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Abstract

Recently, learning signed distance functions (SDFs) from
point clouds has become popular for reconstruction. To en-
sure accuracy, most methods require using high-resolution
Marching Cubes for surface extraction. However, this re-
sults in redundant mesh elements, making the mesh incon-
venient to use. To solve the problem, we propose an adap-
tive meshing method to extract resolution-adaptive meshes
based on surface curvature, enabling the recovery of high-
fidelity lightweight meshes. Specifically, we first use point-
based representation to perceive implicit surfaces and cal-
culate surface curvature. A vertex generator is designed
to produce curvature-adaptive vertices with any specified
number on the implicit surface, preserving the overall struc-
ture and high-curvature features. Then we develop a Delau-
nay meshing algorithm to generate meshes from vertices,
ensuring geometric fidelity and correct topology. In ad-
dition, to obtain accurate SDFs for adaptive meshing and
achieve better lightweight reconstruction, we design a hy-
brid representation combining feature grid and feature tri-
plane for better detail capture. Experiments demonstrate
that our method can generate high-quality lightweight
meshes from point clouds. Compared with methods from
various categories, our approach achieves superior results,
especially in capturing more details with fewer elements.

1. Introduction

With the development of neural representations, learning
signed distance fields (SDFs) from point clouds has be-
come popular for solving the surface reconstruction prob-
lem [4, 9, 10, 20, 24, 24, 31, 34, 36]. To maximize re-
construction accuracy, these methods typically require high-
resolution Marching Cubes (MC) [21] to generate densely
packed meshes with excessive vertices and faces. This leads
to excessive memory requirements, limiting the practical
applicability of the mesh for downstream tasks like render-
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Figure 1. The comparison of our adaptive meshing method with
MC using the same element count. The input SDFs for both meth-
ods are the same. Our method achieves a curvature-adaptive dis-
tribution of vertices and generates more detailed meshes.

ing and editing. Although lightweight meshes can be ex-
tracted using MC with low-resolution grids, it often strug-
gles to recover sharp features, resulting in significant loss of
detail (See Figure 1). Recovering high-fidelity lightweight
meshes is an important and valuable challenge in surface
reconstruction from point cloud.

More recently, some learning-based methods [6, 7, 26]
are proposed to improve traditional meshing algorithms and
construct more faithful meshes with low-resolution grids.
Instead of edge interpolation in MC, they apply 3D convo-
lutions on the grids to predict vertices. Then, they modify
the meshing templates of traditional algorithms like MC and
Dual Contouring (DC) [15], or construct a Voronoi diagram
to generate the mesh. As alternatives to MC, these neural
methods improve detail preservation and can extract more
accurate low-resolution meshes. However, they still face
problems in recovering high-quality lightweight meshes:
1) Explicit geometry perception of the implicit surface is
lacking. Predicting vertices within a voxel through convo-
lution cannot guarantee accurate distribution on the zero-
value surface of SDFs, with error depending on the voxel
size. When using a low-resolution grid with a large voxel
size, these methods represent dense, continuous SDFs as
sparse, discrete structures, leading to a significant loss of
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original geometric details. In such cases, capturing varia-
tions in surface curvature becomes challenging.
2) The local resolution of mesh cannot be adjusted adap-
tively. Regular grids constrain these methods to producing
meshes with an approximately uniform vertex distribution,
resulting in globally uniform resolution. However, an ideal
lightweight mesh should have variable resolution: higher in
detailed areas and lower in flat regions. Adaptive resolution
allows for more accurate representation of geometry with
fewer elements. Yet, current meshing methods ignore this
key property for lightweight reconstruction. A resolution-
adaptive meshing algorithm is essential for extracting high-
quality lightweight meshes from SDFs.
3) The topological properties of mesh are difficult to guar-
antee. A high-quality mesh must not only preserve geomet-
ric fidelity but also ensure correct topology, including man-
ifoldness, watertightness, and non-self-intersection. This is
important for the mesh’s broad applicability in downstream
tasks. However, current learning-based methods often focus
on local vertex connectivity and lack effective constraints
on global combinations, leading to low-quality topologies.

In this paper, we present a new adaptive meshing method
to achieve high-fidelity Lightweight Mesh Reconstruction
(LMR). It generates resolution-adaptive meshes based on
surface curvature, exhibiting three important properties: 1)
Precise surface perception. We use the gradient of SDFs
to project spatial queries onto the implicit surface, captur-
ing the surface geometry and curvature information. This
point-based representation makes the implicit surface ex-
plicit and provides clear constraints for vertex generation.
2) Adaptive mesh resolution. We design a vertex generator
to initialize vertices from surface queries and learn posi-
tional refinements for them. The vertices are adaptively dis-
tributed on the implicit surface based on surface curvature,
dense in high-curvature areas and sparse in low-curvature
areas. 3) Correct mesh topology. A Delaunay meshing
algorithm is proposed to infer global vertex connectivity
from the Delaunay triangulation. It ensures that the result-
ing mesh closely approximates the implicit surface while
maintaining correct topological properties, such as water-
tightness, manifoldness, and non-self-intersection.

Moreover, to obtain accurate SDFs for adaptive mesh-
ing and achieve better lightweight reconstruction from point
clouds, we explicitly define a voxel grid and a tri-plane
within the SDF network to store learnable features related
to spatial locations. Compared with most neural implicit re-
construction methods that rely solely simple MLPs, this ap-
proach enhances the representation capability of SDF net-
work, enabling more detailed SDFs.

Extensive experiments demonstrate the superiority of
our method in recovering high-quality lightweight meshes
with complex details from point clouds. In summary, our
contributions are as follows:

• Point-based representation is used to capture the geome-
try information of implicit surface, and a vertex generator
is proposed to achieve curvature-adaptive distribution for
any specified number of vertices.

• Robust tetrahedral classification is achieved for meshing
from Delaunay triangulation, producing accurate meshes
that approximate the implicit surface while ensuring cor-
rect topology.

• Multi-geometry hybrid features from explicit grid and tri-
plane enable the capture of fine-grained details, resulting
in accurate SDFs.

• A new paradigm applies explicit adaptive meshing to im-
plicit neural representation, tackling the challenge of re-
constructing high-fidelity lightweight meshes from point
clouds.

2. Related Work
Neural Meshing. Marching Cubes (MC) [21] is a widely
used method for extracting meshes from SDFs. To improve
the meshing performance of MC at low resolutions, several
learning-based methods are proposed. They apply 3D con-
volutions on the grids to predict vertices in meshes, instead
of using edge interpolation. NMC [6] and NDC [7] improve
the meshing templates of MC and Dual Contouring (DC)
[15] by incorporating the predicted vertices. VoroMesh [26]
optimizes vertex prediction and generates meshes using the
Voronoi diagram, while PoNQ [27] employs quadric error
metric. Current neural meshing methods still rely on the
voxel-based approach, limiting their meshing capabilities
at low-resolution grids. In addition, ensuring correct mesh
topology is also a challenge for them.
Neural Implicit Reconstruction. Learning SDFs by over-
fitting a network on an unseen point cloud has become
a popular approach for surface reconstruction [5, 13, 14,
19, 23, 41, 44]. Most methods focus on designing vari-
ous constraint losses to guide the SDF optimization. How-
ever, the widely used MLP structure limits their ability to
capture fine details. To address this, GridPull [4] con-
structs a voxel grid to explicitly store SDF values, but it
is prone to artifacts caused by SDF discretization. Some
methods from multi-view neural rendering and reconstruc-
tion [16, 18, 29, 40, 43, 47, 50] demonstrate that different
explicit geometric representations have varying effects on
learning 3D geometry. Inspired by this, we introduce hybrid
learnable features to enhance detail learning while main-
taining the continuity of SDFs.
Explicit Reconstruction. Point set triangulation [3, 22, 38,
42, 48, 49] generates explicit meshes by inferring local tri-
angle connectivity from point clouds. By combining point
cloud downsampling [17, 28, 28, 30, 35], lightweight mesh
reconstruction can be achieved. However, this process of-
ten struggles to ensure the smoothness and watertightness of
meshes. Additionally, current learning-based methods of-
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Figure 2. The pipeline of our Lightweight Mesh Reconstruction (LMR). It consists of two stages: SDF learning and adaptive meshing. In
SDF learning, we use hybrid features to enhance the SDF representation. In adaptive meshing, a vertex generator creates curvature-adaptive
vertices on the implicit surface, followed by a Delaunay meshing algorithm to produce high-quality meshes. (a) SDF network architecture.
(b) Vertex generator architecture. (c) 2D example of the Delaunay meshing algorithm.

ten impose strict restrictions on the number of input/output
points, limiting their practical applicability. Nonetheless,
this explicit reconstruction process serves as inspiration for
our adaptive meshing on the implicit surface.

3. Method
Given a point cloud P (which can be unoriented), our aim is
to recover accurate geometry with a lightweight mesh. We
first fit an accurate SDF from the point cloud and then use an
adaptive meshing algorithm to extract a resolution-adaptive
mesh from the implicit surface. With a limited number of
vertex elements, the mesh resolution is adaptively adjusted
according to surface curvature, achieving lightweight, high-
fidelity, and topologically correct properties. The pipeline
of our method is shown in Figure 2.

3.1. SDF Learning
We use popular neural pulling [23] to learn SDF fθ by es-
tablishing projection relationships between spatial queries
Q and the input point cloud P . Since the gradient ∇fθ rep-
resents the direction of the fastest increase in the signed dis-
tance, a spatial query q ∈ Q can be projected onto a surface
query s ∈ S on the implicit surface with the values of fθ(q)
and ∇fθ(q):

sθ,q = q − fθ (q)×∇fθ (q) /∥∇fθ (q)∥2 (1)

where ∇fθ (q) /∥∇fθ (q)∥2 is the normalized gradient. By
minimizing the distance between s and its nearest neighbor
p in P , the SDF network θ can simultaneously learn the

correct signed distance and the gradient:

Lpull =
1

Q

∑
q∈Q

∥sθ,q − p∥ (2)

Hybrid Feature Representation. Although minimizing
Lpull can promote SDF optimization, the MLP structure
used in NeuralPull [23] limits the network’s representation
capability, leading to a loss of details in SDFs. To address
this, we explicitly introduce a voxel grid V and a tri-plane
T to store learnable features related to both spatial and pla-
nar geometry, as shown in Figure 2.a. For a spatial query q,
we obtain a 32-dimensional feature vector from V through
trilinear interpolation, and feature vectors of the same di-
mension from T (including Txy , Tyz , Tzx) through bilinear
interpolation. The summed results are further input into the
MLP gmlp as additional feature information for the query q
to learn the SDF value fθ(q). The learnable feature vectors
stored in V and T are randomly initialized and optimized as
part of the network parameters. The entire process is for-
mulated as follows:

fea(q) = TriI(q,V) +
3∑

s∈xy,yz,zx

BiI(qs, Ts) (3)

fθ(q) = gmlp(Concat(q, fea(q))) (4)

The hybrid representation combines the complementary
advantages of 3D spatial features and 2D planar features to
enhance geometric perception. It also effectively mitigates
the side effects that each representation might introduce in-
dividually. Specifically, grid features exhibit strong spatial

11741



representation ability but struggle to maintain smoothness
during the gradual refinement of the SDF, often resulting in
overfitting and artifacts. In contrast, planar features help to
refine the SDF smoothly and reduce artifact generation, but
their reduced parameter dimensions limit the representation
of local details. By combining the two features to construct
information embedding, accurate implicit surfaces with rich
fine-grained details can be effectively modeled.

3.2. Curvature-Adaptive Vertex Generation
Extracting resolution-adaptive meshes from SDFs is the key
for constructing high-fidelity lightweight meshes. To this
end, we develop an adaptive meshing algorithm that first
generates any specified number of curvature-adaptive ver-
tices on implicit surfaces and then meshes them. High-
curvature areas typically contain rich details, so the vertices
are expected to be densely distributed in these regions and
sparsely distributed in low-curvature areas.
Point-Based Representation. The generated vertices must
preserve both overall shape and salient features of the im-
plicit surface. However, since the SDF is parameterized
by a network, it is difficult to directly perceive the geom-
etry of implicit surface. To address this, we employ point-
based representation to make the implicit surface explicit.
According to Equation 1-2, the SDF fθ models the signed
distance and gradient of spatial queries Q. Therefore, the
surface queries S obtained by projection can be used to rep-
resent the implicit surface. In our method, the input point
cloud P is randomly perturbed to generate sufficient Q,
thereby ensuring a dense coverage of S on the implicit sur-
face. Farthest point sampling (FPS) is then applied to obtain
a uniform distribution of S. This point-based explicit repre-
sentation of implicit surface can provide a clear and direct
constraint for vertex generation.
Surface Curvature. Curvature information represents the
degree of change in the local surface normal. Thus, we
calculate the normal deviation of the local point set to de-
termine the curvature. Specifically, for a surface query s,
its normal n is equivalent to the normalized gradient of
the SDF. We index its K-nearest neighbors {sk, k ∈ Ns}
with normals {nk} and calculate the normal deviation {δk}
based on the cosine similarity between n and {nk}:

δk = 1− cos(n, nk) = 1− n · nk/(∥n∥ · ∥nk∥) (5)

The values {δk} reflect the change in the normal in each
direction at s, and are then weighted and summed using a
distance-based Gaussian kernel function to produce a surro-
gate for the mean curvature cs:

wk =
e−(dk)

2/σ2∑
k∈Ns

e−(dk)
2/σ2

(6)

cs =
∑

k∈Ns

wk · δk (7)

where dk = ∥s− sk∥2 is the Euclidean distance between
the query s and its neighbor sk. σ is the scaling coefficient,
taking the average of {dk}. The curvature of a surface query
is considered as the curvature on the local implicit surface,
guiding the distribution of vertices in mesh.
Vertex Generator. To obtain curvature-adaptive vertices,
we design a vertex generator, as shown in Figure 2.b. We
first use a point selector to initialize a specified number of
vertices from the surface queries S and then adaptively ad-
just their positions based on the curvature information. This
process can also be viewed as a resampling of S, preserv-
ing both the high-curvature features and the overall shape.
Since FPS provides a uniform distribution, we use it as
the point selector implementation so that the initial vertices
{vo} can well preserve the overall structure. Afterwards,
we use a neural network γ to learn a displacement for each
vo, refining the vertex positions. For convenience, Point-
TransformerV3 [46] with a plug-and-play design is used as
the backbone for γ. The final positions of predicted vertices
V = {v} are expressed as follows:

v = vo + γ(vo) (8)

To achieve curvature awareness and adaptive position re-
finement, we devise two crucial optimizations for the dis-
placement network γ. First, we minimize the distance be-
tween each surface query s ∈ S and its nearest neighbor
in vertices V , using the point curvature of s as a weighting
factor. It ensures that surface queries with large curvature
attract more vertices effectively, reducing the discrepancy
in high-curvature features between V and S. The objective
function is as follows:

Lcur =
1

S
∑
s∈S

cs ·min
v∈V

∥s− v∥2 (9)

Next, we minimize the cosine error between the normals of
V and S, ensuring that V maintains normal consistency with
S. This promotes a gradual change in vertex density and
surface normals, resulting in a smooth surface. The required
normals are computed from the normalized gradient of the
SDF. The objective function is as follows:

Lnc =
1

S
∑
s∈S

(1− cos(ns, nv′)) (10)

where
v′ = argmin

v∈V
∥s− v∥ (11)

In the last, for the final generated vertices, we addition-
ally apply projection operations based on the SDF to ensure
the accurate distribution on the implicit surface.
Progressive Upsampling. To ensure more vertices are dis-
tributed in high-curvature areas and facilitate position re-
finement, we gradually increase vertices during the opti-
mization process. Specifically, we calculate the curvature
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Figure 3. 2D example of neighborhood label constraint. Triangles
and edges in 2D correspond to tetrahedrons and faces in 3D. The
extracted surface is shown with bold black lines. Orange and gray
represent different categories. Each tetrahedron’s label matches
the predominant category of neighbors.

for vertices V according to Equation 5-7, and insert the
nearest neighbors of high-curvature vertices from surface
queries S into the existing vertices. We perform such up-
sampling at fixed intervals until the specified vertex count
is reached.

3.3. Delaunay Meshing
Given the generated vertices V and the SDF, we construct
Delaunay triangulation D to produce a triangulated mesh
with geometry fidelity and correct topology. As shown in
Figure 2.c, D constructs dense tetrahedrons connecting the
vertices in V according to strict geometric principles, with
adjacent tetrahedrons sharing a common triangular face. By
appropriate tetrahedral classification, an accurate surface
approximation can be extracted [1].
Multi-label Voting. The complex intersection between the
implicit surface and the Delaunay triangulation in space
presents challenges for tetrahedral classification. A prac-
tical approach is to classify them based on the volume of
tetrahedrons inside/outside the implicit surface, but direct
calculation proves difficult and intricate. To address this, we
propose a multi-label voting method that randomly samples
multiple reference points within each tetrahedron. Since
the point labels are easily determined based on their SDF
values, we use these labels to vote on the tetrahedral label,
assigning it to the class with the highest count. This prob-
abilistic approach avoids the need for volume calculations,
achieving simple and accurate tetrahedral classification. By
extracting the triangular faces shared by tetrahedrons of dif-
ferent labels, a watertight and non-self-intersecting mesh
can be generated.
Neighborhood Label Constraint. To ensure correct topol-
ogy, the mesh must also be manifold. We observe that non-
manifold edges are caused by the misclassification of some
narrow tetrahedrons near the implicit surface, as shown in
Figure 3. This occurs due to the non-smoothness of lo-
cal implicit surfaces. For more robust classification, we
propose a neighbor label constraint so that each tetrahe-
dron’s labeling is constrained by its neighbors. When a
tetrahedron’s four neighbors have unequal number of in-
side/outside labels, we adjust its label to match the major-
ity category, promoting more compact clustering of tetra-
hedrons within the same category. As a result, it corrects
the misclassification of narrow tetrahedrons and extracts

smoother, more manifold surface.

3.4. Losses
For our SDF network, we adopt the loss Lpull defined in
Equation 2 as the primary optimization objective. To en-
force gradient consistency and enable more accurate spatial
projection, we introduce an additional loss Lgrad to align
the gradients of spatial queries Q and surface queries S.

Lgrad =
1

Q
∑
q∈Q

1− cos(∇fθ(q),∇fθ(s)) (12)

where s ∈ S is the surface query corresponding to q. Then
our total loss function for SDF learning is:

Lsdf = λ1Lpull + λ2Lgrad (13)

For the displacement network in our vertex generator, we
adopt the losses Lcur and Lnc defined in Equation 9 and
10 to guide the optimization. They ensure vertices V con-
centrate in high-curvature areas and promote smooth distri-
bution. Moreover, to ensure that V closely adheres to the
implicit surface while maintaining overall shape, we further
constrain the chamfer distance between V and the surface
queries S with the loss Lcd as follows:

Lcd =
1

S
∑
s∈S

min
v∈V

∥s− v∥2 + 1

V
∑
v∈V

min
s∈S

∥s− v∥2 (14)

Finally, to prevent V from clustering too densely in high-
curvature areas, we introduce a repulsion loss Lrep. This
also ensures the vertices are evenly distributed and helps
maintain uniform angles of triangles in the mesh.

Lrep = − 1

V
∑
vi∈V

min
vj∈V,vi ̸=vj

∥vi − vj∥2 (15)

Then our total loss function for vertex generation is:

Lvg = λaLcur + λbLnc + λcLcd + λdLrep (16)

4. Experiments
4.1. Experimental Setting
Datasets and Metrics. We conduct experiments on four
challenging datasets, including Stanford [11], Thingi10K
[51], SRB [45] and ScanNet [12]. For evaluation, we use the
most common metrics with 100k points sampled on meshes,
ie., chamfer distance (CD), normal consistency (NC), and
F1-score (F1). Additionally, to evaluate feature preserva-
tion, the L1 curvature error (CE) is calculated as proposed
by Mark Pauly [33]. We also evaluate the percentage of
meshes that exhibit correct topology (CT), defined by three
properties: watertightness (W), manifoldness (M), and non-
self-intersection (NS). In our tables, when the correct topol-
ogy cannot be ensured (i.e., the CT value is not 1.0), we
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Method CD ↓ NC ↑ F1 ↑ CE ↓ CT ↑ Vertex Face
(10−5) (10−3) W/M/NS (103) (103)

DMTet [39] 4.912 0.937 0.793 0.637 1.0 7.4 14.8
MC [21] 1.167 0.952 0.854 0.709 1.0 5.4 10.8
NDC [7] 0.849 0.961 0.908 0.312 1.0/0.1/0.1 5.4 10.8
NMC [6] 0.776 0.969 0.923 0.197 0.0/0.0/0.0 36.8 73.6
VoroMesh [26] 1.021 0.939 0.906 0.585 1.0 39.4 78.9
PoNQ [27] 0.758 0.971 0.924 0.201 1.0/0.5/1.0 20.4 40.9
Ours-lite 0.752 0.976 0.930 0.124 1.0 5.4 10.8
Ours 0.682 0.985 0.938 0.067 1.0 20.4 40.9

DMTet [39] 14.488 0.883 0.530 1.119 1.0 1.9 3.8
MC [21] 9.089 0.905 0.604 0.859 1.0 1.3 2.6
NDC [7] 6.390 0.920 0.745 0.829 1.0/0.2/0.4 1.3 2.6
NMC [6] 5.188 0.936 0.796 0.653 0.1/0.2/0.0 8.7 17.3
VoroMesh [26] 2.825 0.902 0.758 0.817 1.0 9.9 19.9
PoNQ [27] 1.344 0.942 0.810 0.575 1.0/0.6/1.0 5.0 10.0
Ours-lite 1.301 0.958 0.832 0.315 1.0 1.3 2.6
Ours 0.755 0.975 0.929 0.126 1.0 5.0 10.0

Table 1. Quantitative comparison on Thingi10K. Above the dou-
ble horizontal line, the comparison methods use a grid resolution
of 64, while below, their grid resolution is set to 32. In addition,
the comparison methods use GT SDF values for meshing, while
our method uses learned SDFs from point clouds. Best accuracy
results are highlighted as first and second .

separately present the percentage of meshes that meet each
of the three sub-metrics. In addition, the number of vertices
and faces in meshes are also counted.
Implement Details. Our SDF network follows the set-
tings of NeuralPull [23] and performs for 20k iterations. In
our vertex generation, the displacement network iterates 6k
times for each object and the learning rate is set to 0.001.
We perform vertex upsampling every 1k iterations, increas-
ing the number of vertices by 20% each time, for a total
of five times. Surface queries S are downsampled to 0.5M
points by FPS, and the number of K-nearest neighbors for
curvature calculation is set to 32. Additionally, during the
meshing process, the number of reference points sampled
inside the Delaunay tetrahedron is set to 101 to ensure suf-
ficiency. The weight parameters {λ1, λ2} in the loss Lsdf

are set to {1, 0.001}, and {λa, λb, λc, λd} in the loss Lvg

are set to {100, 100, 1, 1}.

4.2. Meshing Comparison
To evaluate the ability of our method in reconstructing
lightweight meshes, we first compare the results with dif-
ferent meshing methods using the same number of mesh el-
ements. Classic MC [21] and recent neural meshing meth-
ods are compared, including DMTet [39], NMC [6], NDC
[7], VoroMesh [26], and PoNQ [27]. Following the settings
of VoroMesh, we conduct experiments on a subset of the
Thingi10K dataset [51], which contains 30 complex shapes.
To increase the challenge, we use the ground truth (GT)
SDF values generated from the GT meshes as input for the
comparison methods, while our method learns SDFs using
100k unoriented points sampled on the meshes.

Since current meshing methods still rely on voxel grids,
we extract their surfaces with grid resolutions of 64 and 32
for evaluation, as presented in Table 1. Instead, our method

PoNQ OursDMTet VoroMeshNMCNDC Ground Truth

Ground TruthOurs Ours/topologyPoNQ PoNQ/topology

Figure 4. Visual results on Thingi10K at a grid resolution of 32.PoNQ OursDMTet VoroMeshNMCNDC Ground Truth

Ground TruthOurs Ours/topologyPoNQ PoNQ/topology
Figure 5. Visual comparison of our method with PoNQ. The blue
dots represent vertices. Our method generates curvature-adaptive
vertices, capturing more details with the same number of elements.

can freely set the number of mesh elements. For a fair com-
parison, the number of elements in each of our meshes is
set to be the same as that in PoNQ, which performs the best
among comparison methods. In addition, since the num-
ber of mesh elements generated by MC, DMTet, and NDC
at the same grid resolution is significantly fewer than that
of other methods, we match the number of our mesh el-
ements with that of MC for a more comprehensive com-
parison, denoted as ’Ours-lite’. The results show that our
method demonstrates significant advantages in lightweight
mesh reconstruction and stronger robustness against reso-
lution reduction. In terms of curvature error (CE) on low-
resolution meshes, our method outperforms PoNQ by 78%,
while ’Ours-lite’ achieves a 45% improvement with only
1/4 of the elements, demonstrating superior preservation of
detailed features. The visual results in Figure 4 and 5 also
provide convincing evidence. Notably, the SDFs used in our
method are learned from unoriented point clouds, whereas
other methods rely on the GT data. Despite this, more
sharpness and detail are recovered by our method, demon-
strating superior capability in reconstructing lightweight
meshes. As another important advantage, our method pro-
duces meshes with correct topology, ensuring watertight-
ness, manifoldness, and non-self-intersection.

4.3. Implicit Reconstruction Comparison
In Section 4.2, we provide GT SDF values as input for
the comparison meshing methods to increase the challenge.
However, learning SDFs from point clouds is inherently
challenging. To further evaluate the ability of our method
in lightweight reconstruction, we compare our lightweight
meshes with dense meshes produced by various neural im-
plicit reconstruction methods. We conduct experiments on
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Method CD ↓ NC ↑ F1 ↑ CE ↓ Vertex Face
(10−5) (10−3) (104) (104)

PCP [25] 3.767 0.938 0.742 1.732 98.8 197.6
NeuralIMLS [44] 1.072 0.957 0.933 0.442 60.9 121.8
GridPull [4] 1.063 0.943 0.874 0.422 32.2 64.5
DiGS [2] 0.698 0.957 0.950 0.542 138.3 276.6
PINC [32] 0.631 0.962 0.950 0.557 124.0 248.0
NeuralPull [23] 0.606 0.963 0.950 0.329 89.6 179.3
Ours / MC512 0.558 0.967 0.958 0.106 86.8 182.6
Ours / AM15% 0.558 0.969 0.959 0.113 12.6 25.1
Ours / AM10% 0.559 0.968 0.959 0.125 8.6 17.2
Ours / AM5% 0.560 0.966 0.959 0.154 4.4 8.9

Table 2. Quantitative comparison on the Stanford dataset. The
compared methods and ’Ours / MC512’ use 512-resolution MC to
extract dense meshes, while ’Ours / AM’ uses adaptive meshing
(AM) to extract lightweight meshes, with three different vertex
count ratios compared to our dense meshes. Best accuracy results
are highlighted as first , second , third and fourth .

Ours Ground TruthNeuralPull GridPullPINCDiGS Ours(MC512)

Ours / AM5% Ground Truth

NeuralPull / MC512PINC / MC512DiGS / MC512 GridPull

Ours / MC512
Figure 6. Visual comparison on the Stanford dataset.

the Stanford dataset [11] consisting of challenging data with
complex details. Each object is sampled 200k unoriented
points, and recent neural implicit reconstruction methods
are compared, including NeuralPull [23], PCP [25], DiGS
[2], NeuralIMLS [44], GridPull [4], and PINC [32].

To maximize reconstruction accuracy, we first use a reg-
ular 512-resolution MC for all methods to extract dense
meshes. As shown in Table 2, they all result in a large num-
ber of mesh elements. Next, we use our adaptive meshing
(AM) to extract lightweight meshes for comparison, setting
the vertex counts to 15%, 10%, and 5% of those in our dense
mesh. Despite using significantly fewer mesh elements,
our adaptive mesh still achieves competitive results com-
pared to high-resolution MC. It also exhibits strong robust-
ness to variations in the number of mesh elements. Com-
pared to the dense meshes produced by other methods, our
method achieves superior results even with only 5% of the
element count. A visual comparison is shown in Figure 6.
The significant advantages in detail preservation highlight
our method’s ability to reconstruct high-fidelity lightweight
meshes from point clouds.

4.4. Explicit Reconstruction Comparison
Another manner for reconstructing lightweight meshes is
to combine point cloud downsampling with point set tri-

Method CD ↓ NC ↑ F1 ↑ CE ↓ CT ↑
(10−5) (10−3) W/M/NS

FP
S

Ball pivoting [3] 4.931 0.920 0.696 0.809 0.0/1.0/1.0
PointTriNet [38] 4.004 0.942 0.712 0.348 0.0/1.0/1.0
DSE [37] 4.100 0.934 0.722 0.767 0.0/1.0/1.0

M
S

[8
] Ball pivoting [3] 5.433 0.923 0.672 0.799 0.0/1.0/1.0

PointTriNet [38] 4.135 0.935 0.696 0.413 0.0/1.0/1.0
DSE [37] 4.246 0.925 0.696 1.002 0.0/1.0/1.0

Ours 2.561 0.964 0.747 0.211 1.0

Table 3. Quantitative comparison on the SRB dataset. ’MS’ repre-
sents MetaSample. All results have the same number of vertices.
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Figure 7. Visual results on the SRB dataset. Our vertices achieve a
curvature-adaptive distribution, allowing the resulting lightweight
meshes to well preserve edges and sharpness.

angulation. In contrast to such fully explicit methods,
our method learns SDFs and adaptive meshing from point
clouds, organically integrating explicit and implicit recon-
struction. To further evaluate our method, we construct ex-
periments on the SRB dataset [45], which includes noisy
and complex real scans. Various combinations of point
cloud downsampling and point set triangulation methods
are compared. For downsampling, we use the classic FPS
and the recent learning-based method MetaSample [8]. For
triangulation, we use the classic Ball pivoting [3] and re-
cent learning-based methods, including PointTriNet [38]
and DSE [37]. The number of downsampled points is set to
5k, and our method generates the same number of vertices.
The comparison results are shown in Table 3 and Figure
7. Our method significantly improves reconstruction accu-
racy and smoothness, with the generated vertices adaptively
distributed along edges and high-curvature regions. In ad-
dition, our method well addresses the challenge of ensuring
correct mesh topology in explicit reconstruction.

4.5. Extensions and Ablation Studies

Scalability. To evaluate the ability of our method to re-
construct large-scale scenes, we conduct experiments using
1 million points sampled from ScanNet [12]. In Figure 8,
the left side shows the dense meshes of NeuralPull [23],
GridPull [4], and our method using 512-resolution MC to
compare the accuracy of SDF modeling. The right side
compares the lightweight meshes generated by our adaptive
meshing (AM) and 128-resolution MC with the same num-
ber of elements. The significant advantages in both compar-
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NeuralPull / MC512 GridPull / MC512 Ours / MC512 Ours / MC128 Ours / AM
Figure 8. Visual results on Scannet. ’MC512’ represents 512-resolution MC, used to extract dense meshes for comparing the learned SDFs.
’MC128’ and ’AM’ refer to 128-resolution MC and our adaptive meshing, both of which generate the same number of mesh elements.
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Figure 9. Visual comparison of our adaptive meshing (AM) and
32-resolution MC across different neural implicit reconstruction
methods. Both have the same number of mesh elements.

isons demonstrate the good scalability of our method. More
comparisons are shown in the supplementary material.
Universality of Adaptive Meshing. We apply the proposed
adaptive meshing (AM) algorithm to two early neural im-
plicit reconstruction methods, Siren [41] and IGR [14], to
verify its universality. For a fair comparison, we generate
the same number of mesh elements as MC at a resolution
of 32. The lightweight meshes of both methods extracted
from the SDFs are shown in Figure 9. Our method effec-
tively captures high-curvature features on the implicit sur-
face, preserving fine structures and sharp edges.
Ablation Study of Vertex Generator. Table 4 evaluates
the impact of various components within our vertex genera-
tor on the Thingi10K dataset [51]. FPS is the point selector
implementation that initializes vertices from surface queries
S. Lcur and Lnc represent the two key losses that guide the
displacement network γ to learn the adaptive movement of
vertices. It is evident that each loss enables the vertices to
learn better position refinements, resulting in a more accu-
rate mesh. Moreover, the significant improvement in accu-
racy of Model-IV compared to Model-I demonstrates that
curvature-adaptive vertex distribution plays a crucial role in
realistic lightweight mesh construction. PU is our progres-
sive upsampling strategy, which further enhances the high-
quality representation of meshes.
Ablation Study of SDF Network. To justify the effective-
ness of our proposed hybrid features in SDF network θ, we
conduct ablation experiments on the Stanford dataset [11].

Method FPS Lnc Lcur PU CD ↓ F1 ↑ CE ↓
(10−5) (10−3)

Model-I ✓ 0.9643 0.8929 0.1586
Model-II ✓ ✓ 0.8551 0.9198 0.1421
Model-III ✓ ✓ 0.8147 0.9194 0.1370
Model-IV ✓ ✓ ✓ 0.7989 0.9267 0.1344
Ours ✓ ✓ ✓ ✓ 0.7550 0.9292 0.1256

Table 4. Ablation experiments about vertex generator.

w/o both w / grid w / tri-plane w / both

CD (10−5) ↓ 0.5894 0.8282 0.5639 0.5580
CE (10−3) ↓ 0.3052 0.1269 0.2053 0.1059

Table 5. Ablation experiments about SDF network.

The grid features and tri-plane features are removed sepa-
rately to test the effect of each component. Table 5 shows
the quantitative results of high-resolution meshes extracted
by 512-resolution MC. Grid features capture details better
than tri-plane features, leading to lower curvature error (CE)
values. However, they show lower accuracy in terms of
chamfer distance (CD), due to the introduction of overfitting
and artifacts. In contrast, hybrid features effectively avoid
these issues and preserve detailed representations, leading
to overall performance improvements.

5. Conclusion
We introduce a new solution for high-fidelity Lightweight
Mesh Reconstruction (LMR) from point clouds. At its core,
an adaptive meshing method accurately perceives the ge-
ometry of implicit surfaces in SDFs and extracts resolution-
adaptive meshes based on surface curvature. This enables
the recovery of precise geometry with fewer mesh elements.
Moreover, a hybrid representation effectively enhances de-
tail capture in SDFs, contributing to better lightweight re-
construction. We hope this work provides new perspectives
and insights to assist the community in addressing some re-
construction challenges in practical applications.
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