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Science - Chemistry

Q: Assume that 2.24 liters of gas fully 
participates in the reaction shown in the 
video under the standard temperature and 
pressure condition, how many grams of 
precipitate are produced approximately?

(A) 10.0 (B) 5.0 (C) 12.0 (D) 15.0 (E) 20.0

Engineering – Computer Science

Q: Assume that the algorithm is 
correctly implemented to fully sort the 
list. What is the total number of 
comparisons performed in the algorithm?

Answer: 14

Healthcare - Basic Medicine

Q: Which virus does the video depict?

(A) Norovirus (B) Measles  virus 
(C) Hemorrhagic fever virus 
(D) Human papillomavirus 
(E) Arboviral encephalitis virus

Humanities & Social Science - Art

Q: Which cinematic shooting technique is 
shown in the video?

Answer: Dolly Zoom
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Loading [MathJax]/extensions/MathMenu.jsFigure 1. Overview of our benchmark. MMVU includes 3,000 expert-annotated examples, covering 27 subjects across four core disci-
plines. It is designed to assess foundation models in expert-level, knowledge-intensive video understanding and reasoning tasks.

Abstract

We introduce MMVU, a comprehensive expert-level, multi-
discipline benchmark for evaluating foundation models
in video understanding. MMVU includes 3,000 expert-
annotated questions spanning 27 subjects across four core
disciplines: Science, Healthcare, Humanities & Social Sci-
ences, and Engineering. Compared to prior benchmarks,
MMVU features three key advancements. First, it chal-
lenges models to apply domain-specific knowledge and per-
form expert-level reasoning to analyze specialized-domain
videos, moving beyond the basic visual perception typically
assessed in current video benchmarks. Second, each exam-
ple is annotated by human experts from scratch. We imple-
ment strict data quality controls to ensure the high qual-
ity of the dataset. Finally, each example is enriched with

expert-annotated reasoning rationals and relevant domain
knowledge, facilitating in-depth analysis. We conduct an
extensive evaluation of 36 frontier multimodal foundation
models on MMVU. The latest System-2-capable models, o1
and Gemini 2.0 Flash Thinking, achieve the highest per-
formance among the tested models. However, they still fall
short of matching human expertise. Through in-depth error
analyses and case studies, we offer actionable insights for
future advancements in expert-level, knowledge-intensive
video understanding for specialized domains.

1. Introduction
Foundation models have demonstrated remarkable capabil-
ities in reasoning across various domains, yet their ability
to handle expert-level knowledge remains a critical area of
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Dataset QA Type Data Source College
Level?

Detailed Solution
Rational? Knowledge?

Text
MMLU [60] MC Exam, course, textbook 3 7 7
MMLU-Pro [147] MC Datasets ! Human & LLM augment 3 7 7
C-Eval [65] MC Exam 3 7 7
SciEval [132] MC, Open Internet, datasets ! LLM rewrite 3 7 7
TheoremQA [21] MC, T/F, Open Internet, exam ! Human rewrite 3 7 3
SciKnowEval [42] MC, T/F, Open Textbooks, database, other datasets ! LLM rewrite 3 7 3

Text + Image
VisScience [72] MC, Open Internet, exam, textbook 7 7 7
EXAMS-V [32] MC Exam 7 7 7
ScienceQA [103] MC Internet, course 7 3 7
SceMQA [95] MC, Open Internet, exam 7 3 7
CharXiv [149] Open arXiv paper ! Human annotate 3 7 7
MMSci [94] MC Scientific paper ! LLM generate 3 7 7
OlympicArena [67] MC, T/F, Open Olympic competitions 3 3 7
MMMU [161] MC, Open Internet, exam, textbook 3 17.6% 7
CMMMU [164] MC, T/F, Open Internet, exam, textbook 3 2.1% 7
MMMU-Pro [162] MC MMMU ! Human & LLM augment 3 15.4% 7

Text + Video
MMWorld [58] MC Human experts (24%) / LLM-gen (76%) 39.5% 7 7

MMVU (ours) MC, Open Human experts annotate from scratch 3 3 3

Table 1. Comparison between MMVU and existing multi-discipline benchmarks for evaluating foundation models. In the “QA Type”
column, “MC” denotes Multiple-Choice questions, “Open” denotes Open-ended questions, and “T/F” denotes True-False questions.

evaluation [60, 161]. In recent years, researchers have de-
veloped numerous benchmarks to assess these models’ pro-
ficiency in specialized domains, primarily focusing on text-
based reasoning [42, 60, 132, 147] and image-based con-
texts [94, 104, 161, 162, 164]. However, as capabilities of
foundation models expand across multiple modalities, there
is a significant gap in evaluating expert-level reasoning over
specialized-domain videos. This gap is particularly con-
cerning as video is one of the most information-rich and
naturalistic modalities, and is widely used to convey com-
plex, dynamic information in specialized fields like health-
care, engineering, and scientific research [58]. Unlike static
text or images, expert-level videos often capture temporal
dynamics, procedural knowledge, and complex interactions
that are essential in many specialized domains. For exam-
ple, in science, expert-level and knowledge-intensive rea-
soning might involve analyzing a chemical reaction video
(Figure 1). A model must identify key reaction stages based
on subtle visual cues like color changes or the formation
of precipitates, which requires integrating chemical knowl-
edge in addition to recognizing visual patterns.

To bridge this gap, we introduce MMVU, a comprehen-
sive benchmark measuring Multimodal foundation models
in expert-level, Multi-discipline Video Understanding and
reasoning. MMVU consists of 3,000 expert-annotated QA
examples over 1,529 specialized-domain videos, spanning
27 subjects across four key disciplines: Science, Health-
care, Humanities & Social Sciences, and Engineering. To

ensure both the breadth of domain knowledge and the
depth of reasoning required for MMVU, we implement a
textbook-guided data annotation process. Expert annota-
tors first locate key concepts from textbooks in their fields,
then source relevant videos and create corresponding ques-
tions that require domain knowledge and expert-level rea-
soning to comprehend the videos. Each example also in-
cludes expert-annotated reasoning rationale and relevant
domain knowledge, facilitating fine-grained evaluation of
model performance. Thorough data quality controls are im-
plemented to ensure high quality of MMVU.

We conduct an extensive evaluation on MMVU, cover-
ing 36 frontier multimodal foundation models from 17 or-
ganizations. Notably, the latest o1 model demonstrates the
highest performance among all tested models, approaching
the expertise of human experts. Despite this progress, other
models still fall noticeably short of human-level capabili-
ties. For instance, GPT-4o achieves a score of 66.7%, which
is substantially lower than the benchmark set by human ex-
perts (i.e., 86.8%) in the open-book setting. Our analysis
highlights the effectiveness of CoT reasoning, which gener-
ally enhances model performance compared to directly gen-
erating final answers without intermediate reasoning steps.
To deepen understanding of the current models’ limitations,
we perform an in-depth error analysis of frontier models,
including numerous case studies reviewed by human ex-
perts. These insights provide valuable guidance for future
advancements in the field.
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Preliminary Setup (§3.1)
Select Subjects by 

User Study

4 Disciplines, 27 Subjects

Recruit & Train 
Annotators

67 Experts wiki

Textbook-Guided QA Annotation (§3.2)
Concept-Driven 
Video Collection

Textbook

QA Annotation
1. Create QA pairs
2. Annotate detailed solution rational
    - Relevant domain knowledge
    - Reasoning rationalVideos with 

CC license

Quality Control (§3.3)

Identify and correct 
annotation errors or biases

Figure 2. An overview of the MMVU benchmark construction pipeline.

2. Related Work
Video Understanding Benchmark. Existing video un-
derstanding benchmarks primarily focus on general-
purpose video comprehension tasks, such as action recog-
nition [34, 59, 100, 130], captioning and description [81,
89, 134, 153, 157], grounding [23, 74, 85, 145], tempo-
ral reasoning [17, 29, 70, 75, 91, 101, 129], and long
video understanding [7, 39, 112, 144, 166]. The rise
of video-based foundation models [41, 66, 135, 165] has
driven the development of new benchmarks that include
diverse video comprehension tasks for more comprehen-
sive evaluation [48, 76, 90, 92, 115, 156, 160]. However,
these benchmarks remain predominantly focused on natural
scenes and general-purpose tasks. A significant gap per-
sists in benchmarks targeting expert-level and knowledge-
intensive reasoning over specialized-domain videos, where
both visual perception and domain-specific expertise are re-
quired—especially in critical fields like healthcare, engi-
neering, and science [58].

Multi-discipline Evaluation Benchmark. The rapid de-
velopment of foundation models has significantly enhanced
expert-level reasoning across various disciplines [53, 71,
118, 136, 159]. Early benchmarks focused on domain-
specific tasks for textual domains, establishing a foundation
for assessing the models’ strengths and limitations in ex-
pert reasoning [21, 27, 60, 133, 147, 150, 168, 169]. More
recently, benchmarks have evolved to include multimodal
tasks [94, 104, 149, 161, 162, 164], emphasizing visual per-
ception and advanced reasoning with domain knowledge.
However, these efforts remain largely limited to static im-
ages. Developing a high-quality, multidisciplinary video
benchmark presents greater challenges than those for text
or image-based tasks due to the scarcity of suitable re-
sources (e.g., textbooks or exam questions). This leaves
the critical modality of videos and video-based expert-level
reasoning significantly underexplored. Recent work, MM-
World [58], has made pioneering strides by incorporating
videos across multiple disciplines. However, only a lim-
ited portion of its dataset (39.5%) requires domain-specific
expertise, and 76.4% of the examples are generated by the
GPT-4V model. Moreover, most existing benchmarks pro-

vide only the ground-truth answer, restricting researchers’
ability to conduct a fine-grained evaluation. To address this
limitation, MMVU includes expert-annotated reasoning ra-
tionales and relevant domain knowledge for each example,
enabling a more nuanced assessment of expert-level reason-
ing. Table 1 further distinguishes the difference between
MMVU and existing multi-discipline benchmarks.

3. MMVU Benchmark
We present MMVU, a comprehensive evaluation bench-
mark that focuses on measuring progress on knowledge-
intensive, expert-level reasoning in the video modality.
MMVU has the following key features: (1) Breadth of
Domain Knowledge: We employ a textbook-guided QA
annotation pipeline to ensure the wide coverage of do-
main knowledge within each subject (§3.2). (2) Depth
of Expert-level Reasoning: Each example in MMVU re-
quires models to comprehend specialized-domain video
context, applying expert knowledge and reasoning (§3.2).
(3) True Visual Understanding: Recent studies [20, 162,
167] have shown that visual content is unnecessary for
many examples in current multimodal benchmarks. To al-
leviate this issue, each example in MMVU is carefully val-
idated by human experts to confirm that video comprehen-
sion is required for accurate answering (§3.3). (4) Support
of Fine-grained Evaluation: We provide expert-annotated
solutions and the requisite knowledge for each example
(§3.2), enabling more comprehensive analysis for future re-
search (§4.3). Figure 2 provides an overview of the three
stages involved in constructing MMVU, which is detailed
in the following subsections.

3.1. Preliminary Setup
We first discuss the preliminary setup for data construction.

Subject Selection. To ensure a broad and accurate repre-
sentation of expert-level video understanding across diverse
disciplines, we conduct a user study involving 133 college
and graduate students for subject selection. We ask them
to curate two QA examples requiring expert-level video un-
derstanding in subjects relevant to their field of study, and
provide feedback on their experiences during the curation

8477



Question:
Assume that 2.24 liters of gas fully participates in the reaction shown in the video 
under the standard temperature and pressure condition, how many grams of 
precipitate are produced approximately?

Options: (A) 10.0 ✅ (B) 5.0  (C) 12.0  (D) 15.0  (E) 20.0

Textbook used for annotation: “Chemistry, 2nd Edition (Paul Flowers, Klaus 
Theopold, Richard Langley, William R. Robinson)”

Annotated Relevant Domain Knowledge (Wikipedia page): 
1. Calcium hydroxide: https://en.wikipedia.org/wiki/Calcium_hydroxide

“...When carbon dioxide is passed through limewater, the solution takes on a milky 
appearance due to precipitation of insoluble calcium carbonate: Ca(OH)2(aq) + 
CO2(g) → CaCO3(s) + H2O(l) ...”

2. Carbon dioxide: https://en.wikipedia.org/wiki/Carbon_dioxide 
3. Ideal gas law: https://en.wikipedia.org/wiki/Ideal_gas_law 

Annotated Reasoning Rational:
In the video, a person exhales gas that is continuously introduced into a clear 
solution, gradually forming a white precipitate. This indicates that the 
substances involved in the reaction are CO₂ and limewater. 
The chemical reaction equation is: Ca(OH)₂  + CO₂  → CaCO₃ + H₂ O
At the STP, 2.24 liters of CO₂ corresponds to 0.1 Moles.
From balanced equation, 0.1 moles of CO₂ produce 0.1 moles of CaCO₃.
Given Ca = 40 g/mol, C = 12 g/mol, O = 16 g/mol, the molar mass of CaCO₃ = 40 
+ 12 + 16 * 3 = 100 g/mol. Therefore, the mass of CaCO₃ = 0.1 * 100 = 10g.

Figure 3. A dataset example from MMVU with the discipline of chemistry. Each example in MMVU includes expert annotation of relevant
domain knowledge and step-by-step reasoning rational.

process. Such a user study-guided approach helps us iden-
tify subjects within each discipline that may not be obvious
from a top-down selection process. It also offers insights
into the challenges of designing expert-level video exam-
ples, helping us design and refine the textbook-guided QA
annotation process (detailed in §3.2). The authors manually
analyze the collected examples and select 27 subjects (as
listed in Figure 1) across four disciplines that align best with
our benchmark’s construction desiderata discussed earlier.

Expert Annotator Recruitment and Training. For each
subject, we assign at least two annotators with relevant ex-
pertise. We include 67 expert annotators (detailed biogra-
phies are presented in Appendix A.1), comprising 22 third-
or fourth-year undergraduate students, 36 graduate students,
and nine of the authors. All the annotators also participated
in our initial user study. Each annotator is required to finish
a training session to learn the annotation protocol (detailed
in Appendix A.3) before official annotation.

3.2. Textbook-Guided QA Example Annotation
Constructing a high-quality, expert-level, multi-disciplinary
benchmark for video-based tasks is more challenging than
the ones for text- or image-based, as there is no exist-
ing resources (e.g., textbooks or exam questions) that can
adapted from and each example has to be curated from
scratch. Therefore, it is crucial to establish a structured ap-
proach that ensures the quality and comprehensiveness of
the benchmark. We employ a textbook-guided example an-
notation pipeline designed to capture both the breadth of
knowledge and depth of reasoning. In brief, annotators first
identify key concepts from the textbook and locate relevant
videos that align with these concepts. The textbooks for
each subject (listed in Appendix A.2) are selected by expert
annotators and are recognized as authoritative references in

their respective fields. Annotators then curate QA examples
and detailed solution rationales. We detail the annotation
procedure as follows:

Concept-Driven CC-Licensed Video Collection. Anno-
tators are instructed to first review each chapter of the text-
book to identify key concepts that inherently require dy-
namic visual representation, such as experimental proce-
dures in science or mechanical operations in engineering.
They then search for related videos on YouTube having Cre-
ative Commons (CC) license that effectively illustrate the
selected concept. The CC license enables reusers to dis-
tribute, remix, adapt, and build upon the material in any
medium or format, so long as attribution is given to the
creator. We use YouTube Data API v31 to verify the li-
cense type. Existing video benchmarks typically utilize
YouTube videos, yet do not confine their selections to con-
tent with CC licenses, introducing potential copyright con-
cerns. We recognize that by restricting our selection to CC-
licensed content, we are compelled to forgo coverage of
certain subjects (e.g. sports), where CC-licensed videos is
scarce. To ensure the collected videos effectively challenge
the model’s visual reasoning capabilities, the video should
be vision-intensive, requiring models to focus solely on vi-
sual information for comprehension. To this end, we ensure
that audio tracks are excluded to eliminate potential short-
cuts models might exploit through auditory cues; and the
video should contain minimal on-screen text, as an over-
abundance of text may detract from the core visual under-
standing task. Consequently, videos such as lecture record-
ings, which typically include slides or text-based explana-
tions that simplify the task of answering associated ques-
tions, are excluded.

1https://developers.google.com/youtube/v3
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QA Annotation. After identifying suitable videos, an-
notators are required to create two or three questions, ei-
ther multiple-choice or open-ended. Each question is de-
signed to test the model’s expert-level reasoning by apply-
ing domain-specific knowledge to interpret the video con-
tent and derive a solution. Annotators are also required to
specify the start and end timestamps of the video clip rel-
evant to answering each question. For annotating multi-
choice question, the annotators are required to carefully
craft the four distractor options to reflect common mis-
conceptions or plausible alternatives, ensuring that models
cannot easily eliminate incorrect options without reasoning
over video content. Once the five options are finalized, the
annotation interface randomly shuffles them.

Solution Rationale Annotation. For each annotated
question, annotators must also provide detailed solution for
the correct answers. As shown in Figure 3, the solution
comprises two key components: (1) relevant domain knowl-
edge, which includes a list of domain-specific concepts or
keywords necessary for answering the question, with each
concept linked to its corresponding Wikipedia page. (2)
reasoning rationale, which details the step-by-step reason-
ing process to reach the correct answer. These solution an-
notations are critical for enhancing transparency in the eval-
uation process and facilitating future research focused on
understanding model failure modes.

3.3. Data Quality Control
We next discuss our methods to ensure high data quality.

Time-Based Annotation Compensation. As discussed
earlier, annotating examples for MMVU can be particularly
time-intensive, especially when there is limited availabil-
ity of videos with Creative Commons licenses in the re-
quired subjects. To accommodate this and ensure a high-
quality benchmark, we compensate annotators based on the
time they spend rather than the number of examples com-
pleted, preventing them from rushing through tasks (See
Appendix A.5 for annotation compensation details). On av-
erage, annotating one example takes 20 minutes and 17 sec-
onds, while validation requires 4 minutes and 12 seconds.

Human Expert Validation. To ensure that the final
dataset remains high-quality and meets expert-level stan-
dards without introducing unnecessary biases, each exam-
ple in MMVU undergoes expert review by one of the au-
thors or top-performing annotators to verify the accuracy
of its annotations. Recent studies [20, 129, 162, 167] have
shown that visual content is unnecessary for many exam-
ples in current multimodal benchmarks. To address this
concern, each example in MMVU is carefully validated by

Statistics Value

Total Questions 3,000
Validation Set 1,000
Test Set 2,000

Unique Videos 1,529
Video Length (Seconds, avg/max) 51.4 / 228

Number of Disciplines 4
Number of Subjects 27

Multiple Choice Questions 1,858
Question Length (avg/max) 16.8 / 70
Single Choice Length (avg/max) 7.6 / 42
Number of Choices per Question 5

Open-ended Questions 1,142
Question Length (avg/max) 16.4 / 39
Ground-truth Answer Length (avg/max) 1.5 / 7

Number of Required Knowledge per Question (avg/max) 4.3 / 7
Solution Rationale Length (avg/max) 56.6 / 193

Total Number of Unique Knowledge (i.e., Wikipedia pages) 4,770

Table 2. Key statistics of the MMVU benchmark.

human experts to ensure that video comprehension is re-
quired for accurate answering. If an example is determined
to be answerable solely through the textual components of
the question, a single video frame, or if it contains anno-
tation errors, evaluators first attempt to revise the example.
If revision is not feasible, detailed feedback is provided to
the original annotator, who then revises and submits it for
a second iteration. A total of 523 examples were revised
during the data validation process. Among them, 72 exam-
ples were still found to be misaligned with our design cri-
teria and were excluded from the final benchmark. Overall,
1 � 523

3,000+72 = 83.0% of the initial examples met our de-
sign criteria without requiring revisions, indicating the high
quality of initial annotation.

3.4. MMVU Benchmark Analysis
Data Statistics. Table 2 presents the key statistics of
MMVU. It consists of 3,000 examples, which are randomly
divided into two subsets: validation and test. The valida-
tion set contains 1,000 examples, and is intended for model
development and validation. The test set, comprising the
remaining 2,000 examples, is strictly reserved for standard
evaluation to prevent data contamination [35, 50, 69]. To
further promote fair benchmarking, the test set remains hid-
den. We are developing an online evaluation pipeline on
a public platform, enabling researchers to benchmark their
models and participate in a public leaderboard.

Human Performance. To provide a rough but informa-
tive estimate of human-level performance on MMVU, we
randomly sampled 30 questions per discipline from the
test set, resulting in a total of 120 questions for evalua-
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tion. Five participants—three graduate students specializ-
ing in biology, anesthesiology, and East-Asian literature,
along with two of the authors—individually answered these
questions. The evaluation proceeded in three phases: (1)
Closed-book Setting: In the first phase, participants had
3.5 hours to answer questions without access to external re-
sources. The average accuracy across the four participants
was 49.7%. (2) Open-book Setting: In the second phase,
participants were permitted to use external resources (e.g.,
internet and textbooks) to review answers they felt uncer-
tain about. They were not informed of the correctness of
their initial responses, and a 4-hour time limit was set. This
open-book approach led to an increase in average accuracy
to 86.8%. (3) Oracle Setting: Finally, participants were
required to revise each incorrect answer based on ground-
truth domain knowledge and self-sourced online resources.
The average accuracy after this final revision was 95.3%.

4. Experiments
This section discusses experiment setup and key findings.

4.1. Experiment Setup
Evaluated Multimodal Foundation Models. To estab-
lish a comprehensive understanding of the challenges
posed by MMVU and provide reference points for fu-
ture research, we evaluate a broad range of frontier mul-
timodal foundation models that support video or multi-
ple images as input. Specifically, we evaluate 19 series
of open-source models, including InternVL-2 & 2.5 [22,
24], Qwen2-VL [143, 159], LLaVA-NeXT [99], Pix-
tral [111], DeepSeek-VL2 [154], H2OVL Mississippi [49],
Idefics2 [84], Aria [87], LLaVA-NeXT-Video [88], LLaVA-
OneVision [86], Llama-3.2-Vision [37], Phi-3.5-Vision [1],
InternVideo2 & 2.5 [146, 148], VideoChat-Flash [93], and
VideoLLaMA 2 & 2.1 & 3 [25, 163]. We also evalu-
ate eight series of proprietary models, including Ope-
nAI o1 [117] and GPT-4o [118], Gemini-1.5 & 2 and
Gemini-Thinking [53], GLM-4V-Plus [51, 63], Grok-2-
Vision [155], and Claude-3.5 [4]. For open-source models,
we prioritize the vLLM pipeline [83] for model inference;
otherwise, we use the Transformers pipeline [152]. We use
the official API service for proprietary models. For models
without native video support, following VideoMME [48],
we provide visual input using the maximum number of im-
ages that fits within the model’s context window. §B.1 de-
tails the parameter settings and model configurations. We
evaluate the models with both Direct Answer and Chain-
of-Thought prompts (presented in Appendix B.2), which is
adapted from the versions used in MMMU-Pro [162].

Accuracy Evaluation. We use accuracy as the primary
metric to evaluate model performance on MMVU. Fol-

lowing recent benchmarks for foundation model evalua-
tion [58, 104, 149], we employ GPT-4o to assess accuracy.
Specifically, given a question, its ground truth answer, and
the model’s response, GPT-4o is instructed to extract the fi-
nal answer from the model response and determine its cor-
rectness. The evaluation prompts for both multiple-choice
and open-ended questions are presented in Appendix B.3.

4.2. Main Findings
Section 4.1 presents the evaluated models’ CoT perfor-
mance on MMVU, while Figure 4 illustrates a comparison
between the model performance in CoT reasoning and di-
rect answering. Our key findings are as follows:

MMVU presents substantial challenges for current mul-
timodal foundation models. Even the top-performing
model falls well short of human expert performance.
For instance, GPT-4o achieves 66.7% accuracy with CoT
prompting, significantly lower than the 86.8% accuracy
achieved by human experts in an open-book setting. No-
tably, while GPT-4o has narrowed the performance gap
with human experts in text-based expert-level reasoning on
MMLU (88.7% vs 89.8% [60]) and image-based expert-
level reasoning on MMMU (69.1% vs 82.6% [161]), the
gap remains large on MMVU. This disparity underscores
MMVU’s critical role in advancing and evaluating multi-
modal foundation models’ capabilities in video-based ex-
pert reasoning across specialized domains.

Performance of open-sourced models. As for open-
source multimodal foundation models, they still lag be-
hind the proprietary models. However, the Qwen2-VL-72B
and DeepSeek-VL2 models have achieved performance lev-
els that exceed human benchmarks in closed-book settings
and are approaching the performance of leading propri-
etary models. These advancements highlight the significant
progress being made in open-source model development.

CoT reasoning generally improves model performance
compared to directly outputting the answer. However,
the degree of improvement varies across different foun-
dation models. For instance, Claude 3.5 Sonnet demon-
strated a remarkable enhancement, achieving a notable per-
formance gain of 11.0%, as corroborated by the findings in
MMMU-Pro [162]. Conversely, models like GPT-4o ex-
hibited only marginal improvements. These results indicate
that the impact of CoT reasoning is not uniformly beneficial
across all models on MMVU.

System-2 thinking demonstrates effectiveness. Models
capable of System-2 thinking and employing long CoT
demonstrate significant performance advantages. Notably,
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Release
Test Set Avg.

Validation
Avg.
TestScience Healthcare Human. &

Social Sci. Engineering

Human Performance

Human Oracle 95.3 93.3 96.0 96.7 95.3
Human Open-book 86.7 84.7 92.7 83.3 86.8
Human Closed-book 54.7 42.7 44.7 56.7 49.7

Proprietary Models

o1 2024-12 76.5 80.1 80.9 71.9 75.5 76.1
Gemini 2.0 Flash Thinking 2024-12 69.3 71.2 73.4 67.3 69.1 69.5
GPT-4o 2024-08 67.2 71.8 72.0 61.6 67.4 66.7
Gemini 2.0 Flash 2024-12 70.8 62.7 71.6 63.0 65.9 66.5
Gemini 1.5 Pro 2024-09 67.2 68.1 67.0 62.8 65.4 65.8
Claude 3.5 Sonnet 2024-10 60.5 64.0 70.9 64.5 65.2 64.1
Grok-2-Vision 2024-12 60.6 72.5 72.0 57.4 62.7 63.4
GPT-4o-mini 2024-07 60.3 60.9 70.6 59.3 61.6 61.5
Gemini 1.5 Flash 2024-09 56.8 57.3 66.3 58.2 58.8 58.8
GLM-4V-Plus 2025-01 52.2 57.3 64.9 55.4 56.2 56.2

Open-sourced Models

Qwen2-VL-72B 2024-09 48.0 53.6 61.7 53.9 53.0 53.2
DeepSeek-VL2 2024-12 50.3 53.4 58.9 48.6 52.1 51.5
InternVL2.5-38B 2024-11 50.3 45.6 52.8 52.8 50.5 50.7
Aria 2024-11 46.8 43.3 61.0 49.9 49.3 49.3
InternVideo2.5-8B 2025-01 47.6 50.0 54.3 44.9 48.3 48.0
Llama-3.2-90B-Vision 2024-09 46.5 43.5 53.9 48.1 47.1 47.6
VideoLLaMA3-7B 2025-01 46.5 47.9 57.4 43.5 45.0 47.2
DeepSeek-VL2-Small 2024-12 47.5 48.7 47.5 45.1 46.9 46.9
VideoChat-Flash-7B 2025-01 43.6 50.8 50.7 41.5 45.1 45.2
Qwen2-VL-7B-Instruct 2024-08 43.6 42.5 43.6 41.2 42.1 42.5
InternVL2.5-8B 2024-11 39.2 36.8 47.2 42.3 41.1 41.0
VideoLLaMA2.1-7B 2024-10 35.3 38.9 45.4 41.6 39.5 39.8
VideoLLaMA3-2B 2025-01 40.0 42.7 47.5 34.6 38.7 39.6
Llama-3.2-11B-Vision 2024-09 40.5 39.4 44.0 35.7 38.9 39.0
Phi-3.5-Vision 2024-08 38.3 29.5 45.4 41.1 38.1 38.7
LLaVA-OneVision-7B 2024-09 34.3 38.6 40.8 38.8 37.9 37.7
Qwen2-VL-2B 2024-08 32.6 40.9 40.4 35.7 36.5 36.5
InternVL2-8B 2024-06 36.7 32.9 36.9 37.2 36.3 36.2
Idefics3-8B 2024-08 37.0 35.5 44.0 31.2 35.3 35.6
VideoLLaMA2-7B 2024-06 32.3 27.7 44.3 35.7 34.4 34.4
DeepSeek-VL2-Tiny 2024-12 34.3 33.4 35.8 30.1 33.0 32.8
Pixtral-12B 2024-09 36.1 24.6 37.9 30.8 32.3 32.2
LLaVA-NeXT-Video-34B 2024-06 31.8 24.6 35.8 30.3 30.5 30.4
InternVideo2-8B 2024-08 29.6 31.1 37.2 26.5 29.9 29.9
H2OVL Mississippi-2B 2024-10 29.1 29.5 29.4 28.0 29.1 28.8
LLaVA-NeXT-Video-7B 2024-06 27.0 31.1 27.3 29.5 28.6 28.7

Table 3. Accuracy of evaluated foundation models on the MMVU validation and test sets using CoT prompts. Model performance is
ranked based on overall results on the test set. ⇤: For o1, as the API access for its multimodal version has not been granted, we randomly
sampled 100 examples from the validation set and 200 examples (50 for each core discipline) from the test set.

the o1 and Gemini 2.0 Flash Thinking models achieved
the top two results on MMVU, illustrating that increasing
test-time compute and applying long CoT can significantly
enhance model performance in expert-level video reason-
ing tasks. These results highlight the potential of develop-
ing open-source models designed to facilitate and advance
System-2 thinking capabilities.

4.3. Qualitative Analysis

To gain a deeper understanding of the capabilities and lim-
itations of frontier models on MMVU, we perform com-
prehensive case studies and error analysis by humans. The
inclusion of expert-annotated reasoning rationales and do-
main knowledge for each example in MMVU facilitate a
more effective analysis compared to datasets that provide
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Figure 4. Comparison of model performance between CoT and
direct answering on validation set. Full results are shown in §C.1.

only answers. We focus on four top-performing mod-
els, GPT-4o, Qwen2-VL-72B, Llama-3.2-90B-Vision, and
DeepSeek-VL2, for human evaluation. From the MMVU
validation set, we randomly sample 50 error cases for each
model. These cases are analyzed by the authors using
ground-truth features (i.e. expert-annotated reasoning ratio-
nales and required domain knowledge) as references. We
identify the following six primary errors, with illustrative
examples provided in Appendix C:
Visual Perception Error (18%): The model fails to ac-
curately interpret spatial, temporal, or semantic aspects of
visual information within a video. Additionally, it might
“hallucinate”, detecting objects or events that are not actu-
ally present in the video. Figure 16 is a typical instance
where the model fails to correctly perceive the traversal or-
der of binary tree. Figure 18 shows that the model mistak-
enly identifies the device shell in the video as water, leading
to completely wrong reasoning about the device’s function.
Misuse or Lack Domain Knowledge in Visual Perception
(20%): The model fails to apply the domain-specific exper-
tise required to accurately interpret specialized concepts or
elements within the video. For example, in a medical video,
it may identify objects but fail to recognize their technical
terms or misunderstand their importance within the proce-
dure being demonstrated. Moreover, as shown in Figure 20,
the model correctly perceives the ascending numbers (array
indices), but misuses its pretrained knowledge and misiden-
tifies them as the numbers to be sorted. It leads to the wrong
conclusion that the video demonstrates a sorting algorithm.
This limitation underscores a gap in model’s ability to inte-
grate domain knowledge with visual perception effectively.
Misuse or Lack Domain Knowledge in Reasoning
(27%): The model fails to effectively recall and apply do-
main knowledge during its reasoning processes. For in-

stance, when addressing questions over chemistry videos,
it may fail to correctly apply relevant chemical equations,
leading to errors in computing the reaction mass. A notable
example is Figure 23, where the model misuses the domain
knowledge that bats often live in unsanitary environments
and makes the wrong inference that poor hygiene conditions
are the cause of virus outbreaks. Besides, in Figure 26, the
model lacks the domain knowledge about relevant chemi-
cal equations, so that it cannot correctly answer the ques-
tion. This limitation underscores the model’s inability to
integrate domain knowledge into its reasoning processes ef-
fectively.
Heavy Reliance on Textual Information (20%): The
model predominantly depends on textual information for
problem-solving, especially when addressing multiple-
choice questions, as it evaluates each option individually
without leveraging the actual video content. For instance,
Figure 27 shows the model ignores the video information
about the reason of the disease and overly focuses on the
textual question. Similar limitations have been observed in
other multimodal benchmarks [48, 161]. Future work could
enhance multimodal reasoning by more effectively incorpo-
rating non-textual content into the reasoning process.
Logical Reasoning Error (6%): The model exhibits in-
consistencies between its reasoning process and final an-
swer, leading to self-contradiction. As depicted in Fig-
ure 29, the analysis of one specific option contradicts
with the other reasoning steps, which is a typical self-
contradiction logical error.
Other Error (9%): This includes refusing to answer a
question due to insufficient context or safety concerns, ex-
ceeding the output limit, generating repetitive information,
or making incorrect math computation.

5. Conclusion
We introduce MMVU, a high-quality, multi-disciplinary
benchmark designed to assess the expert-level, knowledge-
intensive reasoning capabilities of multimodal foundation
models on specialized-domain videos. We employ a
textbook-guided example annotation pipeline designed to
capture both the breadth of knowledge and depth of rea-
soning. In our evaluation of 36 frontier multimodal foun-
dation models, we find that while the latest o1 model
achieves the highest performance among all tested mod-
els—approaching human expert-level proficiency—a no-
table performance gap remains between other models and
human experts. Additionally, models employing CoT rea-
soning consistently outperform those that generate final an-
swers directly. Through comprehensive error analysis and
case studies, we identify persistent challenges of MMVU,
offering valuable insights for advancing foundation models’
capabilities to achieve expert-level video understanding.
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