recovery actions that bring the agent back to
the available GT trajectory. However, this is complicated
by the multimodal nature of the data, as the available GT
trajectory might not be a valid recovery target for the gener-
ated trajectory. For example, as shown in Fig. 1, the GT tra-
jectory ŝ0:T turns left at the intersection, while the sampled
trajectory s0:T ↓ ωω might go straight or turn right. As a re-
sult, while some SoTA traffic models [24, 35] augment the
training data with recovery actions to reduce the covariate
shift, they do so only from states that were reached by in-
jecting small amounts of noise into the GT trajectory. This
does guarantee that the GT trajectory remains a valid recov-
ery target, but it completely ignores the learned policy and
the state distribution induced by it. Instead, our method,
Closest Among Top-K (CAT-K) rollout, informs the sam-
pling process by the learned policy, but biases it towards
the GT trajectory to guarantee the validity of the recovery
actions. While simple to implement, it yields significant
performance improvements in our experiments.

4.1. Closest Among Top-K (CAT-K) rollout

To facilitate the formulation, we define a topK operator:

{ϖ1, . . . , ϖK} = topK
c↑{1,...,|V |}

(Cat(c)),

5424

p=0.3

p=0.2

p=0.1

p=0.3

p=0.1
p=0.3

p=0.3

p=0.2
p=

0.1

p=0.3

p=0.1

p=0.1

p=0.3

p=0.2

p=0.1

GTrollout

not in
top-Ktop-K target

t = 0

t = 3

t = 2t = 1

(a) CAT-K rollout

p=0.3

p=0
.2

p=0.1

p=0.3

p=0.1

p=0.3

p=0
.1

p=0.3

p=0.1

p=0.2

p=0.1

p=0.2

p=0.3

p=0.3
p=0.1

(b) Top-K sampling (c) Trajeglish noisy tokenization (d) SMART trajectory perturbation

Figure 2. Schematic comparison of CAT-K rollout, top-K sampling, and data augmentation techniques of Trajeglish and SMART.

In this example, the token vocabulary has a size of 5. We rollout three steps from t = 0 to t = 3. For CAT-K rollout and top-K sampling,
the top-K is w.r.t the probabilities p of tokens predicted by the policy. For the data augmentations used by Trajeglish and SMART, the
policy is unavailable, and the top-K selection is based on the negative distances between tokens and GT.

where Cat : N ↔ R is the probability density of a categor-
ical distribution on the vocabulary index, and {ϖ1, . . . , ϖK}
are the K most probable indices. The topK operator can
be considered as a variation of the argmax operator that
returns multiple indices, with top1 equivalent to argmax.

At time step t, the policy ωω(ct | ht,M) outputs inde-
pendent categorical distributions over the token vocabulary
for each agent. Our method, CAT-K rollout, deterministi-
cally rolls out the policy by selecting, at each time step and
for each agent, the one action among the top-K likeliest ac-
cording to ωω that brings the agent closest to the GT next
state. Using a distance metric d(·, ·) on the states, this is
formally expressed as follows:

c
i

t
= argmin

c↑{ε1,...,εK}
d
(
f(si

t
, xc), ŝ

i

t+1

)
, (1)

{ϖ1, . . . , ϖK} = topK

c
i
t↑{1,...,|V |}

[
ω(ci

t
|ht,M)

]
, (2)

where c
i

t
is the action token indices of agent i at step t for

the CAT-K rollout, and {ϖ1, . . . , ϖK} are the top-K likeliest
token index according to the policy. Given c

i

t
, the next state

is obtained using the vocabulary V and the dynamics as:

s
i

t+1 = f(si
t
, xc

i
t
). (3)

These rollout states will be used as the input h to the policy
at the next time step. By doing this sequentially from t = 0
to t = T ↑ 1 and repeating for all N agents, we obtain the
CAT-K rollout trajectories s0:T .

4.2. Closed-loop supervised fine-tuning

Given the CAT-K rollout trajectory s0:T , we can apply the
idea of DAD [34] and construct the recovery action indices
ĉt from the GT trajectories ŝ0:T by finding the action token
that brings each agent closest to its original trajectory:

ĉ
i

t
= argmin

c↑{1,...,|V |}
d
(
f(si

t
, xc), ŝ

i

t+1

)
. (4)

Given these indices ĉt, the NTP policy is trained using the
cross-entropy loss

Lω = ↑ 1

NT

N∑

i=1

T→1∑

t=0

log ωω

(
ĉ
i

t
| ht,M

)
. (5)

Since CAT-K rollout is effective only when the top-K roll-
outs of the policy cover the GT mode, we adopt a two-
stage training procedure, summarized in Algorithm 1. First,
we obtain a reasonably well-trained policy through BC pre-
training, then fine-tune it using CAT-K rollouts.

4.3. Comparison to previous methods

In Fig. 2, we compare our method with previous data aug-
mentation approaches that alleviate the covariate shift for
NTP traffic simulation policies.

Top-K sampling is a common approach used by NTP
models for generating sequences during inference as it im-
proves the sample quality. However, it is unsuitable for
generating trajectories during training as it does not con-
sider the distance to the GT trajectory, and hence the valid-
ity of generated recovery actions (c.f. Fig. 2b). This can be
partially addressed by post-hoc filtering of trajectories that
deviated too far from the GT, but the resulting method is
sample-inefficient, as most rollouts will be discarded, and
the distance threshold hyperparameter is difficult to tune,
since its optimal value varies across scenarios (e.g., high-
speed vs. low-speed situations). In contrast, CAT-K rollout
(c.f. Fig. 2a) is sample efficient by choosing the closest
among top-K actions at each timestep and also removes the
need to tune a distance-based hyperparameter. As shown in
Tab. 2, our hyperparameter K provides strong results across
a large range of values and is hence much easier to tune.

Instead of sampling top-K trajectories from the policy,
current SoTA methods such as Trajeglish [24] and SMART
[35] use forms of trajectory noising to address the issue
of covariate shift. All trajectory noising approaches rely

5425

on the injection of small perturbations into the tokeniza-
tion of the GT trajectory, but implementations can vary
from each other in details. For example, in Trajeglish, the
likelihood of each noised token is a function of the result-
ing distance to the ground-truth trajectory, i.e. q

i

t
(c) ↓

exp(↑d(f(si
t
, xc), ŝit+1)/ϱ), while for SMART, tokens are

sampled uniformly from those K tokens with the highest
likelihood q

i

t
(c). Additionally, Trajeglish, similar to our

methods, uses the DAD [34] recovery target that finds the
token that would bring the agent back to the GT trajectory
(c.f. Fig. 2c), while SMART uses the next, also noised, to-
ken as target - effectively treating the noise injection as data
augmentation on the training trajectories (c.f. Fig. 2d).

However, Trajeglish’s noisy tokenization does not yield
a significant improvement (see Fig. 9 in [24]). Similarly,
while SMART’s trajectory perturbation enhances the per-
formance of a zero-shot policy trained on NuPlan [3] and
evaluated on WOSAC, it does not improve performance
on WOSAC itself (see Tab. 4 in [35]). We believe this
is because the state distributions generated by their sam-
pling strategies are sub-optimal as they completely ignore
what state distribution would be induced by the learned pol-
icy, hence likely oversampling irrelevant states and under-
sampling states the learned policy would actually encounter.
By incorporating the learned policy into the sampling strat-
egy, CAT-K generates a state distribution more like the pol-
icy’s, and is hence better able to reduce the covariate shift
between training and inference. Although sampling from
the policy incurs higher data generation costs, these can be
effectively mitigated through the two-phase training strat-
egy with BC pre-training and closed-loop fine-tuning.

Lastly, note that CAT-K with K = |V | is equivalent to
noise-free BC, since in this case rollouts follow the GT as
closely as the available token book allows. On the other
hand, for K = 1, CAT-K is equivalent to deterministically
rolling out the policy by always choosing the most likely
token. Consequently, for CAT-K, the hyperparameter K

trades off following the policy (for K = 1) vs. follow-
ing the GT (for K = |V |). In Fig. 5 we show how vari-
ous choices of K impact the Average Displacement Error
(ADE) between the CAT-K rollouts and the GT. The intu-
ition behind CAT-K is to find, among all the top-K T-step
rollouts (with a total of KT possibilities), the one with the
minimum ADE (minADE) to the GT. However, since di-
rectly solving this optimization problem is difficult, we use
CAT-K as a greedy approximation to solve it sequentially.

5. Experiments

To show the broad relevance of CAT-K fine-tuning, we eval-
uate its performance on two different tasks using two differ-
ent types of policy architecture, namely a traffic simulation
task using a NTP policy and an ego-motion planning task
using a policy parameterized as GMM. We base both tasks

on the widely used WOMD [5] and follow the simulation
setup proposed in WOSAC [21], namely providing 1 sec-
ond of history and generating rollouts of 8 seconds length.

5.1. Traffic Simulation

Metrics. In the traffic simulation task, we follow the
WOSAC protocol: for each scenario, we generate 32 simu-
lated rollouts for all agents in the scene, at 10Hz, and eval-
uate how well their distribution matches that of the human
demonstrations in the data. This distributional matching is
evaluated along three dimensions, namely kinematics (e.g.,
velocities and accelerations), interactions (e.g., collisions),
and map alignment (e.g., off-road). All three are summa-
rized as weighted averages in the “Realism Meta-Metric”
(RMM), the key performance indicator of the WOSAC
leaderboard. For more details please see [21]. We also re-
port the minADE, which is not used in the RMM, but widely
applied for motion prediction and policy evaluation.
Policy. We use SMART [35] as our policy architecture due
to its strong performance and open-source implementation.
Specifically, we use the SMART-tiny (7M) model and its
open-sourced token vocabularies. The map polyline token
vocabulary has a size of 1024, with each token represent-
ing a polyline consisting of 10 segments, each 0.5 meters
long. The agent trajectory token vocabulary has a size of
2048, with each token representing a 0.5-second trajectory
at 10Hz. SMART re-plans at 2Hz, hence the final output is
at 10Hz when submitted to the WOSAC leaderboard. How-
ever, our experiments show that SMART’s open-sourced
agent token vocabulary results in lower kinematic metrics.
To address this issue, we reran the K-disk clustering [24]
with a larger number of trajectories. By using our own agent
token vocabulary, the performance on the WOSAC leader-
board is significantly improved (c.f. Tab. 1). Please note
that all other experiments in this paper (i.e., except those
in Tab. 1) still use SMART’s open-sourced token vocabu-
laries. SMART uses Transformers [33] with query-centric
representations [41, 46], and the distance metric d(·, ·) is
the average Euclidean distance between the four pairs of
corners of two bounding boxes. We disable SMART’s tra-
jectory perturbation as it deteriorates performance on the
WOSAC leaderboard (see [35] Tab. 4). We run BC pre-
training for 32 epochs, each taking 1.7 hour, then continue
with closed-loop supervised fine-tuning with CAT-32 for
10 epochs, each taking 2.6 hours. During fine-tuning, the
map encoder is frozen to save GPU memory, allowing for
a larger training batch size with negligible impact on per-
formance. For both pre-training and fine-tuning, we use 8↗
A100 80GB GPUs with a total batch size of 80.

5.2. Ego-motion planning

Metrics. Unlike traffic simulation, in ego-motion planning
only the ego-vehicle is controlled and evaluated. Moreover,

5426

Leaderboard, test split
Method

model
params

RMM
↘

RMM diff. to
SMART-large

Kinematic
metrics ↘

Interactive
metrics ↘

Map-based
metrics ↘

min
ADE ≃

SMART-tiny fine-tuned w. CAT-K (ours) 7 M 0.7702 +0.0088 0.4931 0.8119 0.8749 1.3068
SMART-large [35] 102 M 0.7614 +0.0000 0.4786 0.8066 0.8648 1.3728
KiGRAS [43] 0.7 M 0.7597 ↑0.0014 0.4691 0.8064 0.8658 1.4384
SMART-tiny [35] 7 M 0.7591 ↑0.0023 0.4759 0.8039 0.8632 1.4062
FDriver-tiny 7 M 0.7584 ↑0.0030 0.4614 0.8069 0.8658 1.4475
SMART [35] 8 M 0.7511 ↑0.0103 0.4445 0.8050 0.8571 1.5447
BehaviorGPT [47] 3 M 0.7473 ↑0.0141 0.4333 0.7997 0.8593 1.4147
GUMP [9] 523 M 0.7431 ↑0.0183 0.4780 0.7887 0.8359 1.6041

Table 1. Results on the WOSAC 2024 leaderboard [17]. RMM stands for Realism Meta Metric, the key metric used for ranking. Note
that on the public leaderboard [17] our method appears under the name “SMART-tiny-CLSFT” (Closed-Loop Supervised Fine-Tuning).

Figure 3. Influence of Kinfer for inference-time top-K sampling.

the optimal policy is not the one that perfectly matches the
GT trajectory distribution, but which minimizes planning
metrics, such as collision rate, off-road rate, and ADE. For
completeness, we also report RMM, applied only to ego tra-
jectories, and minADE over 32 sampled rollouts. With the
exception of minADE, and in contrast to the traffic simula-
tion task, the rollouts for evaluation are sampled determinis-
tically, by choosing the most-likely mode at each timestep.
Policy. To show that our fine-tuning approach can be ap-
plied to a more general class of policies beyond NTP, we pa-
rameterized the output of the ego-policy as GMM. Specif-
ically, we replace the final layer of the SMART network
with two heads, a classification head that predicts the mix-
ture densities and a regression head that predicts the means
of the Gaussian distributions with fixed standard deviations
(similar to, e.g., [14]). Specifically, the GMM predicts 16
modes, each representing a 3-dimensional Gaussian distri-
bution over the changes in x- and y-position and yaw head-
ing. The final model comprises a total of 3.2M parame-
ters. In contrast to the SMART traffic simulation policy that
uses cross-entropy loss on all agents, the GMM-based ego-
policy is trained using negative log-likelihood loss and only
predicts actions for the ego-vehicle. When applying CAT-
K rollout or top-K sampling to the GMM, we select the K
most-likely modes of the GMM, and within each mode de-
terministically use the mean of the Gaussian. Please note
that ego-motion planning is a separate experiment from traf-
fic simulation; hence, the ego-policy is not fine-tuned on the
traffic simulation policy. Also note that the ego-policy oper-
ates in a mid-to-end manner, taking tracking results and HD
maps as inputs, rather than in a fully end-to-end fashion that
maps raw sensor observations to actions.

5.3. Results

5.3.1. WOSAC leaderboard for traffic simulation

In Tab. 1 we compare our approach with other traffic sim-
ulation policies on the WOSAC leaderboard. Notably, all
the top-ranking methods on the leaderboard are NTP poli-
cies trained via BC. Our SMART-tiny model using CAT-K
fine-tuning outperforms the previous SoTA, SMART-large
with 102M parameters, by a significant margin of +0.0088;
and improves on SMART-tiny by +0.0111. As the first to
perform closed-loop fine-tuning on the leaderboard, our ap-
proach improves all metrics and sets a new SoTA.

For fine-tuning, we chose CAT-32 after preliminary hy-
perparameter explorations, a choice that was later con-
firmed to perform well in our ablation studies (see Tab. 2),
though CAT-K improved performance for a wide range of
values of K. We also found that choosing a sufficiently
high Kinfer for top-K sampling during inference is impor-
tant for a high RMM [9], and we chose Kinfer = 48 for
our leaderboard submission based on local validation results
(see Fig. 3). In all of our experiments, we fixed the infer-
ence time sampling temperature to 1.0 and did not use top-p
(nucleus) sampling [8], though we expect that tuning these
hyperparameters can lead to further performance gains.

To ensure that the observed performance gains with
CAT-K are not due to improved hyperparameter tuning, we
also conduct a large-scale hyperparameter grid search for
the baseline method SMART-tiny. This includes training
for more epochs, adjusting the learning rate and learning
rate scheduler, experimenting with various data augmenta-
tion and data pre-processing strategies, and using various
values of Kinfer for the inference-time top-K sampling. This
allowed us to push the performance of the BC baseline to
0.7671 RMM on the test split (not shown in Tab. 1), but still
falling significantly short of the performance of our CAT-K
fine-tuning method (0.7702 RMM). Note that even compar-
ing against this improved baseline, our method improves
the performance more (+0.0031) than scaling up the model
size by a factor of 14 to 102M parameters (+0.0023).

Qualitatively, our method can generate diverse and real-
istic behavior over long periods of time. As shown in Fig. 6,
our method can handle the subtle interactions between traf-

5427

Local val. split
Method

Criterion
of topK

K for
topK

Sampled
from

Next
target

RMM
↘

Kinematic
metrics ↘

Interactive
metrics ↘

Map-based
metrics ↘

min
ADE ≃

BC pre-training - - - GT 0.7581 0.4512 0.8076 0.8697 1.3152

BC fine-tuning - - - GT 0.7590 0.4514 0.8096 0.8700 1.3039

Trajeglish’s noisy
tokenization

neg. dist. 5† neg. dist.† GT† 0.7562 0.4469 0.8074 0.8673 1.3459
neg. dist. 5† uniform GT† 0.7554 0.4467 0.8069 0.8655 1.3404
neg. dist. 32 neg. dist.† GT† 0.7401 0.4174 0.7985 0.8493 1.6669

SMART’s trajectory
perturbation

neg. dist. 5† uniform† RO† 0.7556 0.4440 0.8082 0.8661 1.3177
neg. dist. 5† neg. dist. RO† 0.7560 0.4469 0.8069 0.8673 1.3514
neg. dist. 32 uniform† RO† 0.7314 0.4158 0.7949 0.8300 1.5380

Top-5 prob 5 prob GT 0.6478 0.3313 0.6847 0.7528 1.8802
Top-5 + distance filter prob 5 prob GT 0.6860 0.3356 0.7466 0.8083 1.7627
Top-5 + distance based sampling prob 5 neg. dist. GT 0.7058 0.3536 0.7579 0.8400 1.5848
Deterministic rollout - - max-prob GT 0.6361 0.3291 0.6845 0.7492 1.8695

CAT-5 prob - closest GT 0.7423 0.4251 0.7917 0.8601 1.4677
CAT-16 prob - closest GT 0.7604 0.4592 0.8082 0.8709 1.3372
CAT-32 (leaderboard) prob - closest GT 0.7616 0.4583 0.8105 0.8720 1.3105
CAT-40 prob - closest GT 0.7617 0.4567 0.8101 0.8738 1.2998

CAT-64 prob - closest GT 0.7602 0.4552 0.8098 0.8707 1.3028

Table 2. Ablation study on WOSAC 2% validation split. We compare different ways to fine-tune the same base mode (BC pre-training).
”Sampled from” indicates how the action is sampled during fine-tuning, either based on the distance to the GT (“neg. dist”, “uniform”,
“closest”) or based on the model outputs (“prob”, “max-prob”). Here dist. is the abbreviation of distance. RO stands for rollout, i.e., the
next target action is computed based on the rollout, not the GT state. † indicates original hyperparameter choices of baseline algorithms.

Figure 4. On server vs. local evaluation of SMART-tiny.

fic participants in a dense parking lot, which is arguably a
more challenging scenario than intersections and highways
for traffic simulation. Moreover, the behavior remains real-
istic at the end of the required simulation time of 8 seconds.
Additional examples are in the supplementary videos.

5.3.2. Ablation studies on WOSAC

In Tab. 2 we provide a thorough ablation study. Due to the
high cost of evaluation we use 2% of the validation split
(880 out of 44097 scenarios). To verify the fidelity of this
evaluation setting, we compare results with those on the
full validation set in Fig. 4. We observe consistent differ-
ences indicating that our evaluation setting is reasonable.
We begin with a SMART-tiny model trained with BC for 32
epochs (BC pre-training, row 1). All other models fine-tune
the BC pre-training model for 5 epochs. During inference,
we use top-K sampling with Kinfer = 40 for all methods
(the best Kinfer for SMART-tiny according to Fig. 3).

In Tab. 2, CAT-K fine-tuning is the only method that sig-
nificantly outperforms the BC pre-training model. Further
fine-tuning with BC (row 2), using Trajeglish’s noisy tok-
enization (rows 3-5), or SMART’s trajectory perturbation

Figure 5. ADE between CAT-K rollouts and GT trajectories.

(rows 6-8) remain on par with the original model or even
reduce its performance. Closed-loop fine-tuning with top-K
rollouts instead of CAT-K rollouts during training signifi-
cantly reduces performance (rows 9-12), even when rollouts
close to the GT are selected for training by either filtering
them based on the distance to the GT or sampling among
them from a distance-dependent distribution. The obser-
vation that data augmentation and fine-tuning with top-K
sampling cannot improve the RMM is consistent with prior
works [19, 23, 24, 35] and the WOSAC leaderboard. Abla-
tions on different values of K for top-K sampling and other
hyperparameters are provided in the appendix.

Next, we ablate the value of K used for CAT-K rollout
during fine-tuning (rows 13-17). Results indicate that the
performance improvement is robust to the choice of K after
a reasonable minimum value. As discussed in Sec. 4.3, the
hyperparameter K in CAT-K determines how closely the
policy follows the GT trajectory, in a way that is more ro-
bust than a distance based threshold, for which the optimal
value varies strongly based on the situation (vehicle speed,
proximity to other cars, etc.). To give more insight into how

5428

Figure 6. Simulation results on WOSAC. Our fine-tuned policy generates interesting and diverse behaviors rarely seen in prior works.
Each row represents a different rollout of our model in the same scene. The transparent boxes show the GT agents in the dataset, while
the solid boxes show the agents generated by our model. We highlight the agents within the red, green, and orange rectangles, across time
steps and rollouts. The red rectangle shows different interactive negotiations emerging between a pedestrian and two vehicles. The green
rectangle shows an initially parked vehicle, that leaves (row 1) or stays parked (row 2, 3). The orange rectangle shows a vehicle waiting
(row 1) in front of a speed bump (visualized as two light-blue lines), proceeding (row 2), or entering a parking space (row 3).

Method (Local val. split) Collision rate ≃ Off-road rate ≃ RMM ↘ ADE ≃ minADE32 ≃
BC pre-training 0.0568 0.0053 0.8108 1.3623 1.3537

BC fine-tuning 0.0599 0.0058 0.8105 1.3520 1.3509
Deterministic rollout 0.0433 0.0138 0.8081 1.1799 0.7962
CAT-3 0.0422 0.0035 0.8169 1.3096 0.6912

Table 3. Performance of ego policies on WOSAC with local evaluation on 2% validation split. All models are fine-tuned for 5 epochs
based on the BC pre-training model, which is trained for 32 epochs. We use deterministic rollout during inference and compute all metrics,
except for the minADE32. For minADE32, we generate 32 rollouts by using top-3 sampling with a temperature of 1.0 to first sample the
categorical distribution over the mixtures, then selecting the mean of the sampled Gaussian mixture.

K impacts rollouts, in Fig. 5, we inspect the average ADE
between rollouts and GT trajectories over training epochs,
for different K values. As expected, as K ↔ |V |, the ADE
decreases towards the level of quantization error, induced
by tokenization with a finite vocabulary size (dashed line).
With more fine-tuning epochs the average ADE slightly re-
duces, highlighting how CAT-K fine-tuning improves the
policy to follow all behavior modes more closely.

5.3.3. Fine-tuning a GMM-based ego-policy

Besides NTP traffic simulation polices, CAT-K fine-tuning
also improves the performance of a GMM-based ego-policy
with continuous action space. In Tab. 3 we compare our ap-
proach with fine-tuning using deterministic rollouts, as well
as with continued BC. Our CAT-3 fine-tuning improves all
metrics except for ADE, where deterministic rollout per-
forms better. This is expected, as deterministic rollout
aligns all modes towards the GT, resulting in mode aver-
aging. While this reduces ADE, it negatively impacts other
metrics. Additionally, CAT-K fine-tuning helps overcome
the limitation of GMM trained with negative log-likelihood
loss, which struggles to capture multimodality as effectively
as NTP policies trained with cross-entropy loss. This is sup-
ported by the significant drop in minADE after fine-tuning.

6. Conclusion

In this paper, we introduce CAT-K rollouts, a closed-
loop supervised fine-tuning technique for IL problems with
highly multimodal demonstrations, such as traffic simula-
tion. The CAT-K rollout approximately finds the rollout
closest to the GT among likely rollouts of a policy, ensuring
adherence to the policy while maintaining GT as a reliable
reference for supervised learning. As the first method us-
ing closed-loop fine-tuning, it achieves the top spot on the
WOSAC leaderboard.

In the future, we aim to incorporate modern sampling
techniques into CAT-K rollouts, such as top-p sampling.
Furthermore, instead of always selecting the closest token,
we could loosen the “winner-takes-all” approach and sam-
ple from a group of nearby tokens. We also plan to explore
CAT-K fine-tuning for a broader range of policy classes,
such as variational autoencoders and diffusion models. Ad-
ditionally, we want to apply it to other multimodal IL tasks,
including end-to-end driving, motion generation for anima-
tion, and robot navigation and manipulation. Importantly,
our results show that closed-loop supervised fine-tuning is
a promising area of future research for policies trained in
open-loop, such as the widely used NTP policies.

5429

References

[1] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-
feurnet: Learning to drive by imitating the best and synthe-
sizing the worst. arXiv preprint arXiv:1812.03079, 2018. 1,
2

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom
Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), pages 1877–1901. Curran Asso-
ciates, Inc., 2020. 1

[3] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit
Fong, Eric M. Wolff, Alex H. Lang, Luke Fletcher, Oscar
Beijbom, and Sammy Omari. NuPlan: A closed-loop ml-
based planning benchmark for autonomous vehicles. In Con-
ference on Computer Vision and Pattern Recognition (CVPR)
ADP3 Workshop, 2021. 5

[4] Yulong Cao, Boris Ivanovic, Chaowei Xiao, and Marco
Pavone. Reinforcement learning with human feedback for
realistic traffic simulation. In 2024 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 14428–
14434. IEEE, 2024. 2

[5] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi
Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles R Qi, Yin Zhou, et al. Large scale interactive motion
forecasting for autonomous driving: The waymo open mo-
tion dataset. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 9710–9719,
2021. 5

[6] Roger Girgis, Florian Golemo, Felipe Codevilla, Martin
Weiss, Jim Aldon D’Souza, Samira Ebrahimi Kahou, Felix
Heide, and Christopher Pal. Latent variable sequential set
transformers for joint multi-agent motion prediction. arXiv
preprint arXiv:2104.00563, 2021. 2

[7] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. Advances in Neural Information Processing
Systems (NeurIPS), 29, 2016. 3

[8] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In In-
ternational Conference on Learning Representations (ICLR),
2020. 6

[9] Yihan Hu, Siqi Chai, Zhening Yang, Jingyu Qian, Kun Li,
Wenxin Shao, Haichao Zhang, Wei Xu, and Qiang Liu. Solv-
ing motion planning tasks with a scalable generative model.
In European Conference on Computer Vision (ECCV), 2025.
1, 2, 6

[10] Zhiyu Huang, Xinshuo Weng, Maximilian Igl, Yuxiao Chen,
Yulong Cao, Boris Ivanovic, Marco Pavone, and Chen Lv.
Gen-drive: Enhancing diffusion generative driving poli-
cies with reward modeling and reinforcement learning fine-
tuning. arXiv preprint arXiv:2410.05582, 2024. 2

[11] Zhiyu Huang, Zixu Zhang, Ameya Vaidya, Yuxiao Chen,
Chen Lv, and Jaime Fernández Fisac. Versatile scene-
consistent traffic scenario generation as optimization with
diffusion. arXiv preprint arXiv:2404.02524, 2024. 2

[12] Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mougin,
Punit Shah, Kyriacos Shiarlis, Dragomir Anguelov, Mark
Palatucci, Brandyn White, and Shimon Whiteson. Sym-
phony: Learning realistic and diverse agents for autonomous
driving simulation. In 2022 International Conference on
Robotics and Automation (ICRA), pages 2445–2451. IEEE,
2022. 2, 3

[13] Maximilian Igl, Punit Shah, Paul Mougin, Sirish Srinivasan,
Tarun Gupta, Brandyn White, Kyriacos Shiarlis, and Shi-
mon Whiteson. Hierarchical imitation learning for stochastic
environments. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1697–1704.
IEEE, 2023. 2

[14] Boris Ivanovic and Marco Pavone. The trajectron: Proba-
bilistic multi-agent trajectory modeling with dynamic spa-
tiotemporal graphs. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
2375–2384, 2019. 6

[15] Chiyu Jiang, Andre Cornman, Cheolho Park, Benjamin
Sapp, Yin Zhou, Dragomir Anguelov, et al. Motiondiffuser:
Controllable multi-agent motion prediction using diffusion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 9644–9653,
2023. 2

[16] Longzhong Lin, Xuewu Lin, Kechun Xu, Haojian Lu, Lichao
Huang, Rong Xiong, and Yue Wang. Revisit mixture mod-
els for multi-agent simulation: Experimental study within a
unified framework, 2025. 2

[17] Waymo LLC. Waymo open sim agent challenge (wosac)
2024 leaderboard. https://waymo.com/open/
challenges/2024/sim-agents/, 2024. Accessed:
2025-03-14. 6, 2

[18] Jack Lu, Kelvin Wong, Chris Zhang, Simon Suo, and Raquel
Urtasun. Scenecontrol: Diffusion for controllable traffic
scene generation. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pages 16908–16914.
IEEE, 2024. 2

[19] Yiren Lu, Justin Fu, George Tucker, Xinlei Pan, Eli Bron-
stein, Rebecca Roelofs, Benjamin Sapp, Brandyn White,
Aleksandra Faust, Shimon Whiteson, et al. Imitation is not
enough: Robustifying imitation with reinforcement learn-
ing for challenging driving scenarios. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 7553–7560. IEEE, 2023. 1, 2, 7, 3

[20] Osama Makansi, Eddy Ilg, Ozgun Cicek, and Thomas Brox.
Overcoming limitations of mixture density networks: A sam-
pling and fitting framework for multimodal future prediction.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7144–7153,
2019. 2

[21] Nico Montali, John Lambert, Paul Mougin, Alex Kuefler,
Nicholas Rhinehart, Michelle Li, Cole Gulino, Tristan Em-
rich, Zoey Yang, Shimon Whiteson, et al. The waymo open

5430

https://waymo.com/open/challenges/2024/sim-agents/
https://waymo.com/open/challenges/2024/sim-agents/

sim agents challenge. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 36, 2024. 1, 5

[22] Jiquan Ngiam, Benjamin Caine, Vijay Vasudevan, Zheng-
dong Zhang, Hao-Tien Lewis Chiang, Jeffrey Ling, Rebecca
Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, et al.
Scene transformer: A unified architecture for predicting mul-
tiple agent trajectories. arXiv preprint arXiv:2106.08417,
2021. 2

[23] Zhenghao Peng, Wenjie Luo, Yiren Lu, Tianyi Shen, Cole
Gulino, Ari Seff, and Justin Fu. Improving agent behav-
iors with rl fine-tuning for autonomous driving. In Euro-
pean Conference on Computer Vision (ECCV), pages 165–
181. Springer, 2025. 1, 2, 7

[24] Jonah Philion, Xue Bin Peng, and Sanja Fidler. Trajeglish:
Traffic modeling as next-token prediction. In International
Conference on Learning Representations (ICLR), 2024. 2, 3,
4, 5, 7

[25] Aditya Prakash, Aseem Behl, Eshed Ohn-Bar, Kashyap
Chitta, and Andreas Geiger. Exploring data aggregation in
policy learning for vision-based urban autonomous driving.
In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11763–11773, 2020. 2

[26] Ethan Pronovost, Meghana Reddy Ganesina, Noureldin
Hendy, Zeyu Wang, Andres Morales, Kai Wang, and Nick
Roy. Scenario diffusion: Controllable driving scenario gen-
eration with diffusion. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 36:68873–68894, 2023. 2

[27] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A re-
duction of imitation learning and structured prediction to no-
regret online learning. In International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), pages 627–635.
JMLR Workshop and Conference Proceedings, 2011. 1, 3

[28] Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou,
Nigamaa Nayakanti, Khaled S Refaat, Rami Al-Rfou, and
Benjamin Sapp. Motionlm: Multi-agent motion forecasting
as language modeling. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
8579–8590, 2023. 2

[29] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele.
Motion transformer with global intention localization and lo-
cal movement refinement. Advances in Neural Information
Processing Systems (NeurIPS), 35:6531–6543, 2022. 2

[30] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele.
Mtr++: Multi-agent motion prediction with symmetric scene
modeling and guided intention querying. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
2024. 2

[31] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel
Urtasun. TrafficSim: Learning to simulate realistic multi-
agent behaviors. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10400–10409, 2021. 2

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023. 1

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, !ukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 5998–
6008, 2017. 5

[34] Arun Venkatraman, Martial Hebert, and J Bagnell. Improv-
ing multi-step prediction of learned time series models. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 2015. 2, 4, 5

[35] Wei Wu, Xiaoxin Feng, Ziyan Gao, and Yuheng Kan. Smart:
Scalable multi-agent real-time simulation via next-token pre-
diction. Advances in Neural Information Processing Systems
(NeurIPS), 2025. 1, 2, 3, 4, 5, 6, 7

[36] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone.
Bits: Bi-level imitation for traffic simulation. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 2929–2936. IEEE, 2023. 2

[37] Chris Zhang, James Tu, Lunjun Zhang, Kelvin Wong, Simon
Suo, and Raquel Urtasun. Learning realistic traffic agents
in closed-loop. In Conference on Robot Learning (CoRL),
2023. 1, 2, 3

[38] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation
learning for end-to-end autonomous driving. arXiv preprint
arXiv:1605.06450, 2016. 2

[39] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. End-to-end urban driving by imitat-
ing a reinforcement learning coach. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 2

[40] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu,
and Luc Van Gool. Trafficbots: Towards world models for
autonomous driving simulation and motion prediction. In
2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 1522–1529. IEEE, 2023. 2

[41] Zhejun Zhang, Alexander Liniger, Christos Sakaridis, Fisher
Yu, and Luc V Gool. Real-time motion prediction via het-
erogeneous polyline transformer with relative pose encod-
ing. Advances in Neural Information Processing Systems
(NeurIPS), 2024. 2, 5

[42] Zhejun Zhang, Christos Sakaridis, and Luc Van Gool. Traf-
ficbots v1. 5: Traffic simulation via conditional vaes and
transformers with relative pose encoding. arXiv preprint
arXiv:2406.10898, 2024. 2

[43] Jianbo Zhao, Jiaheng Zhuang, Qibin Zhou, Taiyu Ban, Ziyao
Xu, Hangning Zhou, Junhe Wang, Guoan Wang, Zhiheng Li,
and Bin Li. Kigras: Kinematic-driven generative model for
realistic agent simulation. arXiv preprint arXiv:2407.12940,
2024. 1, 2, 6

[44] Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic,
Yulong Cao, Danfei Xu, Marco Pavone, and Baishakhi Ray.
Language-guided traffic simulation via scene-level diffusion.
arXiv preprint arXiv:2306.06344, 2023. 2

[45] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen,
Sushant Veer, Tong Che, Baishakhi Ray, and Marco Pavone.
Guided conditional diffusion for controllable traffic simula-
tion. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pages 3560–3566. IEEE, 2023. 2

[46] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai
Huang. Query-centric trajectory prediction. In Proceedings

5431

of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 17863–17873, 2023. 2, 5

[47] Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang,
Nan Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, and
Chun Jason Xue. Behaviorgpt: Smart agent simulation
for autonomous driving with next-patch prediction. arXiv
preprint arXiv:2405.17372, 2024. 1, 6, 2

5432

