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Abstract

Self-supervised learning (SSL) models are vulnerable to
backdoor attacks. Existing backdoor attacks that are ef-
fective in SSL often involve noticeable triggers, like col-
ored patches or visible noise, which are vulnerable to hu-
man inspection. This paper proposes an imperceptible and
effective backdoor attack against self-supervised models.
We first find that existing imperceptible triggers designed
for supervised learning are less effective in compromising
self-supervised models. We then identify this ineffective-
ness is attributed to the overlap in distributions between
the backdoor and augmented samples used in SSL. Building
on this insight, we design an attack using optimized trig-
gers disentangled with the augmented transformation in the
SSL, while remaining imperceptible to human vision. Ex-
periments on five datasets and six SSL algorithms demon-
strate our attack is highly effective and stealthy. It also
has strong resistance to existing backdoor defenses. Our
code can be found at https://github.com/Zhang-
Henry/INACTIVE.

1. Introduction
In recent years, Self-Supervised Learning (SSL) has be-
come a powerful approach in deep learning, enabling the
learning of rich representations from vast unlabeled data,
thus avoiding manual labeling. SSL aims to develop an
image encoder that produces similar embeddings for sim-
ilar images by applying various augmentations to the same
image. This pre-trained encoder can be used for different
downstream tasks by training compact downstream classi-
fiers with relatively few parameters.

Although SSL has been extensively used in the develop-
ment of foundational models [5, 6, 20], it is at risk of back-
door attacks [27, 34, 56, 68], where the attacker embeds
hidden malicious behavior within the encoder. The back-
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door can be inherited to the downstream task. The down-
stream classifier predicts a specific target label if the input
contains a pre-defined backdoor trigger. Existing backdoor
attacks on SSL such as BadEncoder [27] achieve high at-
tack success rates (ASR). However, a common drawback of
these effective attacks is that their trigger patterns are ob-
vious, making them susceptible to human inspection. More-
over, while data-poisoning-based attacks CTRL [34] and
BLTO [63] are relatively stealthy, their ASRs are subop-
timal, For example, on CIFAR10 CTRL only has 61.90%
ASR under BYOL framework and BLTO only has 84.63%
ASR under SimSiam framework. Furthermore, they also
rely on the downstream dataset matching the pre-training
dataset distribution, limiting effectiveness across diverse
datasets. In this paper, we aim to propose a backdoor attack
in SSL that is both effective and stealthy to human vision
without this distribution dependency.

There are various invisible triggers designed for
the backdoor attacks on supervised classifiers, such as
WaNet [47], ISSBA [36], and filter attack [42]. A straight-
forward way to achieve imperceptible backdoor attacks in
SSL is by directly applying these invisible triggers. How-
ever, these existing invisible triggers designed for super-
vised learning do not perform as well in attacking self-
supervised models (see Fig. 2). We then find that this lack of
effectiveness is due to the overlapping distributions between
the backdoor samples and the augmented samples utilized
in SSL. Namely, self-supervised models cannot effectively
distinguish the distribution of the backdoor samples and the
augmented samples, due to the similarity between the trans-
formation altered by the backdoor trigger and intrinsic im-
age augmentations in SSL, such as RandomGrayscale and
ColorJitter (see Fig. 3).

Based on the above observations, we developed a back-
door attack that disentangles its optimized trigger transfor-
mation and the augmented transformation in SSL. In detail,
it involves increasing the distributional distance between
backdoor samples and the augmented samples in the SSL
process. We also keep the trigger stealthy by adding the
constraints on both pixel-space and feature-space distance
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Figure 1. Comparison of clean, backdoored samples created by Patch trigger used by BadEncoder [27] and DRUPE [68], Instagram
filter trigger [30], ISSBA trigger [36], WaNet trigger [47] and ours. Except for DRUPE, the ASRs are tested under the threat model of
BadEncoder. Residuals are the difference between clean and backdoored images. Our method achieves the highest ASR while maintaining
trigger stealthiness, while other methods either have a much lower ASR or use more easily detectable triggers.
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Figure 2. Existing imperceptible backdoor triggers, which yield
high ASR in supervised learning (SL), do not perform as effec-
tively in SSL. The attack framework for SL and SSL are standard
backdoor poisoning [17] and BadEncoder [27], respectively.

to the original samples, using metrics like SSIM, PSNR,
perceptual loss, and Wasserstein distance. We then im-
plemented our prototype INACTIVE (INvisible bACkdoor
aTtack In self-superVised lEarning) and tested it on five
datasets (i.e., CIFAR10, STL10, GTSRB, SVHN, Ima-
geNet), and across six classic SSL frameworks (i.e., Sim-
CLR [6], MoCo [20], BYOL [16], SimSiam [7], SwAV [4]
and CLIP [53] (See Tab. 1 and Tab. A1) with their various
augmentation transforms (See Tab. A5). The results demon-
strate that our method is highly effective and stealthy. In
detail, it achieves an average of 99.09% ASR (See Tab. 1),
0.9763 SSIM, 41.07 PSNR, 0.0046 LIPIS, 0.9751 FSIM,
and 13.281 FID (See Tab. A9). As shown in Fig. 1, we
compare several methods’ backdoor residuals and ASRs.
Our method exhibits the highest ASR while maintaining
the highest stealthiness. It also effectively bypasses ex-
isting backdoor defenses such as DECREE [13], Beat-
rix [44], ASSET [48], STRIP [14], Grad-CAM [58], Neural
Cleanse [72], and various noise, i.e., JPEG compression,
Poisson noise, and Salt&Pepper noise.

Our contributions are summarized as follows: ① We ob-
served that existing imperceptible triggers designed for su-

pervised classifiers have limited effectiveness in SSL. ②
We find that the reason behind such ineffectiveness is the
coupling feature-space distributions for the backdoor sam-
ples and augmented samples in the SSL models. ③ Based
on our findings, we propose an imperceptible and effective
backdoor attack in SSL by disentangling the distribution of
backdoor samples and augmented samples in SSL, while
constraining the stealthiness of the triggers during the opti-
mization process. ④ Extensive experiments on five datasets
and six SSL algorithms with different augmentation ways
demonstrate our attack is effective and stealthy, and can also
be resilient to current SOTA backdoor defense methods.

2. Related Work
2.1. Self-Supervised Learning

The goal of SSL is to leverage a large amount of unla-
beled data in the pre-training dataset to pre-train an im-
age encoder, which can then be used to create classifiers
for various downstream tasks with a smaller set of labeled
data [68]. SSL pipelines for contrastive learning typically
include the following approaches [18, 26]: ① Negative
Examples: Promotes proximity among positive examples
while maximizing the distance between negative examples
in the latent space, as seen in SimCLRs [6] and MoCo [20].
② Self-distillation: Utilizes two identical Siamese networks
with different weights to increase the similarity between dif-
ferently augmented versions of the same image, such as in
BYOL [16] and SimSiam [7]. ③ Clustering: Implements a
clustering mechanism with swapped prediction of represen-
tations from both encoders, as in SwAV [4]. Our method
is shown to be highly effective and stealthy under the SSL
algorithms in Tab. 1 and Tab. A1.

2.2. Backdoor Attacks

Backdoor attacks were initially proposed for supervised
learning (SL) to modify a model’s behavior on specific in-
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puts or classes while keeping its general performance in-
tact [2, 15, 33, 45, 51, 67, 77, 84, 85]. Early backdoor
attacks commonly utilized visible triggers like distinctive
patches that are easily detectable through visual inspec-
tion [17, 59, 64]. To enhance stealth, subsequent research
introduced invisible triggers, which are subtle and blend
into the background, helping these attacks evade both hu-
man inspection and certain automated defenses [36, 47].

Since many of these attacks rely on labeled data, re-
cent studies have explored alternative backdoor implanta-
tion techniques in SSL models [3, 27, 39, 56, 63]. How-
ever, these typically use a visible backdoor trigger, such as
a patch, making them prone to human detection and model
simulation. The advantage of invisible triggers in SSL is
clear: they improve attack stealth, bypassing some con-
ventional defenses that focus on detecting visible anoma-
lies [13, 69]. However, as we will demonstrate, directly
applying existing invisible triggers designed for SL to SSL
tasks results in limited attack effectiveness. Moreover,
backdoor attacks in SSL are generally divided into two
types: training-time backdoor injection attacks like BadEn-
coder [27], which require control of the training in the
backdoor injection process, and data-poisoning-based at-
tacks like CTRL [34] and BLTO [63], which rely on poi-
soned data without needing model specifics. BadEncoder
modifies a pre-trained encoder to embed triggers that cause
targeted misclassifications in downstream tasks. By align-
ing the features of triggered images with an attacker-chosen
class, downstream classifiers misclassify triggered inputs
while maintaining accuracy on clean data. Although CTRL
and BLTO are relatively stealthy, they achieve lower ASRs
than our method and depend on the downstream dataset
matching the pre-training distribution, limiting their ver-
satility across diverse datasets. In this paper, we focus on
training-time backdoor injection attack due to it has higher
attack effectiveness and transferability.

2.3. Backdoor Defenses

Various defenses have been developed against backdoor
attacks [8, 23, 32, 43, 49, 50, 52, 76, 78, 81, 83], pri-
marily targeting supervised classifiers. These defenses ei-
ther prevent attacks during training [22, 24, 70, 74] or de-
tect and mitigate backdoors in compromised models of-
fline [37, 42, 60, 65, 66, 75, 80, 89]. Some methods also
detect backdoor-triggered inputs during inference [14]. De-
fense methods like DECREE [13], Beatrix [44], and AS-
SET [48] are designed for SSL, primarily relying on the
visible characteristics of triggers to detect backdoors. In
contrast, our method uses invisible triggers, effectively by-
passing these defenses by breaking their reliance on visual
anomalies and making detection more challenging.

WaNet
Augment

Figure 3. t-SNE visualization of the feature space in the inherent
augmentation and backdoor trigger space. The SimCLR [6] pre-
trained model struggled to differentiate between backdoor samples
injected with the WaNet trigger [47] and the augmented samples
within the SimCLR contrastive learning framework.

3. Observations and Analysis
Invisible Trigger Designed for SL Fails in SSL. We
first assess the effectiveness of existing invisible triggers
(WaNet, ISSBA, and filter attack) designed for supervised
classifiers. Fig. 2 displays their ASRs on both supervised
classifiers and self-supervised models. For supervised clas-
sifiers, the standard backdoor poisoning method [17] is
used. For self-supervised models, we apply the BadEncoder
method, replacing the patch trigger with these invisible trig-
gers, using ResNet18. We find that these triggers, which
achieve high ASR in supervised learning, are less effective
in SSL. We then investigate the underlying reason for these
results and focus on the following research question: Why
does the effective invisible backdoor trigger designed for
supervised learning fail on self-supervised learning?
Cause of the Failure: Entanglement of the Inherent
Augmentations and Backdoor Trigger. We find that the
entanglement of the inherent augmentations in contrastive
learning can cause the failure of the backdoor injection with
such triggers. We provide our analysis in this section. One
of the core training losses of contrastive learning can be for-
mulated as maximizing the feature space similarity between
the augmented samples modified from the same training
samples:

argmax
θF

s(Fθ(A1(x)),Fθ(A2(x))) (1)

where s(·, ·) denotes the similarity measurement, Fθ is the
encoder in training (θF is its parameters), x is the train-
ing sample, A1 and A2 are different augmentations sam-
pled from the predefined augmentation space SA. Differ-
ent from the predefined augmentation space, we also define
the learned augmentation space for trained encoders S ′A as
the space including a set of transformations where any pair
within it can achieve high pairwise similarity on augmented
versions of the same sample when processed by the trained
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encoder. We also define perfectly-trained encoder is the en-
coder that achieves maximal similarity described in Eq. 1
for all samples and all possible transformations used, i.e.,
s(Fθ(A1(x)),Fθ(A2(x))) = 1,∀x ∈ X ,∀A1,A2 ∈ SA,
where X is the input space. Based on this, we have the
following theorem:

Theorem 3.1. Given a perfectly-trained encoder Fθ based
on the augmentations sampled from predefined augmenta-
tion space SA, it is impossible to inject a backdoor with
trigger function I ∈ SA.

The proof of this theorem can be found in the Sec. A4. In
practice, the boundary of the learned augmentation space
for trained encoders S ′A is often imprecise, and it poten-
tially reflects a relaxation of the predefined augmentation
space. Consequently, using trigger functions that are not
precisely within the predefined augmentation space SA but
are instead distributionally close to it can also make achiev-
ing high attack success rates hard.
Empirical Evidence. We also conduct experiments to con-
firm the invisible triggers designed for supervised learning
are actually entangled with the inherent augmentations in
self-supervised learning. Specifically, we use a ResNet18
pre-trained with SimCLR for a binary classification task to
differentiate between samples poisoned by WaNet and those
augmented by SimCLR. We ensure consistent feature rep-
resentations for clean samples between the backdoored and
clean models using utility loss from Jia et al [29]. Results
indicate that the models struggle to differentiate between
the two categories. A t-SNE visualization of their features,
as presented in Fig. 3, indicates a significant overlap and
entanglement. From this, we infer that the diminished ef-
fectiveness of supervised backdoor attack methods in SSL
scenarios is attributed to the distributional similarity be-
tween the features of contrastive-learning-augmented sam-
ples and backdoor samples. The reason for the entangle-
ment phenomenon on the invisible backdoor trigger is that
the learned augmentation space reflects a relaxation of the
predefined augmentation space, and such relaxation covers
most of the invisible minor transformations. Thus, we aim
to search for invisible transformations that can escape the
inherent augmentation space.

4. Attack Design
4.1. Threat Model

We follow the well-defined training-based backdoor injec-
tion threat model introduced in BadEncoder [27].
Objectives of the Attacker. The objective of an attacker is
to implant backdoors into a pre-trained image encoder by
SSL. We define a backdoored image encoder model as Fθ
and the backdoor injector as Iϕ. In this way, a downstream
classifier trained based on Fθ, which we define as Cϵ, could

produce a specific prediction c designated by the attacker
for inputs x implanted with a trigger chosen by the attacker.
The formal definition is shown as follows. y here means the
correct label of the input x.

Cϵ(Fθ(x)) = y, Cϵ(Fθ(Iϕ(x))) = c (2)

The attacker’s goal is to modify a clean image encoder
to create a backdoored version that meets two key objec-
tives: ① Effectiveness: The backdoored model should main-
tain a high attack success rate while preserving accuracy in
benign conditions, keeping backdoored accuracy close to
clean accuracy for downstream classifiers. ② Naturalness
and Stealthiness: The triggered sample should appear au-
thentic and natural to avoid detection by human inspection.
Attacker’s Knowledge and Capabilities. Following
BadEncoder [27], we assume that the attacker has access to
a pre-trained clean image encoder and the attacker has full
knowledge about the pre-trained encoder, such as the SSL
method and the detailed contrastive augmentation operation
used in pre-training. Additionally, it is presumed that the at-
tacker can access a collection of unlabeled images, referred
to as shadow dataset. The attacker is also assumed to have
access to a few images from the Internet, called reference
inputs, for each combination of a target downstream task
and a target class. We assume that the attacker can manipu-
late the training procedure to create an encoder with embed-
ded backdoors. Accordingly, the attacker also has access to
the augmentation transforms used to pre-train the encoder,
which can be utilized in INACTIVE to generate stealthy
and effective backdoor triggers. However, we assume that
the attacker cannot interfere with the training process of
these downstream classifiers, such as the training dataset,
model framework, and weights. Unlike data-poisoning-
based methods such as CTRL [34] and BLTO [63], our ap-
proach does not rely on matching distributions between pre-
training and downstream datasets, allowing for broader ap-
plicability without interfering in downstream training data,
models, or weights.

4.2. Overarching Idea

According to the previous observations, the key to enhanc-
ing the ASR in SSL is to disentangle the two overlapping
distributions of the backdoor and augmentation transforma-
tion in the contrastive learning of the SSL’s pre-training
stage. Gray Scaling and Color Jittering are necessary aug-
mentations used in the self-supervised learning and most of
existing SSL methods (e.g., SimCLR [6], MoCo [20], Sim-
Siam [7] and BYOL [16]) use them. A detailed summary of
the augmentation operations in different mainstream SSL
methods can be found in Tab. A5. Since these augmen-
tations primarily alter the color semantics of inputs, HSV
and HSL color spaces serve as ideal input spaces for cap-
turing and enlarging these effects [28]. We aim to identify
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a trigger that escapes the inherent augmentation space of
self-supervised learning by increasing the distance between
backdoored samples and non-backdoored samples within
the HSV and HSL color spaces. Since we already know the
augmentation ways in the pre-training stage, thus we design
Ldisentangle to quantify the distributional gap between images
in the two batches, which involves measuring the difference
in color characteristics. To further enlarge the distributional
gap, we design Lalignment to pull close the features of back-
door images and reference images. Moreover, while we try
to expand the distributional difference between the back-
door trigger and the augmentation transformation, an ex-
cessively large gap might result in a significant divergence
between the backdoored image and the original one. This
could, in turn, diminish the naturalness of the backdoored
image and reduce the stealthiness of the trigger. Hence we
design Lstealthy to blend the backdoor seamlessly with the
original image.

4.3. Our Approach: INACTIVE

In our context, we refer to a clean pre-trained image en-
coder and its backdoor-injected one as Fθ and F ′θ. Given
any pair of a downstream task and its corresponding target
class, labeled as (Ti, yi), the attacker gathers a collection of
reference inputs denoted by Ri = {xi1, xi2, . . . , xiri} from
the specified target class yi, where ri represents the number
of reference inputs for (Ti, yi), with i = 1, 2, · · · , t. More-
over, for each pair (Ti, yi), the attacker chooses a trigger ei
to implant into samples in the shadow dataset Ds. We de-
note a clean input x embedded with a trigger as x′, which
is called a backdoored input.
Enhancing Distributional Gap Between Backdoor Im-
ages and Augmented Images. To effectively enlarge the
distributional distinction between the backdoor and the aug-
mentation in SSL, we design Ldisentangle for scenarios where
augmentation transformations might weaken or obscure the
pattern of backdoor triggers, leading to a decrease in the
ASR. Utilizing Ldisentangle ensures that the distinctiveness of
the backdoor is maintained even in the face of various image
transformations. The disentangle loss is defined as follows.

Ldisentangle =
− 1
|Ds|

∑
x∈Ds

∥H (x′)−H(x̃)∥2 + ∥S (x′)− S(x̃)∥2

+ ∥V (x′)− V (x̃)∥2 + ∥L (x′)− L(x̃)∥2,
(3)

where H ,S,V ,L denote Hue, Saturation, Value, and
Lightness from HSV and HSL color spaces. We denote
an input x augmented by the transformations used in the
encoder’s pre-training stage as x̃. |Ds| denotes the sample
number in the shadow dataset. ∥u− v∥2 denotes the ℓ2 dis-
tance between sample u and sample v.
Feature Alignment Between Backdoored and Reference
Images. Following BadEncoder, we enhance the backdoor

attack effectiveness by making the compromised image en-
coder outputs similar feature embeddings for any sample
injected with backdoor x′ in the shadow dataset Ds and the
reference inputs Ri of a pair (Ti, yi). Consequently, a com-
promised downstream classifier developed from our com-
promised image encoder is inclined to assign identical la-
bels to both reference samples Ri and to any compromised
sample x′. We call this process feature alignment between
backdoored and reference images, and the Lalignment is de-
fined as follows.

Lalignment = −
∑t
i=1

∑ri
j=1

∑
x∈Ds

s (F ′θ (x′) ,F ′θ (xij))
|Ds| ·

∑t
i=1 ri

,

(4)
where s(·, ·) is used to quantify the degree of similarity, for
instance, cosine similarity, between a pair of feature embed-
dings. The term |Ds| denotes the count of samples within
the shadow dataset, and the denominators serve the purpose
of standardizing the losses.
Preserving Covert and Natural Backdoors with Ex-
panded Distributional Gaps. We employ several metrics
that measure the similarity between the backdoored image
and the original one in both pixel and feature space to ensure
that our trigger remains both natural and inconspicuous. To
assess similarity in pixel space, we use SSIM and PSNR.
Meanwhile, for high-level feature space comparisons, we
first use LPIPS which better reflects the subjective experi-
ence of image quality and similarity. Following [82] and
[68], we also use Wasserstein distance [71] (WD) to reduce
the distributional disparity between backdoored and clean
samples. Lstealthy is defined as follows:

Lstealthy =∑
x∈Ds

λ1 · LPIPS (x′,x) +WD(M(x′),M(x))
− λ2 · PSNR (x′,x)− SSIM (x′,x) ,

(5)
where λ1, λ2 are used to scale different loss terms to the
same scale from 0 to 1.
Optimization Problem Formulation and Algorithm. We
have defined Ldisentangle, Lstealthy , Lalignment in the sections
above. Then we can define our INACTIVE as an optimiza-
tion problem. Concretely, our backdoor trigger injector Iϕ
is a solution to the subsequent optimization problem:

min
θF

min
Iϕ

L = Lstealthy + α · Ldisentangle + β · Lalignment, (6)

where α and β serve as hyper-parameters to provide equilib-
rium among these three loss components. We adopt Alg. 1
to solve the optimization problem, where we alternatively
optimize the backdoor injector and the compromised im-
age encoder and output the final backdoored encoder Fθ
and backdoor trigger injector Iϕ. Additionally, to speed up
the optimization process and promote the backdoor attack
efficacy, we adopt Alg. 2 to pre-train a backdoor injector
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Algorithm 1 Our backdoor attack INACTIVE
Input: Pre-trained clean encoderF∗

θ , shadow datasetDs, reference input setR
Output: Backdoored encoder Fθ , backdoor trigger injector Iϕ

1: function OURS(F∗
θ ,Ds ,R)

2: Fθ ← F∗
θ ; D̂s ← Augment samples inDs;

3: Iϕ ← a pre-trained backdoor injector I∗ϕ using Alg. 2
4: for iter = 0 to max epochs do
5: Ds

′
← Iϕ(Ds)

6: Ldisentangle ← distribution difference between backdoor images x′ and

augmented images x̃, ∀x′ ∈ Ds
′
, ∀x̃ ∈ D̂s ▷ Eq. 3

7: Lstealthy ← distance between backdoor image x′ and clean image x,

∀x′ ∈ Ds
′
, ∀x ∈ Ds

8: ▷ Eq. 5

9: Lalignment = −
∑t

i=1
∑ri

j=1

∑
x∈Ds

s(Fθ(x
′),Fθ(xij))

|Ds|·
∑t

i=1
ri

▷ Eq. 4

10: Linjector = Lstealthy + α · Ldisentangle + β · Lalignment ▷ Eq. 6

11: ϕI = ϕI − lr1 ·
∂Linjector

∂ϕI

12: Lconsistency = −
∑t

i=1
∑ri

j=1
s(F′

θ(xij),Fθ(xij))∑t
i=1

ri
▷ Eq. A1

13: Lutility = − 1
|Ds| ·

∑
x∈Ds

s
(
F ′

θ(x),Fθ(x)
)

▷ Eq. A2
14: Lencoder = Lalignment + Lconsistency + Lutility

15: θF = θF − lr2 ·
∂Lencoder

∂θF

Algorithm 2 Pre-training backdoor injector
Input: Shadow datasetDs Output: Pre-trained backdoor injector Iϕ

1: function PRE-TRAINING INJECTOR(Ds)
2: D̂s ← Augment samples inDs; Iϕ ← Random initialization
3: for iter = 0 to max epochs do
4: Ds

′
← Iϕ(Ds)

5: Ldisentangle ← distribution difference between backdoor images x′ and

augmented images x̃, ∀x′ ∈ Ds
′
, ∀x̃ ∈ D̂s ▷ Eq. 3

6: Lstealthy ← distance between backdoor image x′ and clean image x,

∀x′ ∈ Ds
′
, ∀x ∈ Ds ▷ Eq. 5

7: Lours = Lstealthy + µ · Ldisentangle

8: ϕI = ϕI − lr · ∂Lours
∂ϕI

to initialize the injector in Alg. 1. We use the U-Net ar-
chitecture [54] for the backdoor injector, as shown in the
Tab. A12.

5. Evaluation
We first evaluate the effectiveness and stealthiness of IN-
ACTIVE using four datasets, followed by an assessment
of its robustness against various backdoor defenses and
noises. To demonstrate generalization, we conduct addi-
tional attacks on various SSL algorithms and a multi-modal
model with different augmentations, detailed in Sec. A1 and
Sec. A2. Sec. A3 further validates each component’s role.
Sec. A5 examines parameter sensitivity and performance.

5.1. Experimental Setup

Datasets. We utilize four image datasets, i.e. CI-
FAR10 [31], STL10 [9], GTSRB [62], SVHN [46] and Im-
ageNet [55] to evaluate our method, which are also fre-
quently used in backdoor attacks research [27, 47]. More
details are introduced in Sec. A6.5.
Evaluation Metrics. To assess the effectiveness of our
method, we employ three metrics following existing

works [27, 88]: Clean Accuracy (CA): the accuracy of a
clean downstream classifier on clean testing images from
the downstream dataset; Benign Accuracy (BA): the accu-
racy of a backdoored downstream classifier on the same
clean testing images from the downstream dataset; Attack
Success Rate (ASR): the success rate of backdoor attacks.
To evaluate the stealthiness and naturalness of the back-
door triggers, we employ three metrics following existing
works [28]: SSIM [73], PSNR [25], LPIPS [87], Feature
Similarity Indexing Method (FSIM) [86] and Fréchet Incep-
tion Distance(FID) [21]. Higher SSIM, PSNR, FSIM and
lower LIPIPS, FID indicate better stealthiness and natural-
ness of the generated backdoored images.
SSL Frameworks. In the pre-training stage, we employ
SimCLR [6] by default to train a ResNet18 [19] model,
serving as our image encoder. Furthermore, we prove the
effectiveness of our method on other SSL frameworks, i.e.,
MoCo [20], BYOL [16], SimSiam [7], SwAV [4], and
CLIP [53] in Sec. A1 and Sec. A2.
Attack Baselines. We select two Instagram filters, Kelvin
and Xpro2, as baseline triggers for aesthetic enhance-
ments [30, 42]. Additionally, WaNet [47], CTRL [34], and
ISSBA [36] are chosen for their stealthiness and high ASR.
These triggers are injected into compromised encoders us-
ing BadEncoder. We also include DRUPE [68], a SOTA
backdoor method using SimCLR and a patch trigger, as
a baseline. To ensure a fair comparison, we evaluate our
method against CTRL [34], SSLBKD [56], POIENC [39],
and BLTO [63] using the same CIFAR10 as the pre-trained
and downstream dataset under SimCLR, BYOL, and Sim-
Siam. For SSLBKD, the trigger is randomly placed, while
for SSLBKD-fixed, it’s in the lower-right corner. We show
more experimental settings and details in Sec. A6.5.

5.2. Effectiveness Evaluation

Effective Attack. As shown in Tab. 1, with different pre-
trained and downstream datasets, our method achieves a
high average ASR of 99.09% across various datasets. Addi-
tionally, Tab. 2 demonstrates that with the same pre-trained
and downstream datasets, our approach also achieves nearly
100% ASRs. Our method outperforms all baseline methods
in all scenarios, highlighting its robustness and superior ef-
fectiveness in executing successful backdoor attacks.
Accuracy Preservation. The downstream classifiers
trained on the backdoored encoder maintain good accuracy
on clean samples, as shown in Tab. 1. The average BA
is 73.10% compared to the average CA of 72.96%, with
the difference within 1%. This suggests that the backdoor
introduced by our method does not compromise the classi-
fier’s ability to label clean images correctly. This is because
Lutility guarantees that the backdoored and clean image
encoders yield similar feature vectors for clean inputs.
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Pre-training
Dataset

Downstream
Dataset

No Attack BadEncoder +
WaNet trigger

BadEncoder +
CTRL trigger

BadEncoder +
Ins-Kelvin trigger

BadEncoder +
Ins-Xpro2 trigger

DRUPE +
Patch trigger Ours

CA BA↑ ASR↑ BA↑ ASR↑ BA↑ ASR↑ BA↑ ASR↑ BA↑ ASR↑ BA↑ ASR↑

STL10
CIFAR10 86.77 84.43 10.28 87.19 8.72 86.75 18.63 86.85 16.83 84.36 98.39 87.11 99.58
GTSRB 76.12 74.45 5.23 77.57 8.17 76.49 72.95 76.71 14.02 75.93 96.09 75.82 97.97
SVHN 55.35 58.29 16.83 54.29 3.32 56.67 38.03 58.42 18.68 75.64 96.68 58.62 99.76

CIFAR10
STL10 76.14 72.73 9.78 75.73 16.85 74.89 1.16 74.11 5.91 74.43 96.72 74.02 99.68
GTSRB 81.84 75.85 5.46 79.94 97.95 78.56 2.50 75.08 42.40 80.35 97.22 79.15 98.73
SVHN 61.52 54.79 17.99 66.33 40.91 68.49 22.13 68.95 30.91 76.02 96.23 63.67 98.79

Average / 72.96 70.09 10.93 73.51 29.32 73.64 25.90 73.35 21.46 77.79 96.89 73.10 99.09

Table 1. Effectiveness comparison to representative backdoor attacks in SSL with different triggers (CA(%), BA(%), and ASR(%)).
We compare our method to BadEncoder [27] with various existing stealthy triggers. We also include the results of DRUPE [68] with
their default visible patch trigger. We include CTRL here to demonstrate that it is ineffective across various downstream datasets. Our
approach constantly achieves the highest ASRs while maintaining the accuracy on clean samples of the downstream classifiers trained on
the backdoored encoder.

Attack Invisible

SSL Method

SimCLR BYOL SimSiam

BA↑ ASR↑ BA↑ ASR↑ BA↑ ASR↑

POIENC [39] ✕ 80.50 11.10 81.70 10.70 81.90 10.70
SSLBKD [56] ✕ 79.40 33.20 80.30 46.20 80.60 53.10

SSLBKD (fixed) [56] ✕ 80.00 10.50 82.30 11.20 81.90 10.70
CTRL [34] ✓ 80.50 85.30 82.20 61.90 82.00 74.90
BLTO [63] ✕ 90.10 91.27 91.21 94.78 90.18 84.63

Ours ✓ 90.19 100.00 93.01 99.99 91.01 99.99

Table 2. Effectiveness comparison to data-poisoning-based back-
door attacks in SSL with their default triggers. We show the re-
sults of BA(%), and ASR(%) with the same pre-trained and down-
stream dataset CIFAR10. Since data poisoning-based methods re-
quire matched distributions between pre-training and downstream,
we use the same pre-trained and downstream datasets. Our threat
model is different from theirs, and our method can be applied when
the distributions of pre-training and downstream datasets are dif-
ferent. This table’s key aim is to demonstrate that our method
achieves much higher ASR than them.

Method SSIM↑ PSNR↑ LPIPS↓ FSIM↑ FID↓

Badencoder [27]/DRUPE [68] 0.8355 14.1110 0.07693 0.820 53.363
CTRL [34] 0.9025 32.4098 0.00034 0.865 71.138
WaNet [47] 0.7704 14.2372 0.07432 0.662 98.092

Ins-Kelvin [42] 0.4955 16.1925 0.14000 0.677 96.449
Ins-Xpro2 [42] 0.5981 17.9173 0.04434 0.817 35.084
POIENC [39] 0.1214 11.2787 0.15867 0.597 172.220
SSLBKD [56] 0.8737 16.2414 0.09640 0.891 118.320

BLTO [63] 0.8417 29.6756 0.00941 0.950 36.385
Ours 0.9633 35.8649 0.00896 0.969 16.320

Table 3. Stealthiness comparison to existing methods on CI-
FAR10. Our method remains stealthy. Detailed data are shown
in Tab. A9.

5.3. Stealthiness Evaluation

Algorithmic Metrics. We first compare the average SSIM,
PSNR, and LPIPS when the pre-trained dataset is CIFAR10
and downstream datasets are STL10, GTSRB, and SVHN
injected with these backdoor triggers to compare the stealth-
iness of various backdoor attack methods. Tab. 3 indicates

that our method exhibits strong stealthiness advantages with
an average of 0.9633 SSIM, 35.8649 PSNR, 0.00896 LIPIS,
0.969 FSIM, and 16.320 FID indicating minimal structural
changes to the images, hardly detectable noise, almost neg-
ligible perceptual difference between the original and per-
turbed images. Although CTRL achieves a better LPIPS,
our method outperforms it in both SSIM and PSNR. Ad-
ditionally, our average ASR is 99.09%, significantly higher
than CTRL 29.32%(see Tab. 1), indicating that our method
is more effective overall. More detailed data across vari-
ous datasets, i.e., CIFAR10, STL10, GTSRB, SVHN, and
ImageNet are shown in Tab. A9 and Tab. A10.

5.4. Robustness Evaluation

To assess the resilience of our method against current back-
door defenses, we deploy various SOTA backdoor defense
strategies, i.e., DECREE [13], Beatrix [44], ASSET [48],
Neural Cleanse (NC) [72], STRIP [14], Grad-CAM [58] for
evaluation. Additionally, to further test the robustness of
our method, we evaluate its endurance against the following
commonly studied noises, i.e., JPEG compression [10, 11],
Poisson noise [1, 79], and Salt&Pepper noise [1, 35]. We
also design an adaptive defense method for INACTIVE. We
show that INACTIVE cannot be defended by STRIP, NC,
Grad-CAM, noises, and adaptive defense in Sec. A5.1.
DECREE. DECREE [13] identifies trojan attacks in pre-
trained encoders by flagging an encoder as compromised
if the reversed trigger’s L1 norm proportion falls below
a 0.1 threshold. As shown in Tab. 4, the PL1-Norm for
each pre-trained and downstream dataset pair exceeds this
threshold, so DECREE fails to detect backdoored encoders
created by INACTIVE. This is because our invisible trig-
ger breaks DECREE’s assumption of a visible patch trigger,
and our stealthy loss further narrows the distribution gap be-
tween backdoored and normal data, masking internal model
anomalies.
Beatrix. Beatrix [44] identifies poisoned samples by detect-
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Pre-trained Dataset Downstream Dataset PL1-Norm

CIFAR10
STL10 0.25
SVHN 0.39

GTSRB 0.15

STL10
CIFAR10 0.21

SVHN 0.34
GTSRB 0.20

Table 4. Evaluation results of DECREE [13]. A model is judged
as backdoored if its PL1-Norm <0.1.

Encoder Method TP FP FN TN Acc

CIFAR-10 BadEncoder 499 24 1 476 97.50%
Ours 0 24 500 476 47.60%

STL-10 BadEncoder 458 24 42 476 93.40%
Ours 5 24 495 476 48.10%

Table 5. Detection results by Beatrix [44]. It struggles to detect
poisoned samples from ours.

ing abnormalities in the feature space. We use two pretrain-
ing datasets, CIFAR-10 and STL-10, and create backdoored
encoders using BadEncoder and INACTIVE. By sampling
500 clean inputs and 500 poisoned samples, we applied
Beatrix to differentiate them. We find (see Tab. 5) that Beat-
rix effectively recognizes poisoned samples from BadEn-
coder with over 93% accuracy. However, Beatrix struggles
to identify poisoned samples from INACTIVE, with a de-
tection accuracy of below 50% on both CIFAR-10 and STL-
10, which is like random guessing. We further analyze the
reasons for the defense failure in Sec. A5.1.

ASSET. ASSET aims to distinguish between backdoored
and clean samples by eliciting distinct behaviors in the
model when processing these two data types, facilitating
their separation [48]. We replicate their defensive tech-
niques on our backdoored CIFAR-10 dataset. Specifically,
we applied our synthesized trigger to CIFAR-10 (with a
target label of 0) to create a poisoned version of CIFAR-
10, maintaining a 100% poisoning rate as our default set-
ting. The feature extractor used is the ResNet18 backbone,
trained on this poisoned CIFAR-10 dataset.

The True Positive Rate (TPR) measures how effectively
a backdoor detection method identifies backdoored sam-
ples, with a higher TPR (closer to 100%) indicating stronger
filtering capability. The False Positive Rate (FPR) reflects
the precision of this filtering: when TPR is sufficiently
high, FPR shows the trade-off, highlighting the propor-
tion of clean samples incorrectly flagged as backdoored.
A lower FPR suggests fewer clean samples are mistakenly
discarded, ensuring more clean data is retained for further
use. Based on ASSET’s metrics, we calculated the TPR as
7.14% and the FPR as 1.8%, indicating that our poisoned
data can largely evade ASSET’s detection.

Downstream Dataset No Attack ISSBA [36] Ours

CA BA↑ ASR↑ BA↑ ASR↑

STL10 95.68 92.58 9.97 93.48 100.00
GTSRB 80.32 66.29 5.10 82.84 96.00
SVHN 74.77 67.67 18.03 75.40 99.99

Average 83.59 75.51 11.03 83.91 98.66

Table 6. Comparative results (CA(%), BA(%), and ASR(%)) of
ISSBA [36] and our attack on ImageNet. Ours constantly achieves
the highest ASRs while maintaining accuracy on clean samples of
the downstream classifiers.

Method Average SSIM↑ Average PSNR (dB)↑ Average LPIPS↓

ISSBA [36] 0.7329 31.3496 0.12424
Ours 0.9867 34.5733 0.01233

Table 7. Stealthiness comparison on ImageNet.

5.5. Generalization to Large-scale Dataset

We assess the generalization of our method on a large-scale
dataset by attacking an ImageNet-pre-trained encoder from
Google [6]. We compare our method’s performance with
ISSBA, which is also trained and tested on ImageNet in its
paper. Experimental setups are detailed in Sec. A6.5.
Experimental Results. Tab. 6 indicates that our method
is highly effective on ImageNet, with an average 98.66%
ASR across different datasets. Moreover, Tab. 7 indicates
the high SSIM and PSNR values and low LPIPS values,
demonstrating that the perturbations made by INACTIVE
are almost imperceptible. Moreover, the average 83.91%
BA is close to the average 83.59% CA, indicating our attack
maintains accuracy for the given downstream task despite
the backdoor. Additionally, both our ASR and BA are much
higher than those of the baseline ISSBA [36], proving ours
has better performance.

6. Conclusions and Future Work
In this paper, we propose an imperceptible and effective
backdoor attack against self-supervised models based on the
optimized triggers that are disentangled in the augmented
transformation in the SSL. Based on the evaluation across
five different datasets and six SSL algorithms, our attack is
demonstrated to be both highly effective and stealthy. It also
effectively bypasses existing backdoor defenses. For future
work, it would be beneficial to expand the scope of research
to include various other domains of machine learning, such
as NLP and audio processing.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9650–9660, 2021. 1

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020. 1, 2, 3, 4,
6, 8, 10

[7] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
15750–15758, 2021. 2, 4, 6, 1

[8] Yukun Chen, Shuo Shao, Enhao Huang, Yiming Li, Pin-Yu
Chen, Zhan Qin, and Kui Ren. Refine: Inversion-free back-
door defense via model reprogramming. In ICLR, 2025. 3

[9] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning.
In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, pages 215–223, Fort
Lauderdale, FL, USA, 2011. PMLR. 6, 9

[10] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred
Hohman, Siwei Li, Li Chen, Michael E. Kounavis, and
Duen Horng Chau. Shield: Fast, practical defense and vacci-
nation for deep learning using jpeg compression. In Proceed-
ings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, page 196–204, New
York, NY, USA, 2018. Association for Computing Machin-
ery. 7

[11] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu.
Evading defenses to transferable adversarial examples
by translation-invariant attacks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4312–4321, 2019. 7

[12] Zhi Dou, Ning Wang, Baopu Li, Zhihui Wang, Haojie Li, and
Bin Liu. Dual color space guided sketch colorization. IEEE
Transactions on Image Processing, 30:7292–7304, 2021. 8

[13] Shiwei Feng, Guanhong Tao, Siyuan Cheng, Guangyu Shen,
Xiangzhe Xu, Yingqi Liu, Kaiyuan Zhang, Shiqing Ma, and
Xiangyu Zhang. Detecting backdoors in pre-trained en-
coders. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages
16352–16362, 2023. 2, 3, 7, 8

[14] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. Strip: A defence
against trojan attacks on deep neural networks. In Pro-
ceedings of the 35th Annual Computer Security Applications
Conference, pages 113–125, 2019. 2, 3, 7, 4, 5

[15] Yinghua Gao, Yiming Li, Xueluan Gong, Zhifeng Li, Shu-
Tao Xia, and Qian Wang. Backdoor attack with sparse and
invisible trigger. IEEE Transactions on Information Foren-
sics and Security, 2024. 3

[16] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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