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Abstract

The success of existing deep multi-view graph clustering
methods is based on the assumption that node attributes are
fully available across all views. However, in practical sce-
narios, node attributes are frequently missing due to factors
such as data privacy concerns or failures in data collec-
tion devices. Although some methods have been proposed
to address the issue of missing node attributes, they come
with the following limitations: i) Existing methods are often
not tailored specifically for clustering tasks and struggle to
address missing attributes effectively. ii) They tend to ig-
nore the relational dependencies between nodes and their
neighboring nodes. This oversight results in unreliable im-
putations, thereby degrading clustering performance. To
address the above issues, we propose an Attribute-Missing
Multi-view Graph Clustering (AMMGC). Specifically, we
first impute missing node attributes by leveraging neighbor-
hood information through an adjacency matrix. Then, to
improve the consistency, we integrate a dual structure con-
sistency module that aligns graph structures across multi-
ple views, reducing redundancy and retaining key informa-
tion. Furthermore, we introduce a high-confidence guid-
ance module to improve the reliability of clustering. Ex-
tensive experiment results showcase the effectiveness and
superiority of our proposed method on multiple benchmark
datasets.

1. Introduction

As a fundamental data type, graphs play a crucial role
in representing complex relational data across various do-
mains. With the rapid advancement of information technol-
ogy, graph data is evolving in a more diversified manner.
Taking the social network as an example, one graph view
could capture the friendship connections between users,
while another view could represent the frequency of inter-
actions between users, such as comments, likes, and shares.
Compared to single-view graphs, multi-view graphs can
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better represent the real graph data. As an important ap-
plication of multi-view graphs, multi-view graph clustering
(MVGC) [16–19, 34, 42] partitions data into several disjoint
groups by exploiting consistent and complementary infor-
mation across multiple views.

The existing MVGC methods can be divided into the fol-
lowing three categories: (1) GCNs-based methods [3, 19].
These methods employ GCNs to extract node represen-
tations from each view, which are then integrated to ob-
tain a unified representation. (2) Contrastive-based meth-
ods [1, 6, 23]. They utilize contrastive learning to bring
the representations of similar nodes closer while pushing
apart those of dissimilar nodes, further enhancing the con-
sistency of representations across different views. (3) Dis-
tribution alignment-based methods [5, 19]. They use KL di-
vergence to align the representations across different views.
Although these methods show promising results, existing
MVGC methods typically assume complete data availabil-
ity across all views. However, in real-world scenarios, this
assumption often fails due to issues like data privacy con-
cerns or data loss caused by damaged storage media, re-
sulting in some node views being only partially accessible.
These uncontrollable factors can readily lead to data spar-
sity and data absence issues, which in turn negatively im-
pact the effectiveness of clustering performance. Graphs
without node attributes can be broadly categorized into two
types: (1) attribute-incomplete graphs, where a portion of
attributes is missing for every node. (2) attribute-missing
graphs, where certain nodes have lack all attribute infor-
mation. In this work, we focus on the second type, as
it presents greater challenges and more accurately reflects
real-world situations. Current MVGC methods don’t incor-
porate a specific attribute completion mechanism to address
nodes with missing attributes. This limitation presents a
major challenge in learning robust graph embeddings for
accurate clustering on graphs with missing attributes.

To learn effective graph embeddings, many methods
have been proposed to address the issue of missing at-
tributes [2, 7, 8, 26, 41]. These methods can generally be
divided into two categories. The first category is based
on node embedding alignment, where an encoder is used
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to separately encode node attributes and structural informa-
tion, and then performs distribution matching in the latent
space to reconstruct the missing attributes [2, 13]. The sec-
ond category is based on data imputation methods, which
tackle the challenge by filling in missing attributes through
data imputation techniques [27, 40]. Though these methods
have achieved promising results, they have the following
drawbacks: 1) They are typically designed for single-view
settings and are not tailored for clustering tasks. 2) These
methods overlook the relationships between nodes and their
neighbors, leading to unreliable imputation.

The above observations indicate that attribute-missing
MVGC has become an urgent need in practical applications
while remaining under-explored. This finding motivates us
to propose an effective MVGC framework called Attribute-
Missing Multi-view Graph Clustering (AMMGC). Specifi-
cally, we first design the context-aware imputation module
to iteratively refine missing node attributes by incorporating
neighborhood information. We then apply a Laplacian filter
to the node attributes to reduce the high-frequency compo-
nents. To further enhance both consistency and discrimina-
tive capacity, we propose a dual structure consistency mod-
ule that aligns the node representation from multiple views
with graph structure. This alignment reduces redundant in-
formation while preserving critical semantic information.
Finally, we introduce the high-confidence guidance module
to supervise the learning process, thereby improving clus-
tering reliability. The main contributions of this paper are
summarized as follows:
• We introduce a novel framework named AMMGC,

specifically designed to tackle the challenge of attribute-
missing MVGC. This approach iteratively refines the
missing node features by effectively incorporating neigh-
borhood information, ensuring enhanced attribute recov-
ery and improved clustering performance.

• To enhance clustering consistency and boost discrimina-
tive capacity, we develop a dual-structure module that
aims to reduce redundancy while retaining critical infor-
mation.

• Comprehensive experiments on various benchmark
datasets reveal that the proposed AMMGC framework
consistently surpasses existing state-of-the-art clustering
methods, especially in cases where a substantial amount
of node attributes are missing.

2. Related Work
This section briefly describes the latest research progress
of Deep Multi-view Graph Clustering and Clustering with
Missing Attribute Data.

2.1. Deep Multi-view Graph Clustering
With the rapid development of GNNs, many deep multi-
view graph clustering methods have been proposed [3, 17,

20, 23]. These methods leverage GNNs to explore at-
tribute information and graph structural information simul-
taneously. O2MGC [5] introduces a one2multi graph au-
toencoder to learn node embeddings. MAGCN [3] designs a
two-pathway encoder structure, effectively capturing graph
embedding features while learning view-consistency infor-
mation. MVGC [36] leverages the learned clustering la-
bels by a subspace clustering module to self-supervise the
learning process for node representations and the view-
consensus coefficient matrix. Due to its outstanding rep-
resentation learning capabilities, many graph contrastive
methods are proposed to extract information from graphs.
MCGC [23] learns a consensus graph regularized by graph
contrastive loss. SCAGC [35] utilizes pseudo labels to
guide contrastive learning. CCGC [38] employs high-
confidence clustering labels to construct reliable positive
and negative sample pairs. Although these methods achieve
strong performance, they rely on the assumption that node
attributes in multi-view graphs are complete. Therefore,
their performance might decrease when node attributes are
missing.

2.2. Clustering with Missing Attribute Data

Recently, the challenge of clustering with missing attribute
data has attracted growing interest [14, 15, 31, 37]. For
multi-view data with missing attributes, existing deep in-
complete multi-view clustering methods can be broadly di-
vided into three main categories: (1) GANs-based meth-
ods. These methods utilize generative adversarial networks
(GANs) to explore shared representations across multiple
views, directly generating the missing data [31, 32]. (2)
GCNs-based methods. GCNs are employed to extract com-
mon representations by leveraging the structural informa-
tion of different views [25, 33]. (3) Prototype-based meth-
ods. These methods learn prototypes from the missing view
and utilize sample-prototype relationships in the observed
views to reconstruct the data [9, 12].

For graph data with missing attributes, SAT [2] restores
missing attributes through distribution matching and ad-
versarial learning strategies. T2-GNN [7] proposes using
teacher-student to enhance the performance of GNNs on in-
complete graphs. ITR [27] utilizes structural information
for the initial imputation phase, followed by a refinement
process that incorporates both observed attributes and struc-
tural data to enhance the imputed latent variables. AMGC
[28] integrates clustering and data imputation within a uni-
fied framework, where the two processes support each other
through iterative optimization. RITR [29] initializes miss-
ing and incomplete data with noise or structure embeddings,
and then refines these embeddings through a consistency-
preserving mechanism. MATE [24] performs imputation
directly in the input space using graph diffusion and param-
eter initialization. However, these methods are either de-
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signed for single-view settings, not specifically tailored for
clustering tasks, or tend to overlook the relationships be-
tween nodes and their neighbors.

3. The Proposed Method
In this section, we propose a novel Attribute-Missing Multi-
view Graph Clustering (AMMGC). The overall framework
is illustrated in Fig. 1. AMMGC mainly consists of three
key modules: context-aware imputation, dual structure con-
sistency, and high-confidence guidance. Detailed explana-
tions of each module will be elaborated upon in the subse-
quent sections.

3.1. Notations and Problem Definition
Notations: Given an undirected multi-view graph data G =
{Xv ∈ RN×D,A ∈ RN×N}2v=1. Let V = {v1, v2, ..., vN}
be a set of N nodes with K classes and E be a set of edges.
Xv denote the attribute matrix of all nodes for the v-th view,
where D is the dimension of attributes. A ∈ {0, 1}N×N de-
note the adjacency matrix, where aij = 1 if (vi, vj) ∈ E ,
otherwise aij = 0. With the renormalization trick Â =
A + IN in GCN [11], where IN is the N -order identity
matrix. The normalized adjacency matrix is denoted as
Ã = D̂−1/2ÂD̂−1/2. D̂ = diag(d̂1, d̂2, ..., d̂N ) ∈ RN×N

is degree matrix and d̂ii =
∑N

j=1 âij . The symmetric nor-
malized graph Laplacian matrix is defined as L̃ = IN − Ã.
Problem Statement: Clustering on an attribute-missing
multi-view graph refers to the task of grouping nodes in
multi-view graphs where some node attributes are missing.
Here, we concentrate on cases where node attributes are ei-
ther completely observed or entirely missing. The objective
of attribute-missing multi-view graph clustering is to par-
tition a multi-view graph with N unlabeled nodes into K
disjoint clusters {C1, ..., CK}.

3.2. Context-Aware Imputation
An intuitive imputation method involves one-time imputa-
tion strategies, such as zero-filling, where the missing data
is imputed once and then directly utilized for subsequent
clustering tasks. These strategies introduce extra noises and
thus degrade the clustering performance. In our work, we
adopt a novel context-aware imputation strategy to solve
this problem. We first construct different views by adding
the random Gaussian noise to X1 as formulated:

X2 = X1 +N, (1)

where N ∈ RN×D is sampled from the Gaussian distribu-
tion N (0, 0.01). Then, we initialize the attribute matrix as
follows:

Xv ←Mv ⊙Xv, (2)

where ⊙ denotes the element-wise multiplication. Mv ∈
{0, 1}N×D is missing feature mask matrices. When Mv

ij =

0, it indicates that the j-th feature of the i-th node is ob-
served in the v-th view. This operation preserves only the
observed features in the attribute matrix Xv , while setting
the missing features to an initial value of zero. Next, we
define the Dirichlet energy as

ℓ(xv) =
1

2

∑
ij

ãij(x
v
i − xv

j )
2, (3)

where ãij are the individual entries of the normalized ad-
jacency matrix Ã. The Dirichlet energy is widely used as
a smoothness criterion, measuring the squared differences
between the features of neighboring nodes and promoting
feature similarity among adjacent nodes. We impute the
missing node features by minimizing the energy function
based on the known features.

Inspired by [26], we apply the Euler scheme to decrease
the Dirichlet energy. Specifically, we perform iterative im-
putation of missing node features using the graph’s adja-
cency matrix. The update rule for each iteration is defined
as follows:

(Xv)(t+1) ←Mv ⊙Xv + (1−Mv)⊙ Ã · (Xv)(t), (4)

where the first term Mv ⊙Xv ensures that known features
remain unchanged throughout the iterative process, while
the second term imputes the missing features by propagat-
ing information from neighboring nodes via the normalized
adjacency matrix Ã.

The process is repeated for T iterations or until the en-
ergy function converges. After the final iteration, the recon-
structed attribute matrix is denoted as:

X̂v = (Xv)(T ). (5)

At this point, the missing features have been inferred us-
ing the graph’s structural information, while the original
features are preserved. This iterative approach effectively
utilizes the graph topology to reconstruct missing attributes,
resulting in more reliable node representations.

3.3. Dual Structure Consistency
To effectively learn node representations in graph-based
data, the majority of current methods heavily rely on graph
convolutional network (GCN) encoders, which integrate
node attributes with graph structure. However, the interac-
tion between graph convolutional filters and weight matri-
ces can degrade both the performance and robustness during
the representation learning process [4].

Inspired by [38], we apply a widely-used Laplacian filter
to reduce high-frequency noise in the node attributes, while
integrating attribute information with graph structure. This
process is formulated as follows:

X̃v = (IN − kL̃)tX̂v, (6)
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Figure 1. The framework of our proposed AMMGC. AMMGC consists of three modules: context-aware imputation module (CAI), dual
structure consistency module (DSL), and high-confidence guidance module (HCG). Specifically, CAI iteratively imputes missing node
features by utilizing information from neighboring nodes to ensure accurate estimations. DSL aligns the graph structures across multiple
views to enhance both consistency and discriminative power. HCG enhances the reliability of clustering information by guiding the model’s
learning with high-confidence clustering data. Ultimately, we fuse the embeddings from different views and perform K-means to obtain
final clustering results.

where k denotes a real-value parameter, and t specifies the
number of filtering layers. L̃ represents the symmetrically
normalized graph Laplacian matrix. In our method, we set
k = 1, transforming the filter into a GCN filter [4]. X̃v indi-
cates the resulting smoothed attribute matrix. Subsequently,
node representations are derived by employing multi-layer
perceptrons (MLPs) with shared parameters, which is ex-
pressed as:

Zv = MLP(X̃v). (7)

To maintain structural consistency across views, we de-
sign a dual structure consistency module. Concretely, we
begin by integrating the node representations through an
adaptive weight fusion mechanism, defined as follows:

Z =

∑2
v=1 avZ

v∑2
v=1 av

, (8)

where av is learnable parameters, and Z denotes the uni-
fied node representations. This mechanism dynamically
learns the optimal weight for each view and assigns a higher
weight to the view containing more informative features.
Then, cross-view sample similarity matrices Sv by evaluat-
ing the similarity between Z and Zv , as formularized below:

Sv =
Z · (Zv)⊤

∥Z∥ ∥Zv∥
, (9)

where Sv ∈ RN×N is cross-view sample similarity matrix,
and svij is the similarity between zi and zvj . We further en-
force Sv to align with the adjacency matrix Â formulated
as:

Ls =
1

N2

2∑
v=1

(Sv − Â)2. (10)

By minimizing Ls, we ensure consistency between vari-
ous views while preserving their unique semantic informa-
tion.

3.4. High-Confidence Guidance
In this section, we introduce a high-confidence guidance
module to obtain reliable clustering performance. Specifi-
cally, we begin by applying K-Means on fused Z to generate
pseudo labels. Formally,

ŷ = Kmeans(Z), (11)

where ŷ represents the pseudo labels. We then select the
most reliable pseudo-labels from ŷ. Specifically, we be-
gin by computing the distance of each sample to its corre-
sponding cluster centroid. These distances are subsequently
sorted in increasing order, and a threshold is applied to re-
tain only those samples that are closer to their centroids,
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while discarding those that are more distant. This process
can be formally expressed as follows:

p = top(ŷ), (12)

where p demotes reliable pseudo labels. Next, we define
soft clustering assignment q as follows:

qik =
(1 + ||zi − ck||/α)−

α+1
2∑

k′∈[K](1 + ||zi − ck′ ||/α)−α+1
2

, (13)

where ck represents the cluster centroid, α is the degree of
freedom of Student’s t-distribution. In our experiment, we
set α to 1. qik can be interpreted as the probability the i-
th sample is assigned to k-th cluster. We align the derived
soft clustering assignments with the reliable pseudo-labels
to steer the network’s learning process, as described below:

Lp = H(q,p) = −
N∑
i=1

qilog(pi), (14)

where H(·) is cross-entropy loss. This loss function allows
us to refine the quality of the soft clustering assignments,
thereby bolstering the reliability of the clustering results.

3.5. The Objective Function
The object function of the proposed AMMGC contains the
dual structure consistency loss Ls and the high-confidence
guidance loss Lp. In summary, the object function of AM-
MGC is formulated as follows:

L = Ls + αLp, (15)

where α is the trade-off parameters between Ls and Lp.
To obtain the final clustering results, we directly perform

the K-Means algorithm over Z. Specifically, the fused rep-
resentation Z is factorized as follows:

min
U,V

∥Z−UV∥2F

s.t.U1 = 1, U ≥ 0,
(16)

where U ∈ Rn×k is cluster indicator matrix, V ∈ Rk×d is
the center matrix of clustering.

4. Experiments

In this section, we assess the performance of the proposed
AMMGC across four commonly utilized graph datasets to
validate its effectiveness and superiority. Additionally, we
conduct an ablation study and a parameter sensitivity anal-
ysis to explore the characteristics and robustness of AM-
MGC.

Table 1. Statistical characteristics of four datasets.

Dataset Type Sample Edge Dimension Clusters

CORA Graph 2708 5429 1433 7
CITESEER Graph 3327 4732 3703 6

AMAC Graph 13752 245861 767 10
WIKI Graph 2405 8261 4973 17

4.1. Experimental Setting

Datasets and Evaluation Metrics. We conduct experi-
ments on four benchmark graph datasets, namely CORA
[4], CITESEER [4], AMAC [23], WIKI [4]. The detailed
characteristics are illustrated in Table 1. In this experiment,
we set the missing rate of each dataset to [0.3, 0.6, 0.9]. To
assess clustering performance, we utilize metrics such as
Accuracy (ACC), Normalized Mutual Information (NMI),
and Average Rand Index (ARI), with higher values indicat-
ing superior clustering results. To mitigate the effects of
randomness, we independently run each method times and
present the mean and standard deviation of these three met-
rics for each method.
Comparison Methods. To demonstrate the effectiveness
of the proposed AMMGC, we conduct comparisons against
state-of-the-art baseline methods, which include four deep
graph clustering methods and three incomplete graph meth-
ods. SAT [2] restores missing attributes and improves graph
tasks like link prediction and node completion through
distribution matching and adversarial learning strategies.
FPGM [26] utilizes feature propagation to recover the
missing attributes of nodes. T2-GNN [7] proposes using
teacher-student distillation to enhance the performance of
GNNs on incomplete graphs. CONVERT [39] utilizes
a reversible perturb-recover network to enhance the relia-
bility of data augmentations. CCGC [38] enhances clus-
tering performance by utilizing high-confidence clustering
results to construct reliable positive and negative sample
pairs. SCGC [21] employs a novel cross-view structural
consistency to improve efficiency in deep graph clustering.
HSAN [22] introduces a dynamic sample weighting strat-
egy to effectively mine both hard negative and hard positive
samples, thereby improving overall discriminative capabil-
ity.
Implementation Details. The experiments are executed
using the following hardware configuration: Intel Core
i9-13900K CPU, NVIDIA GeForce RTX 4090 GPU, and
64GB RAM. Additionally, all experiments are implemented
using the Pytorch framework, with a maximum training
epoch limit of 400. The Adam optimizer [10] is employed
to minimize the total loss, and the K-means algorithm was
applied to the fused embeddings to derive the final cluster-
ing results.
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Table 2. The clustering performance, averaged over ten runs on four benchmark datasets, is evaluated using three metrics, with results
displayed as mean values and standard deviations. The highest and second-highest results are highlighted in bold and underlined, respec-
tively. ’OOM’ denotes the out-of-memory failure.

Missing rate 0.3 0.6 0.9

Method ACC NMI ARI ACC NMI ARI ACC NMI ARI

C
O

R
A

SAT 68.72±1.13 50.60±0.88 45.03±1.14 60.11±1.12 44.16±1.47 36.31±1.46 33.23±1.65 10.04±0.82 04.14±0.26
FPGM 49.45±1.43 29.74±1.54 18.55±1.62 46.45±1.24 27.17±0.95 15.35±1.24 40.29±1.21 19.59±0.84 07.09±0.96

T2-GNN 65.59±2.42 48.31±1.65 40.38±1.24 63.70±1.78 43.83±1.56 35.84±1.64 41.03±1.25 19.02±1.26 13.07±1.34
CONVERT 72.40±1.04 54.15±0.97 48.17±0.78 71.04±0.92 50.27±1.16 46.94±1.53 50.46±1.07 32.71±1.88 20.49±1.89

CCGC 71.95±1.81 54.20±2.30 49.26±2.79 53.15±2.77 37.36±4.40 37.36±4.35 33.21±1.35 11.27±1.47 04.35±1.05
SCGC 72.88±0.84 54.97±1.43 50.39±1.49 68.15±1.19 49.33±1.41 46.30±1.57 31.45±1.37 07.71±3.30 02.40±0.97
HSAN 73.49±0.95 56.23±0.94 51.25±1.36 67.45±1.81 46.75±2.07 41.68±2.90 36.15±3.46 14.84±4.22 04.36±2.22
Ours 73.64±1.37 54.43±1.02 50.16±2.82 72.05±0.82 53.14±1.36 48.29±0.80 68.94±0.46 51.20±0.36 45.87±0.92

C
IT

E
SE

E
R

SAT 60.83±1.58 32.15±2.01 31.84±1.92 38.84±1.21 16.21±0.89 12.06±1.42 21.89±1.12 01.56±0.63 0.13±0.24
FPGM 31.05±1.26 12.33±1.12 02.04±0.67 29.67±1.54 10.72±0.86 01.68±0.45 27.62±1.31 08.48±0.93 0.87±0.21

T2-GNN 50.56±2.15 27.09±1.82 24.07±1.26 47.19±1.56 20.85±1.73 18.86±1.63 34.75±1.52 08.02±0.93 8.32±1.15
CONVERT 65.93±0.93 38.56±1.06 38.85±1.48 61.63±0.80 33.04±0.99 34.11±1.32 47.07±0.97 23.00±0.59 16.62±0.81

CCGC 66.51±2.20 38.73±2.56 39.47±3.17 45.72±3.95 21.02±3.21 18.75±3.87 23.65±3.12 04.01±1.56 0.87±0.64
SCGC 68.60±0.67 41.38±0.78 42.42±1.10 59.28±1.40 31.66±1.69 31.67±1.77 24.54±0.52 03.97±1.35 0.95±0.47
HSAN 66.47±1.90 38.87±1.57 38.07±3.57 48.41±3.34 22.28±2.88 13.70±3.26 22.02±2.01 01.46±1.07 0.07±0.16
Ours 69.08±0.75 41.82±0.78 43.15±0.74 66.87±1.13 38.91±0.84 40.18±0.96 55.25±0.29 27.47±0.62 25.71±0.30

A
M

A
C

SAT 48.63±1.76 29.54±1.46 25.35±1.86 36.84±2.45 19.32±2.34 14.23±1.54 22.02±1.43 03.21±1.45 01.46±0.87
FPGM 28.90±1.45 08.52±0.87 -03.04±0.23 28.47±1.85 07.15±0.74 -03.93±0.43 29.10±1.64 05.19±0.83 -04.24±0.63

T2-GNN 43.24±2.16 33.63±1.53 27.36±1.64 39.70±1.64 29.08±1.78 17.66±1.25 28.73±1.54 14.09±0.86 05.75±0.53
CONVERT 53.76±3.27 39.72±2.14 29.69±3.93 50.89±1.64 36.13±1.21 28.43±0.94 37.50±0.00 11.37±0.00 -00.01±0.00

CCGC 53.98±0.75 33.54±0.99 29.29±1.44 43.38±1.33 25.28±2.28 20.40±1.48 22.10±1.05 04.33±3.34 01.95±1.51
SCGC 55.23±1.22 35.93±0.81 31.48±1.64 47.60±1.40 28.76±0.97 24.55±0.92 23.43±1.25 02.49±1.39 00.99±0.43
HSAN OOM OOM OOM
Ours 56.04±0.46 40.92±0.76 34.12±0.95 55.26±0.89 38.25±1.23 31.84±1.00 53.38±0.95 33.91±1.23 28.65±1.48

W
IK

I

SAT 44.85±1.46 41.23±1.53 18.21±1.67 38.30±2.54 34.88±1.17 11.64±1.17 27.34±2.13 21.68±2.44 05.67±2.15
FPGM 29.44±1.56 27.26±1.84 03.77±0.45 29.23±1.31 28.02±1.25 03.30±0.25 29.06±1.16 26.23±1.24 04.11±0.85

T2-GNN 50.10±1.94 45.28±1.51 30.97±1.35 46.78±1.25 40.01±1.36 24.06±1.56 34.97±1.67 32.25±1.68 10.46±1.28
CONVERT 45.02±3.66 42.47±1.50 25.62±3.80 16.71±0.00 01.42±0.00 00.05±0.00 16.71±0.00 01.42±0.00 00.05±0.00

CCGC 49.01±1.18 42.10±0.80 22.18±2.12 43.75±1.43 38.87±0.92 17.13±1.31 29.95±3.73 22.82±3.02 06.46±4.23
SCGC 52.73±0.54 46.97±0.51 28.21±2.33 46.36±0.66 42.32±0.73 20.69±0.98 36.98±1.93 32.87±1.04 09.94±0.73
HSAN 51.13±1.90 44.92±1.13 30.85±2.25 46.54±1.32 39.15±1.09 25.57±1.92 32.94±2.62 26.97±1.87 12.71±1.74
Ours 55.32±1.18 49.35±0.53 35.20±1.35 47.99±0.65 42.98±1.18 25.72±0.65 38.08±0.85 34.05±0.80 12.55±0.49

4.2. Comparsion Results with State-of-The-Arts

In Table 2, we compare our proposed method with seven
state-of-the-art methods on three metrics. The performance
of AMMGC is evaluated on four benchmark datasets, tak-
ing into account three levels of missing data: [0.3, 0.6, 0.9].
From the above chart, we have the following observations:

• Our method consistently outperforms all compared ap-
proaches across most datasets, especially when the pro-
portion of missing node attributes is high. AMMGC ex-
hibits remarkable stability with varying missing rates. For
instance, on the AMAC dataset, the accuracy experiences
only decreases by 2.66% as the missing rate increases
from 0.3 to 0.9.

• It can be seen that the AMMGC can still achieve the com-
petitive effect with a high missing rate in the dataset. For

instance, in the CORA dataset, AMMGC significantly
surpasses the second-best method, achieving improve-
ments of 18.48% in ACC, 18.49% in NMI, and 25.38%
in ARI. These findings robustly support the effectiveness
and resilience of AMMGC in addressing high-level miss-
ing data, highlighting its capability to sustain strong clus-
tering performance under challenging attribute-missing
conditions.

In summary, the experiments conducted have verified the
effectiveness and stability of our proposed AMMGC. The
method’s superior performance can be attributed to three
critical factors. First, the context-aware imputation effec-
tively utilizes neighborhood information to iteratively re-
fine the imputation of missing features, resulting in more
robust and reliable node representations. Additionally, the
dual structure consistency ensures information consistency
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Table 3. Ablation study on four datasets. ✔ denotes AMMGC
with the component (The missing rate is 0.6).

Datasets
Components Metrics

CAI DSC HCG ACC NMI ARI

CORA

✔ ✔ 71.65±0.80 52.26±2.06 47.13±1.53
✔ ✔ 70.55±1.79 51.34±1.73 45.78±3.08

✔ ✔ 55.74±0.72 40.40±0.84 29.38±1.01
✔ ✔ ✔ 72.05±0.82 53.14±1.36 48.29±0.80

CITESEER

✔ ✔ 66.18±1.13 37.82±1.06 38.67±1.58
✔ ✔ 55.72±3.69 30.70±2.35 27.98±4.11

✔ ✔ 63.54±1.12 36.06±1.09 34.38±1.08
✔ ✔ ✔ 66.87±1.13 38.91±0.84 40.18±0.96

AMAC

✔ ✔ 54.63±0.76 38.01±0.92 31.25±1.25
✔ ✔ 53.83±0.72 37.96±1.36 30.93±1.55

✔ ✔ 51.42±1.67 33.75±1.24 28.42±1.56
✔ ✔ ✔ 55.26±0.89 38.25±1.23 31.84±1.00

WIKI

✔ ✔ 47.60±0.49 42.77±0.66 25.60±0.58
✔ ✔ 43.91±1.75 39.95±1.87 20.85±1.77

✔ ✔ 41.87±0.64 40.53±0.79 20.89±0.85
✔ ✔ ✔ 47.99±0.65 42.98±1.18 25.72±0.65

between views, minimizing redundancy and noise. Finally,
high-confidence guidance allows the model to capture high-
confidence clustering information, thereby improving the
reliability of the clustering results.

4.3. Ablation Studies

In this subsection, we conduct ablation experiments on four
benchmark datasets to verify the effectiveness of each com-
ponent.

Ablation on Model Components. We begin by analyz-
ing the influence of various components of our proposed
method and explore how different imputation strategies im-
pact the outcomes. For easier presentation, we refer to
context-aware imputation, dual structure consistency, and
high-confidence guidance as ’CAI’, ’DSC’, and ’HCG’, re-
spectively. As illustrated in Table 3, the optimal perfor-
mance is achieved when all components are incorporated.
Excluding any of the proposed components leads to a de-
crease in clustering performance, demonstrating the signifi-
cance of each component in enhancing the overall effective-
ness of the method.

Ablation on Imputation Strategies. We further inves-
tigated the effects of various imputation strategies on the
results. Specifically, we assessed four distinct imputation
methods: zero imputation, random imputation, mean impu-
tation, and context-aware imputation. For clarity, we refer
to these strategies as ’Z’ for zero imputation, ’R’ for random
imputation, ’M’ for mean imputation, and ’CA’ for context-
aware imputation. The detailed experimental results are
presented in Fig. 2. The figure indicates that context-aware
imputation outperforms the other strategies. This enhance-
ment can be attributed to context-aware imputation’s ability

(a) CORA (b) CITESEER

(c) AMAC (d) WIKI

Figure 2. The experimental results of different Imputation strate-
gies across four datasets (The missing rate is 0.9).

to effectively harness valuable information from neighbor-
ing nodes, resulting in more reliable node representations.

4.4. Parameter Sensitivity Analysis

In this subsection, we examine the sensitivity of hyper-
parameters, specifically the number of graph Laplacian fil-
ter layer t and trade-off parameter α, on the clustering per-
formance of the AMMGC across four datasets. we analyze
the values of t and α in the range of {1, 2, 3, 4, 5} and
{10−2, 10−1, 100, 101, 102}, respectively. The experimen-
tal results are shown in Fig. 4, and we can observe that α
has a greater impact on CITESEER, while both parameters
exhibit minimal impact on the other three datasets.

4.5. Performance with Different Missing Rates

To further evaluate the robustness and effectiveness of our
proposed method, we conducted experiments across four
datasets (CORA, CITESEER, AMAC, and WIKI), system-
atically varying the missing rate r from 0.1 to 0.9 with incre-
ments of 0.1. From the results in Fig. 5, we could observe
that: 1) AMMGC significantly outperforms all the tested
baselines under most settings of missing rates; 2) with in-
creasing the missing rate, the performance degradations of
the compared methods are much larger than that of ours. For
instance, on the AMAC dataset, both AMMGC and CON-
VERT initially achieve comparable accuracies (55.97 and
54.42 respectively) when r = 0.1. However, as the missing
rate escalates, AMMGC demonstrates a marked advantage
over CONVERT, maintaining a more stable accuracy and
highlighting its capability to mitigate the adverse effects of
high missing rates.
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FPGM T2-GNN CONVERT CCGC SCGC HSAN Ours

Figure 3. The Visualization of node representation using t-SNE algorithm. The first row and second row correspond to CORA and
CITESEER, respectively (The missing rate is 0.6).

(a) CORA (b) CITESEER

(c) AMAC (d) WIKI

Figure 4. The sensitivity analysis of hyper-parameter t and α on
four datasets (The missing rate is 0.6).

4.6. Visualization Analysis

To comprehensively validate the effectiveness of the pro-
posed AMMGC method, we perform a visualization analy-
sis using t-SNE [30] on the CORA and CITESEER dataset
with a missing rate of r = 0.6, as shown in Fig. 3. This ap-
proach enables an intuitive comparison of clustering perfor-
mance across various methods, including FPGM, T2-GNN,
CONVERT, CCGC, SCGC, and HSAN, under severe miss-
ing data conditions. Our method shows a noticeably clearer
separation of clusters, with well-defined boundaries be-
tween node embeddings, unlike the more dispersed or over-
lapping clusters produced by other methods. This enhanced
clustering structure highlights AMMGC’s strong ability to
capture meaningful patterns and relationships among nodes.
These visual results underscore the effectiveness of our ap-

(a) CORA (b) CITESEER

(c) AMAC (d) WIKI

Figure 5. Error band plot of Accuracy on four datasets as missing
rate increases, with the shaded area representing the standard de-
viation. The red curve denotes our method.

proach in handling missing data, further validating its supe-
riority in the attribute-missing MVGC setting.

5. Conclusion

In this paper, we propose an Attribute-Missing Multi-view
Graph Clustering, termed AMMGC, which iteratively im-
putes missing node features through the use of neighbor-
hood information. We first design a dual structure consis-
tency module aimed at improving the alignment of graph
structures across various views. Additionally, we imple-
ment high-confidence guidance to enhance the reliability
of the clustering process. The experimental results demon-
strate the effectiveness and superiority of our method, par-
ticularly in cases where a substantial number of node at-
tributes are absent, underscoring its exceptional perfor-
mance.
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