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Figure 1. We propose GauSTAR, a novel method that (a) enables photo-realistic rendering, surface reconstruction, and 3D tracking for

dynamic scenes while handling topology changes. (b) GauSTAR adapts to topology changes through two mechanisms: consistent tracking

for stable surfaces (red circles) and dynamic surface generation for newly appearing geometry (orange circles).

Abstract

3D Gaussian Splatting techniques have enabled efficient

photo-realistic rendering of static scenes. Recent works

have extended these approaches to support surface recon-

struction and tracking. However, tracking dynamic surfaces

with 3D Gaussians remains challenging due to complex

topology changes, such as surfaces appearing, disappear-

ing, or splitting. To address these challenges, we propose

GauSTAR, a novel method that achieves photo-realistic ren-

dering, accurate surface reconstruction, and reliable 3D

tracking for general dynamic scenes with changing topol-

ogy. Given multi-view captures as input, GauSTAR binds

Gaussians to mesh faces to represent dynamic objects. For

surfaces with consistent topology, GauSTAR maintains the

mesh topology and tracks the meshes using Gaussians. For

regions where topology changes, GauSTAR adaptively un-

binds Gaussians from the mesh, enabling accurate regis-

tration and generation of new surfaces based on these op-

timized Gaussians. Additionally, we introduce a surface-

based scene flow method that provides robust initialization

for tracking between frames. Experiments demonstrate that

our method effectively tracks and reconstructs dynamic sur-

faces, enabling a range of applications. Our project page

with the code release is available at https://eth-

ait.github.io/GauSTAR/.

1. Introduction

In the realm of dynamic scene representations, we seek

methods capable of delivering photorealistic renderings

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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from arbitrary viewpoints, as well as surface reconstruc-

tions that adapt to changing topologies. Scenarios involving

human or robotic interactions with objects require dynamic

adaptation to surfaces that split, merge, or deform. Fur-

thermore, downstream applications such as visual effects

and markerless motion capture benefit significantly from the

ability to track persistent regions over time without relying

on templates. Therefore, methods must efficiently handle

these topology changes to ensure high-quality renderings

and accurate reconstruction while also maintaining consis-

tent tracking of existing surfaces.

Classical methods primarily rely on meshes and tex-

ture maps, which provide reasonable appearances but heav-

ily depend on mesh resolution. They often fail to ren-

der fine details and view-dependent effects accurately. Al-

though these mesh representations allow for some level

of tracking, they struggle to handle significant topology

changes, necessitating new keyframes to accommodate ma-

jor transformations. The advent of Neural Radiance Fields

(NeRF) [30] brought significant improvements in appear-

ance and novel view synthesis for both static [1, 48] and dy-

namic scenes [18, 32]. While surfaces can be derived from

implicit Signed Distance Functions (SDF) using Marching

Cubes [39, 46], they lack consistent tracking unless under-

lying templates are used. Recently, 3D Gaussian Splatting

(3DGS) [21] has emerged with explicit texture represen-

tation, rivaling NeRF in appearance while achieving more

efficient renderings. Its explicit representation facilitates

tracking, and several techniques have been developed for

this purpose [28, 54]. However, accurate dynamic surface

reconstruction remains a challenge, and balancing the track-

ing of existing surfaces with the introduction of new ones

proves difficult.

To address these challenges, we propose GauSTAR,

a method capable of reconstructing photorealistic appear-

ances and accurate surface geometries with consistent track-

ing as topology changes. GauSTAR leverages multi-view

capture and combines meshes with bound Gaussians to cre-

ate Gaussian Surfaces. These Gaussians move along with

the mesh faces to represent objects that move and deform.

When new surfaces become visible, new Gaussians are gen-

erated, and the mesh topology updates. The adaptable mesh

provides a time-consistent and accurate geometry, while the

Gaussians bring a photorealistic appearance.

This problem is challenging because there is always a

trade-off. Methods that allow easier tracking via fixed

topologies or templates [26, 54] tend to degrade the quality

of the appearance and geometry under new poses or defor-

mations. Conversely, methods that overfit static scenes [8,

15, 17] lack temporal consistency or miss new frame details.

GauSTAR addresses this trade-off by tracking as many sur-

faces over time as possible while remaining flexible to en-

able new faces and Gaussians to appear where the topology

changes. We adapt the preceding frame by deforming the

mesh and optimizing Gaussian parameters. For topology-

changing surfaces such as newly emerging ones, GauSTAR

first unbinds the Gaussians in these regions, allowing them

to move beyond the mesh faces. New Gaussian Surfaces are

then generated based on the unbound Gaussians, enabling

accurate reconstruction of the new surfaces. Additionally,

we propose a surface-based scene flow method that back-

projects 2D optical flow into 3D space using depth images.

This method provides an initialization for frame-by-frame

tracking to robustly manage large 3D or fast motions.

Our contributions are as follows.

• A new framework for tracking and reconstructing dy-

namic scenes combining 3D Gaussians and meshes, ef-

fectively managing changes in topology.

• A method for Gaussian unbinding and surface re-meshing

that allows the generation of new surfaces as topologies

evolve.

• A method for handling large or fast deformation of sur-

faces between frames via scene flow warping.

As demonstrated in our experiments, GauSTAR matches

or surpasses SOTA methods in appearance metrics, thanks

to the performance of Gaussian Surfaces. This makes it a

strong representation for high-quality 3D rendering appli-

cations such as VR/XR and telepresence. Simultaneously,

GauSTAR provides a high-resolution, explicit 3D repre-

sentation with robust tracking capabilities, as illustrated by

our AprilTag-based experiments. We expect these tracked

meshes will facilitate numerous tasks beyond rendering,

benefiting fields such as computer vision, computer graph-

ics, robotics, biomechanics, spatial audio, and more.

2. Related Work

2.1. 3D Neural Representations

The reconstruction of general scenes has been a long-

standing problem in computer vision. Traditional meth-

ods relied on triangle meshes and texture maps [7, 25,

36, 50, 51]. While these explicit representations enabled

efficient rendering and intuitive geometry editing, they

struggled with view-dependent effects and fine surface de-

tails. Recent neural representations such as NeRF [30] and

3DGS [21] have significantly advanced the static recon-

struction field with coordinate-based networks and explicit

3D Gaussians. Both NeRF and 3DGS can achieve photo-

realistic rendering, while the surfaces cannot be extracted

accurately. NeRF-based methods address this by introduc-

ing SDF fields [39, 43, 46] and using Marching Cubes [27]

to generate surfaces. Gaussian-based methods propose to

use surface-alignment regularization terms [5, 8, 12, 15]

during training, followed by mesh extraction. As 3D Gaus-

sians are discrete presentations rather than continuous rep-

resentations like NeRF, Poisson reconstruction [8, 15] and
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SDF fusion [4, 17, 44] are also employed for mesh extrac-

tion, along with Marching Cubes [23, 24, 47]. To further

improve the quality, Gaussian Surfels [8] propose a novel

point-based representation and a self-supervised normal-

depth consistency regularizer. 2D Gaussian Splatting [17]

uses 2D Gaussians that are tightly aligned to surfaces.

NeuSG [3] jointly optimizes implicit surface reconstruction

with 3D Gaussian Splatting. While these methods perform

well for static scenes, applying them to achieve consistent

dynamic reconstruction is far from straightforward.

2.2. 4D Dynamic Representations

To handle dynamic scenes, several NeRF-based meth-

ods [13, 33, 43, 52] incorporate time-dependent variables

into the reconstruction model to represent movements and

deformations. For instance, HumanRF [18] reconstructs

radiance fields using 4D feature grids over temporal seg-

ments. While these approaches achieve photo-realistic ren-

dering of general dynamic scenes, they lack consistent

tracking capabilities, limiting their practical applications.

For 3DGS-based dynamic surface reconstruction, defor-

mation modules [2, 26, 49] are also introduced to deform

Gaussians and reconstruct meshes from monocular inputs.

MaGS [29] constrains 3D Gaussians to hover on the mesh

surface, creating a mutual-adsorbed mesh-Gaussian repre-

sentation. Space-time 2D Gaussian Splatting [42] lever-

ages 2D Gaussians to reconstruct dynamic scenes and ex-

tract surfaces from them. However, these methods extract

meshes independently for each frame, limiting their ability

to generate face correspondences across frames.

2.3. Tracking

Tracking methods aim to estimate the motion trajectories

of surface points. 2D tracking methods [9, 10, 16, 20]

take video inputs and track pixels across frames. Omni-

Motion [40] improves pixel-wise tracking by introducing

a 3D canonical volume and a set of bijections. Shape of

Motion [41] represents scene motion using a set of mo-

tion bases, providing a globally consistent representation

of dynamic scenes. With the use of 3D Gaussians as an

explicit representation, new possibilities emerge for more

efficient 3D tracking. Dynamic 3D Gaussians [28] tracks

Gaussians by directly optimizing their positions with multi-

view inputs. PhysAvatar [54] tracks time-consistent meshes

and models human clothes via physics-based simulation and

rendering. To improve performance, traditional non-rigid

fusion techniques [19], optical flow methods [6, 14, 55],

and multi-head deformation decoders [45] are also em-

ployed. Additionally, some Gaussian-based reconstruction

methods [11, 22] deform sets of Gaussians to represent dy-

namic scenes; however, their use of temporary Gaussians

restricts them to short-range tracking. While these meth-

ods demonstrate the ability to track Gaussians or meshes

with fixed topology, tracking surfaces as topologies evolve

remains an open challenge.

3. Method

Our system takes multi-view RGB-D videos as input. We

aim to achieve consistent reconstruction and tracking even

when surfaces undergo topology changes. To represent dy-

namic objects, we introduce Gaussian Surfaces - meshes

with Gaussians attached to their faces - which enable both

accurate geometry reconstruction and photo-realistic ren-

dering (Sec. 3.1 and Fig. 2 (c)). For each frame, we first

initialize surface positions through scene flow warping from

the previous frame (Sec. 3.2 and Fig. 2 (b)). We then op-

timize the Gaussian Surfaces with the topology from the

previous frame using multi-view constraints (Sec. 3.3 and

Fig. 2 (c)). For regions experiencing topology changes,

which are detected through our novel Gaussian unbind-

ing weights, we allow Gaussians to detach from the orig-

inal mesh faces and optimize their positions independently

(Sec. 3.4 and Fig. 2 (d)). Lastly, we perform re-meshing

to update the topology-changing geometry, and ensure our

representation remains consistent in other regions (Sec. 3.5

and Fig. 2 (e)).

3.1. Gaussian Surface Representation

Our Gaussian Surface representation, shown in (c) of Fig. 2,

augments traditional meshes with N Gaussians per tri-

angular face [15, 54]. Following the formulation from

3DGS [21], a 3D Gaussian can be represented as:

G(x) = σ(α) · exp

(

−
1

2
(x− p)⊤Σ−1(x− p)

)

, (1)

Σ = RSS⊤R⊤. (2)

Here a Gaussian G is defined by its opacity α, center posi-

tion p, scales S, rotation R, and appearance color (repre-

sented by spherical harmonics). Moreover, σ() is the stan-

dard sigmoid function, and Σ denotes the covariance matrix.

To construct Gaussian Surfaces, we uniformly distribute

N Gaussians on each triangular face. Each Gaussian center

p is computed from the face vertices v1,v2,v3 using its

predefined barycentric coordinate (b1, b2, b3).

p = b1v1 + b2v2 + b3v3. (3)

To ensure Gaussians remain aligned with the mesh surface,

we constrain their orientation and thickness: the z-axis Rz

is set to the face normal n(f), while the z-scale Sz is set to

a small predefined value δ. The remaining Gaussian param-

eters are jointly optimized following the volumetric render-

ing approach of 3DGS [21].
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Figure 2. Taking multi-view captures as input, GauSTAR tracks and reconstructs dynamic objects frame by frame. For each frame,

GauSTAR first warps the previous frame’s result using scene flow (Sec. 3.2). It then reconstructs Gaussian Surfaces (Sec. 3.1) by fixed-

topology reconstruction (Sec. 3.3). To handle topology-changing surfaces, GauSTAR detects topology changes, unbinds Gaussians on

these surfaces, and adds new Gaussians as needed (Sec. 3.4). Finally, the Gaussian Surfaces are updated through re-meshing (Sec. 3.5).

3.2. Scene Flow Warping

Dynamic scenes often exhibit large or rapid deformations

between frames, making tracking and optimization chal-

lenging. To address this, we estimate 3D scene flow by

re-projecting 2D optical flow using depth information, pro-

viding robust initialization for each frame’s reconstruction.

Given adjacent frames t and t + 1, we compute scene

flow in four steps. First, we project each vertex from frame

t into all visible input views. Second, we compute the cor-

responding pixel positions in frame t+1 using optical flow

[38]. Third, we re-project these 2D positions in t + 1 back

to 3D using the respective depth images. Finally, we aggre-

gate the 3D movements between frames across all views to

obtain the scene flow for each vertex.

To enhance robustness, we filter out unreliable flows by

performing bi-directional optical flow consistency checks

between frames t and t+ 1, along with depth discontinuity

detection on the depth images. We further refine the scene

flow through surface-aware smoothing:

F ′(v) =
1

|N(v)|

∑

u∈N(v)

w(u, v)F(u), (4)

where F(v) and F ′(v) are the scene flow before and after

smoothing, N(v) represents mesh-connected neighbors of

vertex v, and w(u, v) weights neighbors by their distance.

The final vertex positions are updated as v + F ′(v).

3.3. Fixed­Topology Surface Reconstruction

We first reconstruct Gaussian Surfaces assuming fixed

topology, establishing a baseline reconstruction that will

later be refined to handle topology changes. Given multi-

view RGB-D inputs and a mesh initialized through scene

flow warping, we optimize vertex positions and Gaussian

parameters using RGB, depth, and mask supervision:

Lrgb =
∥

∥

∥
Ĉi − Ci

∥

∥

∥

1
+ λSSIMLSSIM(Ĉi, Ci), (5)

Ldepth =
∥

∥

∥
D̂i −Di

∥

∥

∥

1
, Lmask =

∥

∥

∥
M̂i −Mi

∥

∥

∥

1
. (6)

Here Ĉi, D̂i, M̂i represent predicted color, depth, and mask

images from Gaussian rendering, while Ci, Di,Mi are the

input images. As Gaussian positions are determined by ver-

tex positions in Eq. (3), optimizing these losses effectively

updates the underlying mesh.

We further introduce three regularization terms: normal

smoothing to ensure surface continuity, area preservation to
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maintain local geometry, and color consistency to promote

temporal coherence:

Lsmooth =
1

|F|

∑

fi∈F

∑

fj∈N(fi)

(1− n(fi) · n(fj)) , (7)

Larea =
1

|F|

∑

f∈F

∥Area(f ; t)−Area(f ; 0)∥1 , (8)

LSH =
1

|G|

∑

g∈G

∥SH(g; t)− SH(g; t−1)∥
2
2 , (9)

where F is the set of triangular faces, N(fi) denotes neigh-

boring faces of fi, and n(f) computes the face normal.

Area(f ; t) measures face area at frame t, penalizing de-

viation from initial areas Area(f ; 0). SH(g; t) represents

the spherical harmonics parameters of Gaussian g at frame

t, where G denotes the set of Gaussians. Additionally, we

constrain each Gaussian’s scale by its face’s edge length and

enforce a minimum opacity to ensure surface opacity.

3.4. Adaptive Gaussian Unbinding

While fixed-topology surface reconstruction refines meshes

based on multi-view input, it cannot handle emerging sur-

faces or topology changes. We address this problem by al-

lowing Gaussians to detach from the mesh faces in regions

where topology changes are detected.

As illustrated in Fig. 2 (d), we introduce additional trans-

formation parameters for each Gaussian: a rotation ∆R ap-

plied to the Gaussian orientation R, and a translation ∆t

added to its center position p. To optimize these transfor-

mations, we extend the fixed-topology reconstruction pro-

cess to jointly optimize both the original parameters and

these additional transformations. This allows Gaussians to

move independently from their underlying mesh faces when

necessary.

To identify which Gaussians should be unbound from the

mesh, we develop a weighting scheme based on geometric

and photometric cues. Inspired by the adaptive density con-

trol in 3DGS [21], we observe that topology changes typi-

cally manifest as large positional gradients and high recon-

struction errors, as shown in the top part of Fig. 2 (c). Based

on this, we define an unbinding weight for each face f :

W(f) = Gpos(f) + λrgbLrgb(f) + λdepthLdepth(f). (10)

Here unbinding weight W measures the likelihood of topol-

ogy changes for each face f . It combines positional gradi-

ents Gpos [21] and reconstruction errors from fixed-topology

optimization. We cap W at 1 and visualize an example in

Fig. 3 (a).

Based on these unbinding weights, we introduce a regu-

larization term to control the extent of transformations for

Original Faces

New Faces

(b)(a)

0

1

Figure 3. Details of the mesh update process. (a) Visualization of

unbinding weights defined in Eq. (10), where red indicates high

weights in topology-changing regions. (b) Mesh connection pro-

cess between original and new surfaces, with blue dotted lines

showing vertex correspondences.

Gaussians:

Lunb(g) = (1−W(fg)) (∥∆R(g)−I∥1 + λt ∥∆t(g)∥1) .
(11)

This loss regulates the transformation of each Gaussian g

on face fg . When unbinding weight W is high, indicat-

ing likely topology changes, the loss term weight becomes

small, allowing larger transformations and effectively un-

binding the Gaussian from its face.

In regions experiencing significant topology changes, we

not only allow existing Gaussians to detach but also intro-

duce new ones. As shown in Fig. 2 (d), for faces where

unbinding weights exceed a threshold, we duplicate their

associated Gaussians. These newly introduced Gaussians

are also unbound and governed by the unbinding regular-

ization loss in Eq. (11).

3.5. Surface Re­meshing

After Gaussian unbinding, we face two key technical chal-

lenges: identifying which mesh regions to update and en-

suring smooth transitions at region boundaries. We address

these by first localizing topology changes through unbind-

ing weights, then selectively reconstructing and integrating

new surfaces while preserving the original mesh structure

elsewhere.

To generate new surfaces from unbound Gaussians, we

first render depth images from multiple views, including

capture views and uniformly sampled views on a surround-

ing sphere. We then employ a TSDF fusion method [31] to

reconstruct new meshes from these depth images.

After obtaining new meshes, we identify regions on the

original mesh for replacement where unbinding weights ex-

ceed a predefined threshold. Since the unbound Gaussians

from these regions have moved to new surface locations

during optimization, we construct a voxel volume to locate

these Gaussian positions. Within this volume, we identify

corresponding faces from the new meshes to replace the

original faces, and then connect them with the remaining
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Ground Truth HumanRF Dynamic 3D Gaussians PhysAvatar-SMPLX 2D Gaussian Splatting GauSTAR (Ours)

Figure 4. Comparisons of appearance and geometry reconstruction. Dynamic 3D Gaussians [28] and PhysAvatar [54] yield suboptimal

reconstruction results. HumanRF [18] and 2DGS [17], lacking tracking capabilities, struggle under heavy occlusion. In contrast, GauSTAR

provides high-quality reconstruction while supporting tracking. Additional comparisons are provided in our supplementary materials.

original mesh.

To connect old and new meshes, we establish vertex cor-

respondences along their boundaries, as shown in Fig. 3

(b). Each boundary vertex from one mesh is matched to its

closest vertices on the other mesh boundary, allowing for

one-to-many or many-to-one correspondences. We merge

matched vertices into a single vertex, and then perform

post-processing steps, including edge flipping and hole fill-

ing [35], to refine the boundary region.

At the boundary of topology-changing surfaces, the un-

binding weights gradually change from 1 (fully unbound)

to 0 (fully bound), as illustrated in Fig. 3 (a). Accord-

ingly, the constraints on Gaussian transformations ∆R,∆t

in Eq. (11) vary smoothly, ensuring continuity between

original and new surfaces at their connection. After re-

meshing, we perform an additional round of fixed-topology

reconstruction described in Sec. 3.3 to fine-tune the updated

Gaussian Surfaces.

4. Experiments

4.1. Implement Details

We use a capture studio with 52 RGB cameras and 52 IR

cameras for capturing. Sequences are captured at a reso-

lution of 3004 × 4092 and 30 fps. Unstructured IR laser

lights are used, allowing us to generate depth images from

the IR captures. Specifically, we generate raw point clouds

from the IR images, refine them using the method in [7],

and project them onto the camera views. We attach N = 6
Gaussians per face. The initial mesh for the first frame can

be obtained using any multi-view reconstruction method

and we use [7]. Additional implementation details, along

with code release information for public datasets, are avail-

able in our supplementary materials.

4.2. Comparisons

We compare our method with SOTA multi-view reconstruc-

tion methods HumanRF [18], Dynamic 3D Gaussianss [28],

PhysAvatar [54], and 2D Gaussian Splatting (2DGS) [17],

as shown in Tab. 1 and Fig. 4. 1) HumanRF is a NeRF-based

method for dynamic scene reconstruction. Its implicit rep-

resentations do not provide correspondence or tracking in-

formation between frames. Since its mesh extraction code

is not publicly available, we implemented it based on the

paper. 2) Dynamic 3D Gaussians extend 3DGS [21] to han-

dle dynamic scenes, enabling Gaussian tracking but with-

out producing a surface mesh. Extracting meshes from its

Gaussians results in noisy outputs. 3) PhysAvatar tracks

an initial mesh using Gaussians in its first stage, with sub-

sequent stages focusing on clothing reconstruction through

simulation. We compare two versions of its first stage:

one for general objects and another tailored for human sub-

jects using SMPL-X [34]. PhysAvatar is limited in han-

dling topology changes and struggles with large deforma-

tions. 4) 2DGS uses flat Gaussians for surface reconstruc-

tion, which we apply independently to each frame in our
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Method
Appearance Geometry Tracking

PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ F-Score ↑ 3D ATE ↓ 2D ATE ↓

HumanRF [18] 30.59 0.947 0.128 0.284 0.968 - -

Dynamic 3D Gaussians [28] 27.61 0.905 0.214 1.113 † 0.733 † 3.15 13.84

PhysAvatar-general [54] 22.69 0.893 0.216 1.372 0.793 12.94 56.95

PhysAvatar-SMPLX [54] 24.50 0.908 0.193 0.625 0.837 8.98 39.61

2D Gaussian Splatting [17] 30.17 0.938 0.155 0.699 0.946 - -

GauSTAR w/o IR input 30.05 0.946 0.110 0.335 0.960 0.671 3.02

GauSTAR (Ours) 31.87 0.952 0.102 0.237 0.980 0.452 2.03

Table 1. Quantitative comparisons on appearance, geometry, and tracking. The best , second-best , and third-best results are high-

lighted. Our method achieves the best performance on reconstruction and tracking. CD and 3D ATE are reported in cm. †: Dynamic 3D

Gaussians [28] doesn’t provide surface reconstruction and we extract per-frame meshes using TSDF fusion [17].

Method
Appearance Geometry Tracking

PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ F-Score ↑ 3D ATE ↓ 2D ATE ↓

GauSTAR w/o unbinding 29.30 0.940 0.132 0.411 0.938 2.85 12.78

GauSTAR w/o re-meshing 29.77 0.943 0.129 0.418 0.936 2.08 9.16

GauSTAR w/o scene flow 29.92 0.943 0.127 0.433 0.916 6.56 29.96

GauSTAR (Ours final) 31.87 0.952 0.102 0.237 0.980 0.45 2.03

Table 2. Ablations. Quantitative evaluation of each key component: Gaussian unbinding, surface re-meshing, and scene flow warping.

Results demonstrate that each component is integral to the final reconstruction and tracking quality.

experiments. Without incorporating temporal information,

2DGS converges to artifacts in several frames.

To ensure a fair comparison, we implemented a new ver-

sion of our method without IR depth inputs, using rendered

depth images from HumanRF [18] as the depth inputs. Ad-

ditional experiment details and results are provided in our

supplementary materials.

Appearance. We evaluate the quality of appearance

reconstruction through novel view synthesis. The experi-

ment includes 4 sequences (totaling 850 frames) and 5 test

views. We report PSNR, SSIM, and LPIPS metrics in Tab. 1

and present qualitative comparisons in Fig. 4. Our method

achieves superior appearance quality, particularly on sur-

faces with significant occlusion, benefiting from the ability

to track prior surface appearance.

Geometry. For geometry comparison, we use an RGB-

D multi-view reconstruction method [7] to obtain the

ground truth meshes. Chamfer Distance (CD, in cm) and

F-Score [37] are reported in Tab. 1, with qualitative compar-

isons shown in Fig. 4. Since Dynamic 3D Gaussians [28]

does not provide surface reconstruction, we extract per-

frame meshes using TSDF fusion [17], following a similar

approach to our new face generation. Our method yields

high-quality geometry while maintaining surface tracking.

Tracking. We capture two sequences with AprilTags at-

tached to the human body to evaluate tracking performance.

Six AprilTags are placed on the front, back, arms, and legs,

In
p

u
t …… ……

Dynamic 3D Gaussians GauSTAR (Ours)PhysAvatar-SMPLX

T
ra

ck
in

g
 R

e
su

lt
s

Tracking TrajectoryGround Truth

Figure 5. Tracking comparisons using AprilTags. GauSTAR

achieves more accurate tracking results, with predicted (red) and

ground truth (blue) trajectories of tag centers shown.

as illustrated in Fig. 5. For each tag, we track 5 key points:

the center and 4 corner points. The 3D and 2D ground

truth are provided by AprilTag detection. We report 3D

and 2D Average Trajectory Error (ATE) [16, 53] in Tab. 1,
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Figure 6. Applications. (a) Object editing: virtual objects sync with dynamic surfaces. (b) Appearance editing: texture changes propagate

across frames. (c) General applicability to diverse scenes including multiple people, human-object interactions, and robotic motion.

with visualizations of the tracking trajectories presented in

Fig. 5. Our method achieves accurate tracking results, even

on topology-changing surfaces (e.g., arms uncrossing).

4.3. Ablations

We evaluate the key contributions of our method, includ-

ing Gaussian unbinding, surface re-meshing, and scene flow

warping. For ablation, each component is disabled individ-

ually, with the results shown in Tab. 2 and in our supple-

mentary materials.

Gaussian unbinding. Since newly emerging surfaces

cannot be modeled by fixed-topology meshes, our method

unbinds Gaussians on topology-changing surfaces to ensure

accurate reconstruction. Without unbinding, Gaussians re-

main attached to outdated faces, preventing updates to the

surface topology and failing to address topology changes.

Surface re-meshing. Following Gaussian unbinding,

our method updates the underlying mesh to reconstruct new

surfaces with the correct topology. Without this update, the

geometry topology remains consistent with the initial input

mesh, leading to suboptimal quality.

Scene flow warping. For each frame initialization, we

construct scene flow to warp the Gaussian Surfaces from

the previous frame, effectively handling large deformations.

This approach significantly enhances tracking quality and

helps prevent the optimization process from getting trapped

in local minima.

5. Discussion

Applications. Our method enables continuous tracking

throughout entire sequences. We present results for object

editing and appearance editing in (a) and (b) of Fig. 6 and

in the supplementary video. For object editing, new ob-

jects can be inserted into dynamic scenes and move in sync

with other surfaces through surface tracking. For appear-

ance editing, modifications made in a single frame are prop-

agated across frames via surface tracking. Our approach

does not require a template and is applicable to various gen-

eral dynamic scenes, including robots, multiple people, and

interacting objects, as shown in Fig. 6 (c).

Limitations. GauSTAR may face challenges with com-

plex or sudden topology changes, such as when a new per-

son suddenly enters the scene. Its dependence on multi-

view video data restricts its applicability in general pub-

lic scenarios. Transparent and specular surfaces pose chal-

lenges for most surface reconstruction methods, particularly

for Gaussian splitting. We leave handling such surfaces for

future work.

Conclusions. We propose GauSTAR, a unified method

for high-quality appearance reconstruction, surface recon-

struction, and 3D tracking. Our approach represents dy-

namic surfaces by binding Gaussians to mesh faces. For

surfaces with changing topology, new surfaces are recon-

structed by unbinding Gaussians. GauSTAR effectively

handles a wide range of dynamic scenes, paving the way

for new applications of Gaussian-based representations.
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References

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 5470–5479, 2022. 2

[2] Weiwei Cai, Weicai Ye, Peng Ye, Tong He, and Tao Chen.

Dynasurfgs: Dynamic surface reconstruction with planar-

based gaussian splatting. arXiv preprint arXiv:2408.13972,

2024. 3

[3] Hanlin Chen, Chen Li, and Gim Hee Lee. Neusg: Neural im-

plicit surface reconstruction with 3d gaussian splatting guid-

ance. arXiv preprint arXiv:2312.00846, 2023. 3

[4] Hanlin Chen, Fangyin Wei, Chen Li, Tianxin Huang, Yun-

song Wang, and Gim Hee Lee. Vcr-gaus: View consistent

depth-normal regularizer for gaussian surface reconstruction.

arXiv preprint arXiv:2406.05774, 2024. 3

[5] Jaehoon Choi, Yonghan Lee, Hyungtae Lee, Heesung Kwon,

and Dinesh Manocha. Meshgs: Adaptive mesh-aligned gaus-

sian splatting for high-quality rendering. In Proceedings

of the Asian Conference on Computer Vision, pages 3310–

3326, 2024. 2

[6] Wen-Hsuan Chu, Lei Ke, and Katerina Fragkiadaki. Dream-

scene4d: Dynamic multi-object scene generation from

monocular videos. arXiv preprint arXiv:2405.02280, 2024.

3

[7] Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Den-

nis Evseev, David Calabrese, Hugues Hoppe, Adam Kirk,

and Steve Sullivan. High-quality streamable free-viewpoint

video. ACM Transactions on Graphics (ToG), 34(4):1–13,

2015. 2, 6, 7

[8] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu,

Huamin Wang, and Weiwei Xu. High-quality surface recon-

struction using gaussian surfels. In ACM SIGGRAPH 2024

Conference Papers, pages 1–11, 2024. 2, 3

[9] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Re-

casens, Lucas Smaira, Yusuf Aytar, Joao Carreira, Andrew

Zisserman, and Yi Yang. Tap-vid: A benchmark for track-

ing any point in a video. Advances in Neural Information

Processing Systems, 35:13610–13626, 2022. 3

[10] Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush

Gupta, Yusuf Aytar, Joao Carreira, and Andrew Zisserman.

Tapir: Tracking any point with per-frame initialization and

temporal refinement. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 10061–

10072, 2023. 3

[11] Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wen-

zheng Chen, and Baoquan Chen. 4d gaussian splatting:

Towards efficient novel view synthesis for dynamic scenes.

arXiv preprint arXiv:2402.03307, 2024. 3

[12] Lue Fan, Yuxue Yang, Minxing Li, Hongsheng Li, and

Zhaoxiang Zhang. Trim 3d gaussian splatting for accurate

geometry representation. arXiv preprint arXiv:2406.07499,

2024. 2

[13] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk

Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:

Explicit radiance fields in space, time, and appearance. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 12479–12488, 2023. 3

[14] Quankai Gao, Qiangeng Xu, Zhe Cao, Ben Mildenhall, Wen-

chao Ma, Le Chen, Danhang Tang, and Ulrich Neumann.

Gaussianflow: Splatting gaussian dynamics for 4d content

creation. arXiv preprint arXiv:2403.12365, 2024. 3
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