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Abstract

Model quantization is an effective way to compress deep
neural networks and accelerate the inference time on edge
devices. Existing quantization methods usually require orig-
inal data for calibration during the compressing process,
which may be inaccessible due to privacy issues. A common
way is to generate calibration data to mimic the origin data.
However, the generators in these methods have the mode
collapse problem, making them unable to synthesize diverse
data. To solve this problem, we leverage the information
from the full-precision model and enhance both inter-class
and intra-class diversity for generating better calibration
data, by devising a multi-layer features mixer and normal-
ization flow based attention. Besides, novel regulation losses
are proposed to make the generator produce diverse data
with more patterns from the perspective of activated fea-
ture values and for the quantized model to learn better clip
ranges adaptive to our diverse calibration data. Extensive
experiments show that our method achieves state-of-the-art
quantization results for both Transformer and CNN architec-
tures. In addition, we visualize the generated data to verify
that our strategies can effectively handle the mode collapse
issue. Our codes are available at repo.

1. Introduction

Quantization [7, 28] is an effective way to compress a deep
neural network (DNN) by converting model weights which
are stored as the float type of 32 or 16 bits into the integer
type of 8, 4 or 3 bits. It is different from other model com-
pression methods, such as distillation [15] where a small
student model learns from labels and teacher models, and
pruning [13] which cuts connections in a DNN. By quanti-
zation, we can deploy a deep model on edge devices with
limited storage or resources. Meanwhile, this allows better
utilization of inference devices [16] optimized for integer
operations to accelerate efficiency.

* Both authors contributed equally.
† Corresponding author.

Figure 1. Mode collapse examples: Qimera only generates highly
similar images for a class.

Quantization can be roughly divided into two cate-
gories [29]. Quantization-aware training (QAT) quantizes
the weights while training a full-precision model with the
original data. Post-training quantization (PTQ) quantizes
an already-trained full-precision model. Normally, PTQ
needs the original training data to calibrate the quantized
model for better performance, otherwise, it will suffer a great
performance degradation [7].

However, due to privacy concerns, original data in real-
world scenarios are often inaccessible, because data, such as
medical images or human facial data, are private. There-
fore, there is a need to develop data-free quantization
methods [12, 32] with less performance degradation. The
generator-based framework, e.g. Qimera [6], provides a data-
free method to quantize a model without original training
data. It utilizes a generator to synthesize training data and
then applies these fake data to calibrate the quantized model.
This framework is inspired by Generative Adversarial Net
(GAN) [10] where the generator is guided by the discrimi-
nator. There are three components: generator, discriminator
(i.e. full-precision model), and quantized model. The genera-
tor learns the random-initialized label embeddings to present
the classes, and then samples random variables to generate
synthetic data. Then the synthetic data are used to calibrate
the quantized model. The discriminator forces the generator
to synthesize the right data according to class labels. Sev-
eral studies [3, 25] show that this framework achieves good
results for the data-free setting, but this framework still has
problems as follows.

Problem 1: GAN-based generator methods have a com-
mon mode collapse problem [33], where the generator falls
short in synthesizing diverse data. The generator collapses
at some data points and only synthesizes a few highly sim-
ilar images for each class, as shown in Figure 1. Without
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Figure 2. The long-tailed distribution, our adaptive clip ranges, and
the fixed clip ranges by existing methods.

diverse data, it is difficult to accurately calibrate the quan-
tized model, resulting in a performance drop compared to
calibrating with the original data [43]. Previous works [1]
on GAN have explored how to address mode collapse, but
they are inapplicable to our problem as these works need
original data. Recent works [5, 6, 44] propose to augment
the generated images with Mixup [42] or CutMix [41] for
data-free quantization. However, they could not solve the
mode collapse problem, as a simple augmentation on gener-
ated similar images cannot synthesize new diverse data for
each class.

Problem 2: We notice that the activated feature values of
the generated data exhibit a sharp-peak and long-tailed dis-
tribution under the mode collapse problem, which is bad for
quantization in the activation layers, especially when exist-
ing data-free quantization methods use a fixed clip range. For
example, ZeroQ [4] quantizes all activated values within the
clip range that is merely the fixed [min, max] range. Qimera
and GDFQ [39] use moving averages during calibration to
decide the fixed clip range. We show the fixed clip ranges
set by existing methods in Figure 2, where we dispatch all
activated values in the last activation layer during the last
epoch into 100,000 bins with intervals of 1e-3 and calculate
the frequency histogram of the occurrence of different val-
ues. ZeroQ’s clip range is too large, and it cannot differ such
many values using the low-bit integer. Meanwhile, the clip
range set by GDFQ is small, which results in information
loss as the values beyond this range are clipped.

Due to these problems, there is more performance degra-
dation in quantization. To tackle the above problems, we
propose Enhancing diversity for Data-Free Quantization
(EnhancingDFQ).

For Problem 1, we leverage the information related to
the original training data from the multiple layers of the full-
precision model, to generate more diverse synthetic data to

calibrate the quantized model. We utilize the information
from different layers of the full-precision model to guide
the generator, where different layers of the full-precision
model exhibit features of different levels. For example, shal-
low layers may focus on color, shape, or texture features
etc, and deep layers may focus on semantic information.
Thus, instead of using a random-initialized label embedding
for each class, our generator can synthesize better data by
utilizing multi-layer features with our attention mechanism.
First, our multi-layer features mixer enables the generator
to learn the relations among all classes, thereby enhancing
inter-class diversity, e.g. an image containing information
of dog and cat classes etc. Second, our normalization flow
based attention enables the generator to focus on minutia
features of different levels, thereby enhancing intra-class di-
versity, e.g. different dog images focusing on different color
or texture features etc. Thus, we can address mode collapse
and improve quantization with more diverse calibration data.

For Problem 2, We propose to generate diverse data with
more complex patterns from the perspective of activated
features, for the quantized model to learn better clip ranges.
First, we propose a regulation loss for the generator, mak-
ing it produce diverse data that can exhibit more complex
feature patterns in the activation layers of the full-precision
model. Then, we use a distillation regulation loss to align
the full-precision model and the quantized model, to learn
appropriate clip ranges adaptive to our generated diverse
data, as shown in Figure 2.

Our contribution can be summarized as follows.
1. We utilize information from the full-precision model to

enhance inter-class and intra-class diversity, with our
multi-layer features mixer which learns the relations
among classes, and our normalization flow based atten-
tion which focuses on the features of different levels.

2. We propose a novel regulation loss to generate diverse
data with more complex feature patterns, and then learn
appropriate clip ranges adaptive to our generated diverse
data in the activation layers.

3. Extensive experiments show our method achieves state-
of-the-art quantization results for both Transformer [9]
and CNN [20] architectures, and we use visualization and
ablation studies to validate our motivations and designs.

2. Related Works

2.1. Generative adversarial net

GAN is composed of a generator and a discriminator. By
competing with each other, a good generator can synthesize
fake but realistic data [10, 18, 33]. However, they still suffer
from the mode collapse, which results in a loss of diversity
in the generated data. CGAN [27] uses the guided gener-
ation methods to address inter-class diversity of generated
data. WGAN [1] employs the Earth Mover’s distance as a
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Figure 3. Overview architecture.

novel loss for optimization. StyleGAN [17] proposes to fuse
representations from the generator to synthesize diverse data.
However, all these methods need the original training data to
address the mode collapse problem and then generate more
diverse data.

2.2. Quantization
Quantization is effective in compressing a DNN into smaller
sizes. For a weight w in a DNN, the quantization can be de-
scribed as ŵ = clip(round(ws − b), lower, upper), where s
corresponds to the scale factor, b denotes the zero point, and
clip is the clip operation which quantizes the weights into
the [lower, upper] clip range. Generator-based data-free
quantization is inspired by GAN, and has attracted signifi-
cant attention recently due to its ability to address privacy
issues where the training data are unavailable. It generates
synthetic data, which are then used to calibrate the quantized
model. GDFQ [39] was the first to propose the generator-
based data-free quantization. It utilizes the statistics of the
batches from the CNN full-precision model to help train the
generator. ARC [45] tries to design a better generator by
Neural Architecture Search. DSG [43] tries to adapt batch
normalization layers to diversify samples. HAST [21] pro-
posed to generate images with larger losses, which are the
hard samples that the full-precision model finds hard to clas-
sify correctly. IntraQ [44] uses local object reinforcement
to conduct crop or resize to enhance the synthetic images.
PSAQ-ViT [23] is the first to apply the data-free GAN-based
quantization for Transformer architectures, and PSAQ-ViT
V2 [24] uses additional prior information to enhance the syn-
thetic images. CLAMP-ViT [34] uses image-patch-level con-
trastive learning to help quantize Vision Transformer models.
AdaDFQ [31] and AdaSG [30] use the information losses to
improve the quality of the synthetic images. Qimera [6] uses
Mixup [42] to generate boundary data. TexQ [5] uses the
Mixup for the generated images to calibrate the quantized

model without cross-entropy loss, as the Mixup labels may
be inaccurate. However, these methods still face the mode
collapse problem and long-tailed activation problem.

2.3. Data augmentation
Data augmentation focuses on how to enhance the original
training data. Basic augmentation techniques [11] include
image cropping and rotation etc. More advanced methods
include Mixup [42] and CutMix [41] etc. Mixup mixes pairs
of images and their corresponding labels. CutMix combines
two images by randomly cutting and pasting patches on
images. In this paper, we have Qimera, IntraQ and TexQ etc,
as our baselines, which utilize augmentation to enhance the
generated images. However, they could not solve the mode
collapse problem, as only augmentation on two generated
similar images cannot synthesize new diverse images.

3. Methodology
3.1. Preliminary
Quantization is to compress a full-precision model P into
a quantized model Q that also has good accuracy. Data-
free quantization is divided into two processes [39]: data
generation and quantization. Data generation is defined as
follows:

min
G

L
[
P
[
G(Ei, z)

]
, yi

]
, (1)

where G denotes the generator, Ei is a learnable label em-
bedding for label i, z is a random variable, G(Ei, z) is the
generated image, yi is the one-hot label for class i, and L is
the cross-entropy loss. Quantization is defined as follows:

min
Q

KL
[
P
[
G(Ei, z)

]
,Q

[
G(Ei, z)

]]
, (2)

where KL is the KL-divergence loss.
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3.2. Overall architecture
We present our architecture in Figure 3. First, we extract
features from multiple layers of the full-precision model,
and utilize these multi-layer features to obtain the label em-
beddings. The label embeddings are fed into the generator
to present and distinguish different kinds of classes. Second,
we propose a multi-layer features mixer, which takes as in-
puts these multi-layer features, to learn the relations among
all kinds of classes, and output each target label embedding
to present more than one class. The target label embeddings
are then fed into the generator to synthesize an image con-
taining more classes, thereby enhancing inter-class diversity.
Third, we propose normalization flow based attention, which
takes as inputs the random variables from the Gaussian dis-
tribution and uses normalization flow to output the random
variables with different non-Gaussian distributions to present
minutia features of different levels. Then the random vari-
ables with different non-Gaussian distributions are fed into
the flow based attention to help the generator focus on the
features with different levels specifically, thereby enhancing
the intra-class diversity, where different images can focus
on different colors or textures etc. Last, we propose novel
regulation to generate diverse data with more patterns from
the perspective of activated values of features, and calibrate
the quantized model from the full-precision model to adapt
to diverse data.

3.3. Multi-layer features
The existing data-free quantization methods are inspired
by GAN. Due to the lack of original data, it is difficult to
initialize good label embeddings [39] for the generator to
present and distinguish different kinds of classes. In order to
obtain meaningful label embeddings and synthesize diverse
data, we propose to utilize the features of different levels [14]
from different layers of the trained full-precision model. For
example, shallow layers mainly focus on shape or texture
features for different classes, while deep layers mainly focus
on semantic features for different classes. Therefore, we use
such multi-layer features from the full-precision model to
enhance the meaning of the label embeddings.

3.3.1. Label embeddings
First, we extract multi-layer features from the full-precision
model, to obtain label embeddings with diverse informa-
tion for the generator to present and distinguish different
classes. The intuition is that we train a MLP j classifier
to distinguish features of each j-th level into right labels,
and each raw of the weights Wj from the MLP j classifier
presents the clustered center [6, 11] of each class and thus
can be the representation with j-th level information for
each class. With the representations with different levels, we
could have more meaningful label embeddings to present
and distinguish different kinds of classes.

For any input imaged to the full-precision model, which
is synthesized by the warm-up generator [6], we denote F j

d

as the feature learned at the j-th layer of the full-precision
model. Then, we use a multilayer perceptron (MLP) classi-
fier to find out which class label this feature map F j

d belongs
to, as follows:

ˆprob
j

d = MLP j(F j
d), ŷjd = argmax( ˆprob

j

d). (3)

where MLP j is the classifier for the j-th layer of the full-
precision model, ˆprob

j

d denotes the predicted probability
distribution indicating which class label the j-th level feature
F j

d may belong to, and ŷjd denotes the predicted class label.
The classifier is optimized as follows:

min
[
L( ˆprob

j

d, yd) +KL( ˆprob
j

d, probd)
]
, (4)

where L denotes the cross-entropy loss, KL denotes the KL-
divergence loss, yd is the class label and probd is the final
predicted probability distribution by the whole full-precision
model for imaged.

Then, we can fuse the weights from all classifiers together
to initial label embeddings for the generator to present and
distinguish different kinds of classes:

E = Average{Wj |1 ≤ j ≤ J}, (5)

where each raw of E is the label embedding for one class,
Wj is the weights matrix of the MLP j classifier, and J is a
hyperparameter which denotes the total number of chosen
layers from the full-precision model.

Instead of directly using the label embeddings and ran-
dom Gaussian variables to generate images like existing
works [5, 6, 39], we propose to further enhance the inter-
class and inter-class diversity as follows.

3.3.2. Multi-layer features mixer

We propose a multi-layer features mixer module to en-
hance the inter-class diversity. Data augmentation such
as Mixup [42] is used in previous quantization meth-
ods [5, 6, 22]. However, existing works [37, 40] show that
such augmentation will result in inaccurate labels which
will confuse the full-precision model and make it difficult to
train the generator, as in their augmentation process entirely
unrelated images are randomly mixed.

Here, we provide a multi-layer features mixer for augmen-
tation which contains an attention-based Mixup on the label
embeddings to capture relations among different classes.
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The attention process is calculated as follows:

O0 = softmax(
QK√

d
) · V = σ · V

Q = WQ

∑
λiEi s.t.

∑
λi = 1

K = WK concat[Ei]

V = WV concat[Ei]

y =
∑

σi yi ,

(6)

where Ei denotes the class embedding of the class i, λi is
random weight when Mixup each class i, WQ, WK , WV are
learnable projection matrices, σ denotes the attention scores,
σi is the attention score for class i, yi is the one-hot label for
class i, and y is the mixed target label. Multi-layer features
mixer takes the embedding of the target label as the query,
takes concatenated embeddings of all classes as the key and
value, and outputs the mixed label embedding O0. Instead
of using inaccurate label y =

∑
λi yi and random weight

λi to Mixup unrelated images as existing works do [5, 6, 22],
our weight σi for the target label and mixed label embedding
is the attention score which uses attention mechanism for
O0 to capture relations among classes with the information
of different levels extracted from the full-precision model.

3.3.3. Normalization flow based attention
In order to enhance the intra-class diversity, we propose to
use the attention mechanism to make the generator focus
on minutia features of different levels specifically. All the
existing quantization methods [2, 5] directly combine all
class embeddings and random variables from the same Gaus-
sian distribution to generate data. These methods overlook
the fact that minutia features of different levels may have
different distribution spaces [17].

Following the normalization flow [35], we propose to use
flow mapping to learn different non-Gaussian distributions
as follows:

zj = mappingj(z), (7)

where z is a random variable from Gaussian distribution
and zj is the random variable with j-th non-Gaussian dis-
tributions. Then, instead of directly concatenating class
embeddings with random variables from the same Gaussian
distribution as the existing methods, we make the generator
focus on the minutia features of different levels with the
attention mechanism:

Oj = Transformer
(
(Oj−1, zj)

)
, for 1 ≤ j ≤ J, (8)

where input O0 is the label embedding produced from multi-
layer features mixer, and each attention output Oj is the j-th
level embedding which has focused on minutia features of
j-th level specifically. Then the generator can synthesize im-
ages with both enhanced inter-class and intra-class diversity

with the last embedding OJ :

image = G(OJ). (9)

3.4. The loss function
First, we propose a similarity-based regulation loss to gener-
ate diverse data with more patterns from the perspective of
activated feature values in the full-precision model. The mo-
tivation is that the generator should generate diverse data that
exhibit more complex feature patterns in the full-precision
model where the activated features should have a more di-
verse distribution rather than a centralized long-tailed distri-
bution:

SimLoss1 =
∑
d

Cosine
(
Pa(imaged), fyd

)
, (10)

where imaged denotes the image generated from the gener-
ator, yd is the label of imaged, Pa(imaged) is the activated
features after the last activation layer for imaged from the
full-precision model, fyi

denotes the moving average of the
activated features from all images belonging to label yi that
are generated in previous iterations, Cosine is the Cosine
similarity measurement to make the data exhibit more di-
verse feature patterns.

Then, we use a distillation regulation to align the full-
precision model and the quantized model in the activation
layers, to learn appropriate clip ranges adaptive to our gen-
erated diverse data. We use J to denote the total number
of chosen layers in the full-precision model and the quan-
tized model. For the l-th activation layer where 1 ≤ l ≤ J ,
we initialize a learnable clip range [0, βl]. Then, we make
the quantized values from each l-th activation layer with
clip range [0, βl], to approximate the activated values of the
full-precision model from the corresponding activation layer:

SimLoss2 =
∑
l

(al − âl)2 (11)

where al denotes the outputs from the l-th activation layer
in the full-precision model, âl denotes the quantized outputs
with clip range [0, βl] from the l-th activation layer in the
quantized model. With this distillation loss, the quantized
model can learn clip ranges adaptive to the diverse data by
aligning with the full-precision model.

Finally, in addition to the existing quantization loss in
Eq.(1) and (2), our overall loss functions for the generator
and quantized model are as follows.

LG = L
[
P
[
G(OJ)

]
, y
]
+ SimLoss1 (12)

LQ = KL
[
P
[
G(OJ)

]
,Q

[
G(OJ)

]]
+ SimLoss2 (13)
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Table 1. Quantization results for Transformer architectures on ImageNet dataset

Bit Methods
ViT-S

(81.39)
ViT-B
(84.53)

DeiT-T
(72.21)

DeiT-S
(79.85)

DeiT-B
(81.85)

Swin-T
(81.35)

Swin-S
(83.20)

4w8a

Standard (2022)
PSAQ-ViT (2022)

Standard V2 (2023)
PSAQ-ViT V2 (2023)
CLAMP-ViT (2024)

EnhancingDFQ (ours)

19.91
20.84

-
-
-

78.04

24.76
25.34

-
-

78.73
83.63

65.20
65.57
68.43
68.61
69.93
69.89

72.10
73.23
75.98
76.36
77.03
77.96

76.25
77.05
79.17
79.49

-
80.97

70.16
71.79
75.51
76.28
80.28
80.23

74.22
75.14
78.22
78.86
82.51
82.51

8w8a

Standard (2022)
PSAQ-ViT (2022)

Standard V2 (2023)
PSAQ-ViT V2 (2023)
CLAMP-ViT (2024)

EnhancingDFQ (ours)

30.28
31.45

-
-
-

81.38

36.65
37.36

-
-

84.19
85.14

71.27
71.56
72.06
72.17
72.17
72.15

71.27
76.92
79.24
79.56
79.55
79.73

78.61
79.10
81.26
81.52

-
81.77

74.22
75.35
79.62
80.21
81.17
81.12

75.19
76.64
81.42
82.13
82.57
83.04

4. Experiments

4.1. Experiments setup
We compare quantization performance on benchmark
CIFAR-100 [19], which is a small dataset, and benchmark
ImageNet [8], which is a large dataset. These two classifica-
tion benchmarks are consensus for comparing data-free quan-
tization performance [2, 5, 23, 24, 34, 39]. We compare our
model with state-of-the-art data-free quantization methods,
including GDFQ [39], ARC [45], Qimera [6], HAST [21], In-
traQ [44], AdaSG [30], AdaDFQ [31], TexQ [5], and RIS [2]
which are proposed to quantize for CNN architectures, and
Standard [23], PSAQ-ViT [23], Standard V2 [24] PSAQ-ViT
V2 [24] and CLAMP-ViT [34] which are proposed to quan-
tize for Transformer architectures. More baseline details can
be seen in Supplementary Material.

Following previous works [2, 5, 24, 34], we use pre-
trained models from PytorchCV [14] as full-precision mod-
els for CNN architectures, i.e. ResNet-20, ResNet-18,
ResNet-50 and MobileNet-V2 [14], and use pre-trained
models from TIMM [38] as full-precision models for Trans-
former architectures, i.e. ViT [9], DeiT [36] and Swin [26].
To enable direct and fair comparisons, for CNN architec-
tures, we quantize to 3w3a (3 bits for weight and 3 bits for
activation) and 4w4a following existing CNN quantization
methods [2, 5, 6, 31, 39], and for Transformer architectures,
we quantize to 4w8a and 8w8a following existing Trans-
former quantization methods [23, 24, 34]. More experimen-
tal details can be seen in Supplementary Material.

4.2. Overall comparison
Following existing works [2, 5, 6, 23, 24, 34], we report
the top-1 accuracy (acc) results to evaluate the quantized
models in Tables 1 and 2. We report experimental results
from the corresponding papers of all baselines. For the rest
quantization bit settings not covered in their original papers,
we carefully tune the hyper-parameters based on the rec-

Table 2. Quantization results for CNN architectures

Dataset Cifar-100 ImageNet

Bit Methods
ResNet-20

(70.33)
ResNet-18

(71.47)
MobileNetV2

(73.03)
ResNet-50

(77.73)

3w3a

GDFQ 47.61 20.23 1.46 0.31
ARC 40.15 23.37 14.30 1.63

Qimera 46.13 28.23 0.27 1.82
HAST 55.67 51.15 - -
AdaSG 52.76 37.04 26.90 16.98

AdaDFQ 52.74 38.10 28.99 17.63
RIS 53.08 48.71 32.05 25.79

TexQ 55.87 50.28 32.38 25.27
Ours 56.17 52.27 34.10 28.32

4w4a

GDFQ 63.75 60.60 59.43 52.12
ARC 62.76 61.32 60.13 61.32

Qimera 65.10 63.84 61.62 66.25
HAST 66.68 66.91 65.60 -
IntraQ 64.98 66.47 65.10 68.50
AdaSG 66.42 66.50 65.15 68.58

AdaDFQ 66.81 66.53 65.41 68.38
RIS 65.99 67.55 66.90 70.61

TexQ 67.18 67.73 67.07 70.72
Ours 67.31 68.13 67.10 71.20

ommendations from the corresponding papers. If there are
no available codes, we do not report their results and mark
their results as “-”. We randomly repeat 5 times and report
average results for our method. We use bold to highlight the
best accuracy, which outperforms the second best accuracy
marked by underline. The top-1 accuracy results for the
full-precision models are reported in parentheses under each
full-precision model.

Key observations are summarized as follows. First, our
method consistently achieves significantly superior quanti-
zation performance compared to state-of-the-art methods in
almost all settings for both Transformer and CNN architec-
tures, except for full-precision models DeiT-T and Swin-T
where our method achieves compatible quantization perfor-
mance compared to state-of-the-art baselines based on paired
t-test at the significance level of 0.1. The results demonstrate
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(a) Diverse images generated for
a class by our method.

(b) Similar images generated for
a class by Qimera.

(c) Similarity matrix of images for
the same class by our method.

(d) Similarity matrix of images for
the same class by Qimera.

Figure 4. Visualization shows that data generated by Qimera are more similar to each other while our method can generate more diverse data.

the effectiveness of our proposed method.
Second, the existing methods that propose to augment

the generated images to calibrate the quantized model, e.g.
Qimera, IntraQ and TexQ, outperform naive data-free quan-
tization methods, e.g. GDFQ and ARC. It demonstrates that
the mode collapse problem and the diversity of generated
training data are important for the quantization performance.
However, they all fail to outperform our method, as a simple
augmentation on two highly similar images cannot synthe-
size diverse new images and they could not fundamentally
solve the mode collapse and the diversity problem.

Third, our quantized model outperforms the full-precision
model ViT-B in the 8w8a setting. This may be because the
full-precision model ViT-B is not trained with Mixup [42]
and is insensitive to the decision boundaries [37]. However,
our quantization process includes an attention-based Mixup
strategy, which may help the model to learn more accurate
decision boundaries. Thus, our quantized model surprisingly
outperforms the full-precision model ViT-B in the 8w8a
setting with our attention-based Mixup strategy.

Last, our method consistently achieves good data-free
quantization performance for both CNN and Transformer
architectures, even though the baselines are specifically de-
signed for CNN or Transformer architectures. This is be-
cause the mode collapse problem exists in all the generator-
based data-free quantization frameworks, and our modules
and loss functions are independent of the architectures of the
full-precision models. Our modules and loss functions can
be further integrated into the specific quantization methods
as plugins to improve performance.

4.3. Ablation study
We conduct ablation experiments to validate the effective-
ness of our modules and loss functions. We report the results
of 4w4a quantization for Resnet50 and 4w8a quantization
for DeiT-T on the ImageNet dataset in Table 3. In particular,
“label embeddings” denotes whether we use the extracted
multi-layer features to obtain label embeddings or randomly
initialize label embeddings as existing methods [39, 45],
“features mixer” denotes whether we use the multi-layer fea-

Table 3. Ablation study

label
embeddings

features
mixer

flow based
attention losses

ResNet-50
(4w4a)

DeiT-T
(4w8a)

✓ ✓ ✓ ✓ 71.20 69.89
✓ ✓ ✓ 69.14 68.37
✓ ✓ ✓ 70.45 69.18
✓ ✓ ✓ 68.79 68.22

✓ ✓ ✓ 69.72 68.83
✓ 66.21 67.03

✓ 66.42 66.72
✓ 65.72 65.89

✓ 68.08 66.92
✗ ✗ ✗ ✗ 52.12 64.83

tures mixer for attention-based Mixup or not, “flow based
attention” denotes whether we use the normalization flow
based attention or not, and “losses” denotes whether use our
regulation losses or not. We can observe that: (1) Our label
embeddings, multi-layer features mixer, normalization flow
based attention, and regulation losses all help to improve
the quantization performance, which demonstrates the ef-
fectiveness of each module. (2) By extracting multi-layer
features from the full-precision model we can achieve better
performance, which shows that we can obtain better label
embeddings to provide information of different levels for
the generator to present different classes and generate better
calibration data. (3) With the multi-layer features mixer and
normalization flow based attention we can achieve better
performance, which shows that we can enhance the inter-
class and intra-class diversity to generate diverse data for
more accurate calibration. (4) With our regulation losses we
can achieve better performance, which shows that generating
diverse data with more complex feature patterns and aligning
the activation layers help quantization.

4.4. Case study

We use visualization to further evaluate our method. First,
in Figure 4a and 4b, we can see that our generated images
are more diverse, compared to the images from Qimera
which are highly similar. Besides, the quantitative analysis
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Figure 5. Visualization for different features of three levels from
ResNet-50, which shows our generated images for a class are also
diverse from the perspective of feature patterns.

Figure 6. Visualization for different features from ViT-B of our
generated images for a class.

in Figure 4c and 4d, where we calculate the paired similarity
score [6] between any two images generated for the same
class, shows that the images generated by our method are
less similar with each other comparing to Qimera.

Second, in Figure 5 and 6, we can observe that features
from different layers focus on information of different levels,
and our two generated data are dissimilar from the perspec-
tive of feature patterns.

Last, by utilizing the minutia features extracted from the
full-precision model to obtain better class embeddings, we
can synthesize data that are more like the original dataset, as
shown in Figure 7 with PCA visualization [6], where each
sub-figure presents the PCA plots for images within the same
one class, where equivalent images are from the original
CIFAR-100 dataset, or generated by Qimera, AdaDFQ or
our method, respectively. From Figure 7 we can also see
that the PCA plots of our generated images are more diverse,
while the PCA plots of the images generated by Qimera or
AdaDFQ are closer to each other, respectively.

4.5. More analysis

We report the overall running time cost for different quanti-
zation methods in Table 4. More time complexity analysis
can be seen in Supplementary Material, which shows our
method is as efficient as the baselines and our overall time
complexity has the same order as the baselines. We also eval-
uate our hyperparameters in Supplementary Material, i.e. J

Figure 7. PCA visualization for images within four different classes,
respectively. The images are from the original CIFAR-100 dataset,
and generated by Qimera, AdaDFQ and our method.

Table 4. Runtime comparison on ResNet-18 quantization (the
unlisted baselines neither have open codes nor analyze runtime).

Methods GPU Hours

GDFQ (ECCV 2020) 7.4
Qimera (NeurIPS 2021) 8.3

ARC (IJCAI 2021) 13.5
AdaSG (AAAI 2023) 8.6

AdaDFQ (CVPR 2023) 9.0
EnhancingDFQ (ours) 8.7

the total number of layers of the full-precision model where
we extract multi-layer features to obtain class embeddings,
the number of Transformer blocks in Eq.(8), and the number
of heads for attention in Eq.(6) and Transformer blocks in
Eq.(8). More analysis of our loss functions also can be seen
in Supplementary Material, where our loss functions are
integrated into existing quantization methods as plugins and
have improved their performance.

5. Conclusion

We address the diversity problem for data-free quantization.
We utilize information from the full-precision model, and
propose multi-layer features mixer that learns the relations
among all classes, and normalization flow based attention
that focuses on the features of different levels, to enhance
both inter-class and intra-class diversity. We also propose
novel loss functions to generate diverse data and make the
quantized model more adaptive to diverse data. Extensive
experiments show that our method achieves state-of-the-art
quantization results for both Transformer and CNN archi-
tectures. In future work, it is of interest to use our modules
as plugins to improve specific quantization methods, and
research on quantization for large models and other tasks.
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