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Abstract

Densely structured pruning methods — which generate

pruned models in a fully dense format, allowing immedi-

ate compression benefits without additional demands — are

evolving due to their practical significance. Traditional

techniques in this domain mainly revolve around coarser

granularities, such as filter pruning, thereby limiting per-

formance due to restricted pruning freedom. Recent ad-

vancements in Grouped Kernel Pruning (GKP) have en-

abled the utilization of finer granularities while maintaining

a densely structured format. We observe that existing GKP

methods often introduce dynamic operations to different as-

pects of their procedures at the cost of adding complications

and/or imposing limitations (e.g., requiring an expensive

mixture of clustering schemes), or contain dynamic pruning

rates and sizes among groups that result in a reliance on

custom architecture support for its pruned models. In this

work, we argue that the best practice to introduce these dy-

namic operations to GKP is to make Conv2d(groups)
(a.k.a. group count) flexible under an integral optimiza-

tion, leveraging its ideal alignment with the infrastructure

support of Grouped Convolution. Pursuing such a direc-

tion, we present a one-shot, post-train, data-agnostic GKP

method that is more performant, adaptive, and efficient than

its predecessors while simultaneously being user-friendly,

with little-to-no hyper-parameter tuning or handcrafting of

criteria required.

1. Introduction
Despite having a proven track record revolving around com-
puter vision tasks, modern convolutional neural networks
(CNNs) face deployment challenges for growing model ca-

* Equal contribution. The work corresponds to Jiamu Zhang
<mz81@rice.edu>. Jiamu Zhang and Andrew Ye conducted the ma-
jority of their contribution while studying at the Case Western Reserve
University.

pacities. To address this issue of over-parameterization, net-

work pruning — a field studying how to insightfully re-
move components from the original model without signif-
icant degradation to its properties and performance — has
undergone constant development for being an intuitive way
of potentially reducing the computation and memory foot-
print required to practically utilize a model [2].

In this work, we advance the progress on Grouped Ker-

nel Pruning (GKP) [60], a recently developed structured
pruning granularity with many deployment-friendly proper-
ties, by investigating a common design choice among exist-
ing GKP methods: dynamic operations, which denotes the
act of applying different operations to the same task (e.g.,
clustering CNN filters with various combinations of dimen-
sionality reduction and clustering techniques, as in TMI-
GKP [60]). We find that current GKP designs tend to in-
clude such operations in a sub-optimal manner, resulting in
various complications and limitations. As a solution, we
propose that the best approach to implementing dynamic
operations to GKP is to make Conv2d(groups) (a.k.a.
group count) flexible under an integral optimization, lever-
aging its ideal alignment with the existing and future in-
frastructure support of Grouped Convolution [26]. Our em-
pirical evaluation shows that by making these group counts
flexible, we can afford to “lean down” on the rest of the typ-
ical GKP procedures, and therefore obtain a new one-shot,
post-train, data-agnostic1 GKP method that is more perfor-
mant, adaptive, and efficient than its predecessors while
simultaneously being user-friendly with little-to-no hyper-
parameter tuning or handcrafted criteria required. We con-
cisely summarize our contribution as enabling “hassle-free

structured pruning,” as suggested in the title.

1As of the pruning operation is not influenced, nor is making any as-
sumption, of the task-consisting data.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Background
We purposely provide a rather extensive background
section given that our work develops upon specific obser-
vations made on existing adaptations of Grouped Kernel
Pruning (GKP) [60]. GKP is a recently proposed and recog-
nized structured pruning granularity with limited exposure,
which means it is likely — or at least partially — foreign to
many readers. Though unconventional, we believe the ex-
tensive background supplied below would ensure a self-
contained reading experience without sending our readers
to jump through multiple GKP literature with nonunified
notations and visualizations. For additional information, we
refer readers to Zhong et al. [60], He and Xiao [17], and
Appendix 8 for more information regarding different struc-
tured pruning granularities.
2.1. Trading performance for deployability: the practi-

cal advantage of structured pruning
Within the realm of network pruning, two general cate-
gories of techniques have been delineated, which are com-
monly referred to as unstructured and structured pruning
[2, 17, 38]. While it can be faithfully concluded that these
two categories have very different focuses and approaches,
there is unfortunately no universally agreed distinction be-
tween what pruning methods constitute structured pruning
and what do not.

Nonetheless, the general understanding follows the no-
tion of a performance-deployability trade-off: an unstruc-
tured pruning method typically tends to enjoy a higher de-
gree of pruning freedom — and thus better performance
— but it is done so at the cost of leaving the pruned net-
work sparse without a reduction in size, and consequently
requires special libraries or hardware support to realize their
compression/acceleration benefits [53] (e.g., weight prun-
ing [27]). Conversely, a structured pruning method often
removes model components in groups that follow the ar-
chitecture design of the original network, resulting in a
smaller network. In particular, the majority of structured
pruning methods (e.g., filter pruning [28, 63]) are capable
of delivering pruned models that are reduced in dimension
yet entirely dense (a.k.a. densely structured) and therefore
provide immediate compression benefits without additional
overhead.
2.2. Exploring structured pruning with finer granulari-

ties: grouped kernel pruning (GKP)
To narrow the performance gap between unstructured and
structured pruning methods, many structured pruning works
explore finer pruning granularities, which are often re-
garded as intra-channel pruning methods due to the two
most prevalent structured pruning approaches, channel
pruning and filter pruning, which derive their pruning op-
erations from the in and out channels of the original CNN
model.

However, one major issue with current intra-channel

methods is that their pruned models are no longer dense and
therefore lose the benefits of being densely structured, such
as improving network efficiency without additional environ-
ment or hardware support [53]. We highlight this in Fig-
ure 1: it can be seen that if the naive approach of seeking
finer granularities than filter/channel pruning naturally re-
sults in kernel pruning, which is intrinsically sparse. This
is also the case for all intra-kernel pruning methods (e.g.,
stride pruning [1], N:M sparsity [62]), in which kernel-level
sparsity is introduced. These methods might be “structured”
by definition, as they indeed remove model components in
groups, but they often cannot provide efficiency benefits
without external support due to the levels of sparsity intro-
duced to pruned models.

In order to achieve both an increased degree of prun-
ing freedom and a dense post-pruned structure, a spe-
cial variant of intra-channel pruning granularity – Grouped

Kernel Pruning (GKP) [60] – has been proposed2, in
which a finer pruning granularity than filter/channel prun-
ing was achieved without introducing sparsity by leverag-
ing grouped convolutions [24]. We illustrate this process
in Figure 2. To the best of our knowledge, GKP provides
the highest degree of pruning freedom under the context of
remaining densely structured, and thus attracts the interests
of the pruning community [17, 42, 58, 60].

2.3. A common recipe for GKP-based methods: dy-
namic operations

Although GKP is still a fairly under-developed pruning
granularity given its recency, we have observed a consis-
tent pattern among recent successful works in this direc-
tion (e.g., TMI-GKP [60] and DSP [42]). Both methods
introduce dynamic operations to different stages of its pro-
cedure and achieve significant performance improvements
than methods with only deterministic operations.

As shown in Figure 3: TMI-GKP opts to include dy-
namic choices of clustering schemes in each of its con-
volutional layers. Similarly, in Figure 4, DSP makes its
filter grouping and group kernel pruning stages dynamic
in the sense that they may enjoy different group sizes and
different in-group pruning rates for components within the
same layer. While both methods deliver impressive perfor-
mance, we notice that their adoption of dynamic operations
results in various complications and limitations. For in-
stance, several clustering schemes trialed in TMI-GKP can
be very expensive to run. Yet, many of the produced cluster-
ing results are eventually discarded according to their ticket
magnitude increase (TMI) scores. On the other hand, DSP
prunes grouped kernels in different sizes, where the resul-

2For the sake of rigor, this granularity was in fact revisited and refined
by Zhong et al. [60] at ICLR’22 and coined as grouped kernel pruning. The
granularity itself is, of course, naturally emerged in group convolution [24]
and was first proposed under a pruning context by Yu et al. [55], though
unfortunately, it did gain much traction. More about this in Appendix 8.
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Figure 2. General Procedure of Grouped Kernel Pruning

tant pruned network is often irregularly shaped (i.e., having
different dimensions of tensors within the same layer) and
therefore relies on custom model definitions and convolu-
tional operators to perform training and inference — more
on this in Section 3.1.

To mitigate the complications and limitations caused
by dynamic operations in existing GKP methods, we
propose a new method that includes these operations in
Conv2d(groups) (a.k.a. “group count” or “number of
groups” in the grouped convolution). This means we al-
low each convolutional layer to take a flexible number of
groups when grouping filters. We argue this is the best
area to integrate dynamic operations into a GKP proce-
dure, as this setup is directly supported by the well-adopted
grouped convolution operator in modern ML frameworks
and is, therefore, able to make use of existing and future in-
frastructure updates and support for grouped convolutions.
Empirical evaluations also support the effectiveness of our
approach.

Moreover, after employing a flexible group count, we
can simultaneously reduce the complexity and depen-
dency of the rest of the GKP procedure and drastically
improve the efficiency and usability of our method. As
an example, we utilize only one simple clustering operation
rather than selecting one of the many TMI-score-dependent
clustering schemes in Zhong et al. [60], thus removing de-
pendencies on training snapshots or checkpoints of the orig-

inal unpruned model. This is a meaningful trait, given the
prevalent utilization of pretrained models in practical prun-
ing. We name our method LeanFlex-GKP, emphasizing that
it is a GKP method that is more “leaned down” than others
by utilizing flexible group counts as its primary mechanism.
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Figure 4. Procedure of Dynamic Structure Pruning (DSP)
We summarize the traits of our proposed method and the

contributions of our work as follows:
• Advancing the progress of GKP by identifying and

solving a common pain point: dynamic operations.
We recognize the significance of dynamic operations to
GKP, as well as the challenges of integrating them into
current procedures. By utilizing flexible group counts
as a medium, we tactfully introduce such operations to
our procedure while avoiding the complications and lim-
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itations typically found in other GKP methods. Exten-
sive empirical evaluation supports the effectiveness of
our method.

• Providing an efficient, hassle-free experience. By re-
ducing the complexity of various stages in the typical
GKP procedure, our method provides a significant advan-
tage in terms of efficiency and adaptability over others.
LeanFlex-GKP is a post-train, one-shot, data-agnostic
procedure with little-to-no hyper-parameter tuning or set-
ting handcrafting required, making it one of the most us-
able structured pruning methods available.

• Guiding future developments of GKP. Aside from our
proposed method itself, our work also contains the most
comprehensive empirical evaluation and ablation studies
on GKP to date. Given that GKP is an underdeveloped
pruning granularity with many attractive properties, we
believe our investigation provides valuable insights and
guidance to future scholars working to adopt GKP and
its variants.

3. Motivation
3.1. Flexible group counts as the dynamic operation in

GKP
As mentioned in Section 2.3, the involvement of dynamic
operations plays a significant role to the GKP procedure.
Yet, current methods tend to adopt dynamic operations at
the cost of adding significant complications or limitations.
Take, for instance, TMI-GKP [60] and Dynamic Structure
Pruning (DSP) [42]: TMI-GKP trials different clustering

schemes
3 at its filter grouping stage per each convolutional

layer of the unpruned model, forming a dynamic choice of
clustering schemes across the depth of the pruned model.
DSP, on the other hand, allows for dynamic group sizes and
in-group pruning ratios in formed filter groups and thus en-
joys a higher degree of pruning freedom than TMI-GKP.

While both methods demonstrate performance advan-
tages over GKP methods with purely deterministic oper-
ations (e.g., KPGP by Zhang et al. [58]), the addition of
such dynamic operations also comes with its own respec-
tive costs.

In the context of TMI-GKP, certain clustering schemes,
which consist of combining a dimensionality reduction
technique with a clustering algorithm like k-PCA + k-
Means, may incur significant computational costs. For ex-
ample, k-PCA — one of the candidate dimensionality re-
duction techniques utilized in TMI-GKP — requires an
eigen decomposition of a convolutional layer’s weight ten-
sor, which is an expensive procedure requiring a complexity
more than O(n3) for a n✓n matrix [41]. Yet, all produced
clustering results except one are discarded if they result in

3Where each clustering scheme consists of different combinations of
various dimensionality reductions and clustering techniques.

a lower ticket magnitude increase (TMI) score: a weight-
shift related metric inspired by the series of works on the
lottery ticket hypothesis [9]. This makes the use of TMI-
GKP challenging should the width of the target network
become large, as outlined in Table 7 (TMI-GKP is unable
to prune the WideResNet model within a reasonable time
constraint).

In DSP, dynamic behavior is present in both the filter
grouping and grouped kernel pruning stages, where the
learned filter groups are allowed to be in different sizes.
Each filter group can opt to remove a different amount
of grouped kernels, resulting in a pruning granularity that
is finer than typical equal-group-equal-pruning-ratio GKP
methods [55, 58, 60]. However, due to the pruned network
having different tensor shapes within the same layer, it can
no longer be reconstructed into a grouped convolution for-
mat and instead relies on custom-defined model definitions
and operators, ultimately diminishing its practical adapt-
ability.

In this work, we integrate dynamic operations on
Conv2D(groups) (also commonly known as “group
count” or “number of groups” under a grouped convolution
context). To achieve this, we group convolutions with dif-
ferent groups settings across model layers. We place em-
phasis on the fact that this setup is supported by the grouped
convolution operator, and is therefore able to take advan-
tage of existing and future infrastructure updates and sup-
port systems. Our setup improves upon and differs from the
two most successful current methods in GKP: TMI-GKP
and DSP. In the former, a hard-coded groups=8 is applied
for all models and layers without consideration of subse-
quent pruning schematics. We reveal that such an approach
to be sub-optimal in our ablation studies in Section 10. Fur-
thermore, our setup also differs from DSP, as the end group
results still remain equally-sized and contain an identical
pruning ratio among groups, thus allowing for quick and
efficient implemention without custom support.
3.2. Leaning out for an efficient GKP procedure
Given the effectiveness of utilizing flexible group counts,
we can afford to reduce the complexity of previous GKP
procedures. Instead of trialing different cluster schemes or
employing learn-based regularization procedures, we sim-
ply utilize a k-Means++ inspired clustering procedure to de-
termine grouping, which drastically decreases the complex-
ity and dependency requirements of filter grouping (Sec-
tion 4.2).

During the grouped kernel pruning stage, methods like
TMI-GKP formalize the procedure as a graph search prob-
lem solved with a multiple-restart greedy procedure, show-
casing a significant performance advantage over vanilla
magnitudes or distance-based alternatives [58]. However,
we decide instead to use a tactfully designed distance and
magnitude-based heuristic to achieve similar, if not bet-
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ter, accuracy retention rates to the unpruned models (Sec-
tion 4.3). Our replacement of this procedure significantly
reduces the runtime of our pruning procedure (as clocked in
Table 7) and improves its general usability.

3.3. Towards a hassle-free experience
Although the post-prune performance and efficiency of
pruning procedures are certainly reasonable criteria when
evaluating a method under a practical context, usability
across a broader scenario and being user-friendly are
another vital set of factors to consider. In fact, some
of the most widely adopted pruning methods do not nec-
essarily offer the best performance or the fastest runtime,
but are often extremely user-friendly as they can be run
and deployed with minimal adjustments. Two examples
of such work are OTOv2 [3] and DepGraph [8], which
are architecture-agnostic methods capable of pruning any
model, with OTOv2 capable of pruning from scratch.

Our method, LeanFlex-GKP, being a GKP method lim-
ited to CNNs, is not at the same level of generalization
as OTOv2 or DepGraph. Still, we strive to maximize its
usability under such constraints by making it a post-train,
one-shot, data-agnostic pruning method with standard fine-
tuning procedures. As long as one has access to the weights
of the CNN model and fine-tuning data, they may utilize
our pruning method to prune their model and fine-tune via
standard Stochastic Gradient Descent without further inter-
ference. In comparison, previous GKP methods like TMI-
GKP require access to the training snapshots/checkpoints
of the original unpruned model, and iterative GKP methods
like DSP require regularization learning and pruning opera-
tions during the fine-tuning/retraining procedure.

On the note of user-friendliness, our method has little-
to-no hyperparameters or handcrafted settings, reducing the
requirement of human and resource efforts for trial-and-
error testing different settings. Furthermore, the user of
our method can reliably predict the pruned model size
and computation requirement by simply multiplying the
pruning rate by the original unpruned model, making
the our procedure standardized and predictable. Surpris-
ingly, this is a useful property lacking in many modern prun-
ing methods, such as Lin et al. [32, 33], Park et al. [42] and
Chen et al. [3], where the user will typically need to trial-
and-error various hyperparameter combinations to achieve
a certain accuracy in pruning reduction. The importance of
being able to reliably prune model to a specific size cannot
be overstated in a practical context, as the alternative will
require massive computation or manual effort to search for
the suitable hyperparameter setting. In some cases, such an
endeavor might even be impossible.

4. Proposed method
Our proposed method, LeanFlex-GKP, consists of a four-
stage procedure:

1. Filter grouping: where we group filters within a cer-
tain convolution layer into n equal-sized filter groups ac-
cording to their distance towards k-Means++ determined
centers (Figure 5).

2. Group kernel pruning: where we prune a certain
amount of grouped kernels out of all filter groups within
the same layer. The pruning is determined by each
grouped kernel’s L2 norm and distance to their geometric
median (Figure 6).

3. Post-prune group count evaluation: where we evalu-
ate all grouping and pruning strategies obtained under
different group count settings and then select the one
where the preserved group kernels have the maximum
inter-group distance and the minimum intra-group dis-
tance (Figure 7).

4. Grouped convolution reconstruction: where we con-
vert the pruned model to a grouped convolution format,
just like we showcased in the standard GKP procedure
(Figure 2).
In general, we aim to develop lightweight and

dependency-free measures to at each stage of the GKP pro-
cess. We walk our readers through the technicalities of our
method, as well as demonstrate that a SOTA-capable GKP
method with many novel and favorable properties results
by discerningly combining basic tools and leveraging the
power of flexible group counts.

4.1. Preliminaries
Suppose there is a convolutional neural network model W
with L convolutional layers, then the layer with index l is
denoted as Wl. A layer can be viewed as a 4D tensor
Wl" RC

l
out✓C

l
in✓H

l✓W l

, in which C
l

in is the number input
channels on layer l (number of kernels in a filter), Cl

out is
the number output channels on layer l (number of filters in
a layer), and H

l ✓ W
l is the kernel size. The task to per-

form a grouped convolution reconstruction upon Wl, as il-
lustrated in Figure 2, can be described as converting Wl to a
Gl" Rn✓Cl

in✓m✓Hl✓W l

, where n stands for the group count
setting of this conversion, and m = C

l

out/n representing the
group size.

4.2. KPP-aware filter grouping
The general goal of filter grouping is to cluster filters that
are similar to each other within the same group, so that
when such filters are partially removed during the pruning
process, leftover components can cover the representation
power of their removed counterparts. In previous works
like TMI-GKP [60] and DSP [42], this procedure is rather
resource-intensive, with TMI-GKP trialing expensive clus-
tering schemes under the guidance of its TMI score, and
DSP employing a learning-based procedure.

In order to streamline the grouping process and to mit-
igate complexity, we devise a cost-effective filter cluster-
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Center, then Assign it with Nearest Filters
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Figure 5. Visualization of the LeanFlex-GKP KPP-Aware Filter Grouping Procedure. We first cluster filters (the circles) via k-Means++

(KPP) into n groups with no constraint on having an equal group size to determine clustering centers (the squares), as in (a). Then, our
operation can be viewed as a cycle between assigning m nearest filters into a KPP center to form a filter group, then finding the next KPP
center to do subsequent filter assignments, as in (b) � (c); until n filter groups are formed (the first KPP center is picked at random). Last,
we conduct a multiple restart and repeat the (b) ⇣ (c) center-finding-filter-assignments, as showcased in (d). After all multiple restarts,
we are left with n candidate filter grouping strategies, and select the strategy that has filters with the least intra-group distance to their
respective KPP centers (having less summed length on red arrows).

ing algorithm based on the clustering centers obtained by
k-Means++ (KPP). In contrast to a direct utilization of
KPP cluster assignments, our approach exclusively lever-
ages clustering centers, and is reinforced by two greedy
strategies. Our procedure is illustrated in Figure 5. We de-
note n to be the group count and m = C

l

o tut/n to be the
group size (number of filters within each filter group). In
this particular visualization, we have n = 3 and m = 4. We
demonstrate the efficiency and performance advantage of
our method with wall-clock results in Table 7 and accuracy
results in Table 2, support our claims made in Section 3.2
and Section 3.1.
4.3. L2 & geometric median-based GKP
Previous methods like TMI-GKP frame the problem of
grouped kernel selection as a graph search problem, and
utilized a greedy procedure with multiple restarts. While
this procedure is generally efficient, it is still time and
resource-consuming given a layer with a large amount of
in channels. Thus, inspired by the toolsets proposed in
FPGM [20], we devise a simple combination utilizing the
L2 norm and Geometric Median-based distance to form a
lightning-fast pruning procedure, as illustrated in Figure 6.
We demonstrate the efficacy of our method with Table 7 (as
mentioned in Section 3.2).
4.4. Post-prune group count evaluation as integral opti-

mization
One primary motivation for our work is that our method
makes use of flexible group counts under a GKP proce-
dure. However, it is intrinsically challenging to evaluate
clustering quality under different group counts (e.g., previ-
ously suggested metrics like a Silhouette score [60] have
little bearing in a network pruning context). Thus, we opt
to employ an additional Geometric Median-based evalua-
tion similar to that in Section 4.3. We illustrate this pro-
cess in Figure 7 and provide a walk-through of the com-
plete LeanFlex-GKP procedure in pseudocode as Algo-
rithm 1. Given that each group count evaluation is con-

(c) Prune GKs that 
deemed Redundant

GK2
GK1

(Pruned)

GK3 GK4
(Pruned)

(d) Form Pruned 
Filter Group

GK2 GK3

(a) Given One Unpruned
Filter Group

（b) Calculate L2 Norm and
Distance to GM     for all GKs 

GK2GK1

GK3 GK4

Grouped Kernel

GK1 GK2 GK3 GK4

Filter

Figure 6. Visualization of LeanFlex-GKP L2 & Geometric
Median-based Grouped Kernel Pruning Procedure. Given an un-
pruned filter group as in (a), we first calculate the Geometric Me-
dian (GM) of its Grouped Kernels (GKs), as well as each GK’s
distance to the GM and their L2 norm. These distances and the
L2 norm are visualized in (b) as the length of black arrows and the
area of green circles, respectively. The GKs with large L2 norms
and small distances to their GMs are preserved and eventually re-
constructed to the grouped convolution format, as shown (c) to (d).

ducted on a pruned convolutional layer (after being grouped
with different Conv2d(groups)), our method makes in-
tegral connections between the (originally independent) fil-
ter grouping and grouped kernel pruning stage. Ablation
studies in Table 4 confirm the advantage of this integral op-
timization design over other alternative setups.

5. Experiments
Experiment Coverage We extensively evaluate the effec-
tiveness of our method against 25 other densely structured
pruning methods (Table 9) on architectures including Ba-
sicBlock (20/32/56/110) and BottleNeck ResNets (50/101)
[16], VGG11/13/16 [46], DenseNet40 [22], MobileNetV2
[45], and WideResNet [56]. The datasets used include CI-
FAR10/100 [25], Tiny-ImageNet [52], and ImageNet-1k
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Group 1 Group 2
Inner Distance

Outer Distance

Geometric
Median

Kept Grouped
Kernel

Figure 7. Visualization of LeanFlex-GKP Group Count Evalua-
tion. We first compute the GM among retained grouped kernels
and then calculate the inner and outer distance among them. After
a normalization w.r.t. the group count, the one with the highest
average (Outer Distance � Inner Distance) is chosen; please refer
to Appendix 9.2 for details.

[4]. Please refer to Section 11 for full details on experiment
settings.

We provide an abbreviated version of our experiments in
Table 1. For each model-dataset combination listed in Ta-
ble 1, we select the five most competitive structural pruning
methods based on their performance in final accuracy and
accuracy gain, and compare them with our method. We re-
fer our readers to Table 13 Table 21 in Section 11 for
full experiment results, and Table 10 for accuracy gap
between competitive methods and our method, where we
compare against 25 different structured pruning methods il-
lustrated in Table 9 and evaluate our methods under 21 dif-
ferent settings specified in Table 5. We also provide a series
of ablation studies in Section 10 to facilitate an anatomical
understanding of our proposed method. Additionally, we
apply our method to the UNet of SDXL-Base-1.0 for the
image generation task (see Table 12).

Report Digestion For all experiment results reported like
Table 1, DA represents if the method is data-agnostic (prun-
ing can be done without access to data), IP indicates if a
method is considered an iterative pruning method (utiliz-
ing a train-prune cycle), and RB reports recovery budget (in
terms of epochs). All other reported criteria are in terms of
%. BA and Pruned respectively report the unpruned (base-
line) accuracy and the pruned accuracy. Methods marked
with ò are drawn from their original or (third-party) repli-
cated publication; the rest are replicated by us to ensure a
fair comparison (often with an identical baseline). Gener-
ally speaking, a method that is DA ≥, IP 7, and demands a
smaller RB is likely to be more user-friendly. ⇤ MACs and
⇤ Params represent the drop of MACs/Params after pruning
(percentage of total components pruned).

In the most ideal setup, every pruning method should
be evaluated against an identical unpruned baseline with
identical MACs/Params drop. But practically, this is often
impossible due to various technical or practical challenges
(e.g., inaccessible baselines, lack of support of certain prun-
ing ratio [32], different pruning granularity and targets [60],
potential addition of architecture tweak [11]), and readers
are expected to compare the �Acc readings when methods

are pruning away similar amounts of MACs/Params upon
baselines with similar accuracies. We authors understand
the importance of evaluation alignment, where we have the
majority of our reported experiments replicated under a fair
pipeline to ensure aligned BA and RB, as well as a compara-
ble (or overpruned to our disadvantage) ⇤ MACs/Params.
To the best of our knowledge, few, if not none of the CNN
structured pruning works outside ours have paid efforts
in enforcing this alignment despite its importance.
Result Discussion We believe it is fair to conclude that
our proposed method showcases SOTA-competitive (if not
beyond) performance across comprehensive combinations
of models and datasets. Out of all 21 reported results of
LeanFlex-GKP, 18 of them showcased accuracy improve-
ments after pruning (yet, no other compared method is able
to provide positive �Acc under the three exception se-
tups), suggesting our pruning method actually helps on the
generalization of the model given a reasonable setup. We
also note the compute (MACs) and memory (Params) re-
duction of our pruned models are almost always within
1% of their assigned pruning rates (e.g., see Table 19
and Table 21), which is a useful characteristic not found
in many compared methods4. This supports one of the
hassle-free claims we made in Section 3.3. Additionally,
we would like to mention the combinations of BasicBlock
ResNets with CIFAR10 — though being some of the most
commonly evaluated combinations [2] — are potentially
getting saturated, as methods with significant performance
gaps on more difficult model-dataset combinations tend
to show little difference upon BasicBlock ResNets and
CIFAR10. Further, it is worth noting that our method
exhibits significant efficiency advantage compared to
methods with comparable accuracy performance, like
TMI-GKP [60] and NPPM [11], and this advantage be-
comes particularly pronounced as the size of the model is
enlarged (Table 7, Table 10). Given we purposely showcase
the most competitive methods in Table 1 of the main text,
sometimes the accuracy gap can be less than ideal. But we
note that this is the by-product of faithful and comprehen-
sive reporting. A closer inspection reveals no single method
is able to keep up with our LeanFlex-GKP across all fea-
tured tasks and settings as indicated in Table 10; let alone
the many hassle-free features — which are often more of a
deal breaker under practical scenarios.
6. Conclusion
Our work serves as a more performant, efficient, and user-
friendly advancement to the grouped kernel pruning gran-
ularity and can be of particular interest to both scholars of
the pruning community and end users with practical needs.

4This is evidenced by the many not-perfectly-aligned results in Table 19
and Table 21, where we tried to make all methods without the * mark —
meaning we replicated such runs under our controlled pipeline — aligned
with the pruning rate in caption, but failed to do so in multiple scenarios.
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Table 1. ABBREVIATED Experiment Results. Results in bold red indicate being the second best among comparisons. Please refer to
Section 5 for header definitions. We note that comparative methods showcased here are among the strongest methods we featured, and we
feature rather comprehensively (see Table 9).

Method DA IP RB BA Pruned �Acc ⇤ MACs ⇤ Params
VGG16 on CIFAR10 MACs ⌅ 313.4M Params ⌅ 14.7M

CC [30] 7 7 300 93.94 94.14 � 0.20 43.18 -
HRank [32] 7 ≥ 300 93.94 93.57 ⇤ 0.37 32.28 40.82
L1Norm [28] ≥ 7 300 93.94 92.88 ⇤ 1.06 42.71 37.85
KPGP* [57] ≥ 7 300 94.27 94.17 ⇤ 0.13 43.15 43.59
TMI-GKP [60] ≥ 7 300 93.94 94.07 � 0.10 43.15 43.59
LeanFlex-GKP (ours) ≥ 7 300 93.94 94.15 � 0.21 43.15 43.59

ResNet32 on CIFAR10 MACs ⌅ 69.5M Params ⌅ 0.46M

CC [30] 7 7 300 92.80 92.39 ⇤ 0.41 61.29 54.35
NPPM [11] 7 7 300 92.80 91.92 ⇤ 0.88 61.15 56.52
L1Norm-B [28] ≥ 7 300 92.80 90.01 ⇤ 2.79 62.36 67.39
SFP [18] 7 ≥ 300 92.80 90.28 ⇤ 2.52 59.74 60.65
FPGM [20] 7 ≥ 300 92.80 91.32 ⇤ 1.48 58.28 59.57
LeanFlex-GKP (ours) ≥ 7 300 92.80 92.40 ⇤ 0.40 61.56 61.74

ResNet110 on CIFAR10 MACs ⌅ 255.0M Params ⌅ 1.73M

ChipNet* [48] 7 ≥ 300 93.98 93.78 ⇤ 0.20 62.41 -
CC [30] 7 7 300 94.26 94.29 � 0.03 61.34 58.38
FPGM [20] 7 ≥ 300 94.26 94.11 ⇤ 0.15 58.35 60.17
LRF [23] 7 7 300 94.26 94.10 ⇤ 0.16 62.94 63.12
L1Norm-B [28] ≥ 7 300 94.26 94.04 ⇤ 0.22 60.29 72.25
LeanFlex-GKP (ours) ≥ 7 300 94.26 94.35 � 0.09 64.22 62.19

ResNet56 on CIFAR100 MACs ⌅ 69.5M Params ⌅ 0.46M

TMI-GKP [60] ≥ 7 300 70.85 71.11 � 0.26 43.22 43.19
CC [30] 7 7 300 71.53 71.43 ⇤ 0.10 43.52 28.52
SFP [18] 7 ≥ 300 71.53 69.80 ⇤ 1.73 44.29 44.82
NPPM [11] 7 7 300 71.53 71.57 � 0.04 33.54 13.04
FPGM [20] 7 ≥ 300 71.53 69.48 ⇤ 2.05 43.38 43.19
LeanFlex-GKP (ours) ≥ 7 300 71.53 72.11 � 0.58 43.22 43.18

ResNet110 on CIFAR100 MACs ⌅ 255.001M Params ⌅ 1.734M

TMI-GKP [60] ≥ 7 300 72.99 72.79 ⇤ 0.20 43.31 43.37
NPPM [11] 7 7 300 73.20 72.38 ⇤ 0.82 42.77 18.69
L1Norm-A [28] ≥ 7 300 73.20 69.85 ⇤ 3.35 43.74 44.41
CC [30] 7 7 300 73.20 73.21 � 0.01 43.43 19.78
LRF [23] 7 7 300 73.20 73.58 � 0.38 43.38 42.16
LeanFlex-GKP (ours) ≥ 7 300 73.20 73.63 � 0.43 43.31 43.36

ResNet56 on Tiny-ImageNet MACs ⌅ 506.254M Params ⌅ 0.865M

TMI-GKP [60] ≥ 7 300 56.13 55.52 ⇤ 0.61 37.05 36.76
L1Norm-A [28] ≥ 7 300 56.13 55.41 ⇤ 0.72 35.51 32.14
L1Norm-B [28] ≥ 7 300 56.13 55.21 ⇤ 0.92 36.43 41.04
HRank [32] 7 ≥ 300 56.13 54.16 ⇤ 1.97 37.39 30.98
LRF [23] 7 7 300 56.13 55.95 ⇤ 0.18 35.90 34.68
LeanFlex-GKP (ours) ≥ 7 300 56.13 55.67 ⇤ 0.46 37.05 36.76

ResNet50 on ImageNet-1K MACs ⌅ 4122.828M Params ⌅ 25.557M

TMI-GKP* [60] ≥ 7 100 76.15 75.53 ⇤ 0.62 33.21 33.74
ThiNet* [37] 7 ≥ 100 72.88 72.04 ⇤ 0.84 36.7 -
OTOv2* post-train) [3] 7 ≥ 120 76.13 75.38 ⇤ 0.75 37.70 26.58
FPGM* [20] 7 ≥ 100 76.13 75.04 ⇤ 1.09 35.93 28.36
KPGP* [57] ≥ 7 76.15 75.50 ⇤ 0.65 33.70 33.20
LeanFlex-GKP (ours) ≥ 7 100 76.13 75.62 ⇤ 0.51 33.06 30.34
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