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Abstract

Image denoising poses a significant challenge in image
processing, aiming to remove noise and artifacts from in-
put images. However, current denoising algorithms imple-
mented on electronic chips frequently encounter latency is-
sues and demand substantial computational resources. In
this paper, we introduce an all-optical Nonlinear Diffrac-
tive Denoising Deep Network (N3DNet) for image denois-
ing at the speed of light. Initially, we incorporate an im-
age encoding and pre-denoising module into the Diffrac-
tive Deep Neural Network and integrate a nonlinear acti-
vation function, termed the phase exponential linear func-
tion, after each diffractive layer, thereby boosting the net-
work’s nonlinear modeling and denoising capabilities. Sub-
sequently, we devise a new reinforcement learning algo-
rithm called regularization-assisted deep Q-network to op-
timize N3DNet. Finally, leveraging 3D printing techniques,
we fabricate N3DNet using the trained parameters and con-
struct a physical experimental system for real-world appli-
cations. A new benchmark dataset, termed MIDD, is con-
structed for mode image denoising, comprising 120K pairs
of noisy/noise-free images captured from real fiber com-
munication systems across various transmission lengths.
Through extensive simulation and real experiments, we
validate that N3DNet outperforms both traditional and
deep learning-based denoising approaches across various
datasets. Remarkably, its processing speed is nearly 3,800
times faster than electronic chip-based methods.

1. Introduction

Image denoising is a crucial and challenging task across
multiple fields, including signal processing [42, 46], com-
putational imaging [5, 53, 58], and computer vision [50,
51, 60]. For instance, effective noise reduction in computa-
tional imaging is paramount to counteracting the detrimen-
tal effects of various noise sources and artifacts, such as

*Equal contribution.  Corresponding authors.

those originating from image sensors, quantization, chan-
nel transmission, and environmental factors [38, 53]. More-
over, this task also holds considerable importance in fiber
communication systems [4, 21]. As fiber communication
links extend, the noise during mode communication in-
evitably degrades communication quality and increases the
complexity of signal processing [14, 62].

Considering the pivotal role of image denoising, substan-
tial research has been undertaken on noise reduction utiliz-
ing electronic chip-based devices. These methods can be
broadly categorized into two groups: traditional denoisers
such as Wiener filtering [17] and block-matching and 3D
filtering (BM3D) [13], and deep neural network (DNN)-
based methods [35, 39], such as denoising convolutional
neural network (DnCNN) [54], real image denoising net-
work (RIDNet) [3], and masked training (MT) [1 1]. Despite
being promising, these methods are time-consuming and
impose substantial computational burdens [24, 40]. Con-
sequently, exploring more efficient and effective compu-
tational platforms such as optical computing and quantum
computing presents an intriguing avenue. Diffractive Deep
Neural Network (D?NN) [33] is an all-optical diffractive
neural network trained via deep learning, demonstrating im-
pressive processing speed and performance. However, due
to its oversight of noise filtering during training and its lim-
ited feature representation capability, the denoising perfor-
mance of this architecture is considerably inferior to that of
electronic chip-based methods [23, 36].

This paper introduces a novel all-optical Nonlinear
Diffractive Denoising Deep Network (N3DNet) designed to
filter out image noise at the speed of light. To construct
N3DNet, we first incorporate an image encoding and pre-
denoising module into the original D?NN, with the goal
of achieving preliminary noise suppression and signal en-
hancement. Furthermore, we integrate a novel nonlinear ac-
tivation function, termed the phase exponential linear (PEL)
function, following each phase modulation layer within the
network, thereby enhancing its feature representation capa-
bility and flexibility. The entire structure of the proposed
N3DNet is depicted in Fig. 1, consisting of a sequence
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Figure 1. Schematic of the proposed N3DNet framework. We illustrate an example of utilizing N3DNet for mode image denoising, which

is trained using the RA-DQN algorithm.

of consecutive nonlinear phase modulation planes (layers),
all of which are transmissive. This innovative diffractive
architecture can achieve ultrafast image denoising by uti-
lizing optical diffraction and the pixel-level global atten-
tion mechanism to eliminate noise-related optical modes
while preserving the features of interest. By selectively
diffracting each cell in N3DNet and employing the nonlin-
ear layer to alter phase values, exquisite manipulation of the
output image is achieved. Consequently, after computer-
based training, N3DNet generates denoised images at the
speed of light in real-world applications, eliminating the
need for any digital computation. To optimize N3DNet,
we design a new reinforcement learning algorithm called
regularization-assisted deep Q-network (RA-DQN), which
significantly enhances N3DNet’s convergence performance
and improves the network’s convergence speed. Ultimately,
by leveraging the trained network parameters, we fabricate
N3DNet using 3D printing and establish a physical experi-
mental system to facilitate its practical application.

Extensive simulation and real experiments are conducted
on both mode image and benchmark image processing
datasets. Given that previous studies on mode processing
in fiber communication systems have primarily relied on
optical devices that necessitate only device design with-
out the need for training [16, 37], accessible datasets in
this domain are lacking. Taking the initiative, we intro-
duce a dedicated mode image denoising dataset (MIDD) for
six linearly polarized (LP) modes and three orbital angu-
lar momentum (OAM) modes that are widely used in sci-
entific research and commercial fiber communication sys-
tems [30, 44]. This dataset consists of 100K noisy mode
images for training and 20K noisy images for testing, all
of which are captured from real-world fiber communica-
tion systems. In addition to MIDD, we conduct experi-
ments on four synthetic noisy datasets and two real-world

noisy datasets. The comprehensive experiments demon-

strate that N3DNet significantly enhances denoising per-

formance compared to previous optical computing meth-
ods while maintaining nearly identical processing speed.

Specifically, it achieves an average performance improve-

ment of 9.15 dB in PSNR, 0.248 in SSIM, and 0.202 in

LPIPS compared to the best-performing optical computing

methods. The processing time of N3DNet reaches the mi-

crosecond level, while its power consumption is in the nano-

joule range. Moreover, in comparison with electronic chip-
based noise reduction approaches, including both tradi-
tional and DNN-based methods, N3DNet not only achieves
state-of-the-art (SOTA) performance but also boosts pro-
cessing speed by nearly 3,800 times.

Opverall, the main contributions are outlined as follows:

* We introduce N3DNet, an all-optical nonlinear diffractive
deep neural network designed for image denoising at the
speed of light.

* We propose an RA-DQN algorithm to optimize N3DNet,
which is then fabricated using 3D printing to develop a
physical experimental system for real-world applications.

¢ We introduce MIDD, a benchmark dataset for mode im-
age denoising. It consists of 120K images captured in real
scenarios, including single-mode, few-mode, and multi-
mode fibers across various transmission distances.

e We conduct extensive simulated and real experiments
across various datasets. The results demonstrate that
N3DNet achieves SOTA performance with remarkable ef-
ficiency, operating approximately 3,800 times faster than
methods relying on electronic chips.

2. Related Work

Image denoising is a critical aspect across various do-
mains [9, 22, 50, 59], which aims to improve image qual-
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ity by estimating clean images from noisy observations [15,
49, 61]. Over the years, researchers have proposed numer-
ous denoising techniques based on electronic chips. Tra-
ditional methods include non-local means [8], total vari-
ation regularization [2], and BM3D [13]. More recently,
DNN-based approaches, such as convolutional neural net-
works (CNNs) [31] and generative adversarial networks
(GANSs) [12], have shown superior performance in preserv-
ing fine details while effectively removing noise [32, 45,
54]. However, despite great potential, these methods fre-
quently impose substantial computational burdens and la-
tency issues, thereby limiting their scalability, especially in
resource-constrained environments.

Diffractive deep neural network (D2NN) [33] repre-
sents an all-optical diffractive neural network trained via
deep learning [28], which comprises multiple transmitting
and diffractive phase planes, each adorned with numer-
ous neurons manipulating or guiding incident light through
diffraction. In comparison with methods deployed on elec-
tronic devices [12, 19], D?NN offers numerous advantages
such as ultra-high speed, low power consumption, wave-
length multiplexing, and polarization multiplexing [34, 36].
The phases or amplitudes of neurons serve as parameters
awaiting training within D?NN. Through iterative mod-
ulations of incident light across multiple diffractive sur-
faces, D?NN can achieve the capability of all-optical infer-
ence [33, 40, 52]. Recently, researchers have proposed an
analog diffractive image (ADI) denoiser [23] that leverages
the D2NN architecture for image denoising. However, this
method falls short of achieving satisfactory results due to its
negligence of nonlinear modeling capability and reliance on
suboptimal optimization strategies.

3. Methodology

This section first elaborates on the propagation diagram of
N3DNet (§ 3.1), as depicted in Fig. 2, followed by the in-
troduction of the reinforcement learning algorithm (§ 3.2)
aimed at optimizing N3DNet. Ultimately, the construction
of the physical experimental system utilizing N3DNet for
real applications (§ 3.3), as shown in Fig. 3, is delineated.

3.1. Nonlinear Diffractive Denoising Deep Network

The forward propagation of N3DNet, as shown in Fig. 2,
consists of two components: the image encoding and pre-
denoising module (I) and the all-optical diffractive propaga-
tion module (II). These components represent the encoding
process of images and the transmission of optical signals in
free space (prior to the input layer), as well as the propa-
gation of optical signals across nonlinear diffractive layers,
respectively.

Input layer

Hidden layers (M = 5) yer I

Optical decoding output ™ <

Secondary
wave

Phase nonlinear\activation layers

Figure 2. Forward propagation diagram of N3DNet.

3.1.1. Image Encoding and Pre-Denoising Module

The noisy input image is initially encoded onto an optical
carrier through amplitude modulation [56, 57] in free space.
This encoded signal can be represented as

E(I,y,Z) :As(xay)AOeXp [*jk'T(I,y,Z)], (1)

where Ay and A (z,y) refer to the amplitude of the car-
rier light and the image signal, respectively. Moreover,
T = re, + ye, + ze, denotes the position vector at point
(x,y,2) and k = ke, + kye, + k.e. is the wave vector,
which delineates the wave’s propagation direction. It sat-
isfies |k| = 2w/, where A denotes the work wavelength.
Additionally, j = v/—1 represents the imaginary unit.

To achieve preliminary noise suppression and signal en-
hancement, we perform an optical Fourier transform on the
encoded signal, followed by bandpass filtering. The filtered
signal is represented as

h(x,y,z) = ‘Fﬁl{H(’av’D) ']:[E('r’yaz)]}’ 2

where H (u,v) denotes a bandpass filter with center fre-
quency @ and bandwidth ©. F(-) and F~!(-) represent the
Fourier transform function and its inverse, respectively.

Drawing from the Rayleigh-Sommerfeld diffraction
equation [48], each neuron within the layers of N3DNet is
regarded as a secondary source of a wave consisting of the
following optical mode:

. _z—z (1 1 j2nd

where [ denotes the [-th layer of the network, 7 represents
the 4-th neuron located at (z;,y;, 2;) of layer [, and d is
calculated as d = /(z —2;)2 + (y — ;)2 + (z — 2)%.
Across our diffractive neural network, all neurons adhere
to the optical propagation process. The input pattern
hi(z;,yi, z;) of the i-th neuron in the input plane, is in gen-
eral a complex-valued quantity and can carry information in
its phase and amplitude channels. Accordingly, the result-
ing wave function g9 on the input layer of N3DNet is gen-
erated through the diffraction of the plane-wave interacting
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with the input:
gzo('r7y?z) :w?(x7y7z)hl(xlayzazz)7 (4)

which connects the input to the neurons of the first hidden
layer, as shown in Fig. 2. Subsequently, the optical wave
will propagate through the M hidden layers in N3DNet, as
elaborated in the subsequent section.

3.1.2. All-Optical Diffractive Propagation Module

The amplitude and relative phase of the secondary wave are
determined by the product of the input wave to the neu-
ron and its transmission coefficient (pé), both of which are
complex-valued functions. Consequently, the output of the
i-th neuron in the I-th layer, ¢ (z, v, 2), is calculated as

l l l 1-1
9; = frer{w; (%%Z)Pi(xnyi,zi)zk Ik,i Loo®)

where gfcfil(:ci,yi,zi) denotes the output from the k-th
neuron in the (I — 1)-th diffractive layer incident on
the i-th neuron in the [-th layer. Accordingly, the term
Dok gé}l (i, yi,2;) represents the input wave to the i-th
neuron in layer . Besides, fppy refers to our proposed
PEL activation function, which is

freL(X) =

{BX exp(aX), if X >0, ©

0, otherwise.

To obtain this activation function, we initially utilize meta-
surface [18] composed of SizN4 and Er-doped TiO5 to
achieve phase modulation in the incident light. Then, we
collect data pairs consisting of input and output phases, and
fit these data pairs to obtain Eq. (6), with a = 0.5 and
B=0.2. The secondary waves undergo diffraction between
layers and interfere with each other to form a complex wave
at the surface of the next layer, thereby supplying input to
its neurons, as illustrated in Fig. 2. p!(z;,y;, 2;) in Eq. (5)
refers to the transmission coefficient of the i-th neuron in
layer [, expressed as a complex-valued function, and calcu-
lated as

Ph(xi, yiy 2i) = ab (4,93, z) exp [ (x4, yi, 1)), (7)

where a! indicates the amplitude term of the i-th neuron in
the [-th layer, and qﬁé is its phase term, with 0 < aé < 1and
- < qﬁi <.

From Eq. (5), the cells of the [-th phase plane perform
complex modulation on the light, thereby modifying the
original information of the optical wave. For a better un-
derstanding of these changes, Eq. (5) can be redefined with
the relative amplitude of the secondary wave /Ali and the
additional phase delay AQ! that the secondary wave en-
counters due to the input wave to the neuron and its trans-
mission coefficient. Consequently, we have ¢! (z,y,2) =

frer{w! (z,y,2) Alexp (jAQL)}.

In summary, each hidden layer involves computations of
Egs. (5) and (7), culminating in its output g' € RF>*W  As-
suming N3DNet comprises M hidden layers (excluding the
input and output planes), the input plane’s output g9 is prop-
agated through these M layers. The intensity of the result-
ing optical field I detected at the output plane can be ex-
pressed as:

I =g P, 8)

7

where gzM =" & g,i”l (24, Yi, 2;) denotes the output of the
i-th neuron in the output plane and | giMH| represents its
magnitude. Based on this forward propagation process, the
results of the output plane I are compared with the inten-
sity of the targets I' and the resulting errors are backpropa-
gated to iteratively update N3DNet.

3.2. Training Algorithm of N3DNet

To optimize N3DNet, we propose a novel reinforcement
learning algorithm, named RA-DQN, which is adapted
from DQN [41]. Its reward R equals the negative loss £
of N3DNet, consisting of three components: Charbonnier
loss [27] L¢, Fourier loss £, and FSIM loss [25] Ls.
Among these, L¢ assesses the disparity between the pixel
values of the network outputs and targets. To restore high-
frequency information in images, £ = L, (F(I*), F(I"))
directs the model to learn frequency domain features and
restore high-frequency information as effectively as possi-
ble, where L1 (-, -) represents the L; loss. Additionally, Ls
evaluates image quality by comparing the structure and fea-
tures. Accordingly, the loss function utilized to optimize
N3DNet is calculated as

L=Le (I I") +aLr (I*, 1) + BLs (I T"), (9)

where I* and I' represent the outputs and targets, respec-
tively. Moreover, & and £ are two modulating hyperparam-
eters used to adjust the relative strength of each loss term.
During the optimization process, the state S refers to the
phase values of neurons in all diffractive layers, denoted as
L, where i ranges from 1 to H x W and [ ranges from 1
to M, with H x W representing the number of cell grids in
a phase plane. The action .4 represents the phase changes
across all cells, denoted as Agbé. At each step ¢, the RA-
DQN agent receives the current state S; and outputs an ac-
tion A;. Subsequently, the environment (i.e., N3DNet) gen-
erates a new state (S;y1) and reward R;, 1 based on A;.
Consequently, the agent continually updates its parameters
to enhance its decision-making abilities. The core of this
process is the following value function iteration:

Qo (St, Ar) <+ Qo (Si, Ar) +

v [Res1 + emax 4 Q (Ser1, A) — Qo (S, At)} )
(10)
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Figure 3. Physical experimental system for applying N3DNet. The image is first encoded by the DMD, then undergoes a Fourier transform,
bandpass filtering, and an inverse Fourier transform through a 4f system. Subsequently, it is denoised using the diffractive phase planes of

N3DNet and finally captured by the CCD for imaging.

where 6 and 0 refer to the parameters of the deep Q-network
@ and the target network Q respectively. « and € represent
the learning rate and discount factor, respectively, with set-
tings following those of previous studies [20, 41, 47]. To en-
hance training stability, we apply a penalty to the disparity
in Q-values between consecutive time steps when training
the Q-network. Therefore, we minimize

L(6) = [Rig1 + emax4 Qg (Stt1, A) — Qo (Si, Ar))?

+ k[Qo(St, Ar) — Qo(Si—1, Ai—1)]?,
(an
to optimize the deep Q-network, where « denotes the regu-
larization factor.

3.3. Physical Experimental System

The physical experimental system using N3DNet for image
denoising is illustrated in Fig. 3. The energy source (optical
carrier) is generated using a solid-state fiber laser operating
at a wavelength of 1,550 nm. The coherent light wavefront
is collimated using a relay lens, denoted as L1, followed
by ensuring the single polarization property of the incident
light using a polarizer, denoted as P1. Subsequently, the
coherent light is reflected onto a digital micromirror device
(DMD) at the correct incident angle utilizing a mirror. The
DMD, which is mounted on a controller board, consists of
1,280 x 1,024 micro-mirrors with a pitch of 10.8 ym. Con-
sequently, through the modulation of the DMD, images can
be encoded onto the incident light.

The optical field from the DMD is then directed into a 4f
optical system [10], which is composed of two relay lenses
(L2 and L3), a linear polarizer (P2), and a Fabry—Perot fil-
ter (FPF). Among these, L2 performs the Fourier transform;
P2 ensures the single polarization property; FPF positioned
at the Fourier plane achieves bandpass filtering; and L3
conducts the inverse Fourier transform. Utilizing 3D print-
ing techniques, the hidden layers of N3DNet are fabricated

° o 0o
o 00 e D - © (©) @
LP,, Lp,, LP,,, LP,, LP,, LP,, 0AM, OAM, AM,
\J
E %° @ (©] ©
LP,, LP,, OAM, 0AM, 0AM,

Figure 4. Illustration of the nine modes in the MIDD dataset. Top:
Noise mode images. Below: Clean mode images.

with the trained parameters to modulate optical signals. The
N3DNet consists of 5 x 1,000 x 1,000 modulation elements,
each with a size of 40 um. After processing by the 4f op-
tical system, the optical signal is modulated by the hidden
layers of N3DNet, which are fabricated by a standard 3D-
printing material (VeroBlackPlus RGD875) that have a high
zero-order diffraction efficiency of 97% [33]. Ultimately,
the modulated light from the N3DNet is captured by a sen-
sor (located in an infrared-enhanced charge-coupled device,
CCD) for optical decoding onto the CCD imaging plane.

4. Experimental Investigation

4.1. Configuration

Datasets. Currently, no existing dataset is available for
mode image denoising in fiber communication systems.
Therefore, we develop a benchmark MIDD dataset, which
covers nine different modes, including six LP modes (LPy,
LPlla, LP]]b, LPZla’ Lleb, and LP()Q) and three OAM
modes (OAM|, OAM,, and OAM3), as shown in Fig. 4.
The dataset is generated through transmissions and
imaging using various types of optical fibers. A standard
optical fiber communication system [30] was employed for
data collection, comprising a laser source with a commu-
nication wavelength of 1,550 nm, a transmitter, an optical
fiber, a lens, and an infrared-enhanced CCD. To construct
the MIDD dataset, approximately 200 noisy images were
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PSNR (1) SSIM (1) LPIPS ()
Dataset o/l BM3D DnCNN RIDNet MT N3DNet BM3D DnCNN RIDNet MT N3DNet BM3D DnCNN RIDNet MT  N3DNet
20 28.89 29.07 29.10 2895  30.15 0.835 0.817 0.855 0.849  0.939 0.207 0.204 0.185 0.190  0.130

MIDD 45 2621 2685 2690 2725 2812 0782 0775 0791 0791 0914 0353 0335 0317 0302  0.197
CSet 25 2995 3165 3171 3170 3168 0941 0955 0955 0957 0967 0.162 0155  0.70 0.165 0.101
50 2746 2893 2926 2929  30.01 0902 0922 0927 0923 0930 0289 0268 0234 0238 0175
CBSDes 2 2869 3048 3067 3073 3070 0900 0931 0932 0933 0941 015 0149 0146 0150  0.095
50 2579 2735 2765 27.68 2812 0836 0870 0878 0.882 0.880 0328 0300 0245 0242  0.190
Setl2 25 2759 2992 3001 2996 30.05 0777 0842 0850 0845 0.855 0220 0.159 0120 0.162 0.159
50 2462 2652 2648 2668 2680 0712 0731 0702 0765 0.780 0359 0262 0242 0315  0.195
BsDes 25 2838 2900 2931 2955 2993 0800 0817 0801 0785 0820 0262 0221 0097 0231 0.148

50  25.60 26.09 2642 26.83  27.35 0.682 0.705 0.688  0.694  0.715 0.443 0.361 0315 0308  0.251

Table 1. Comparison of simulation results with advanced electronic chip-based denoising algorithms. 1 (]) denotes higher (lower) values
are better. The best performance is highlighted in bold, while the second best is underlined.

U6 MR ORCE

l/ e i‘/ e lf/ e 28

us R FORCE

o =50 MPLC BM3D RIDNet MT N3DNet
15.54/0.611 16.25/0.603 27.44/0.290 28.83/0.257 29.26/0.238 30.00/0.181

Ground truth
PSNR/LPIPS

Figure 5. Visualization (simulation experiments) showcasing the denoising performance of various methods on an image from CSet9.

Evaluation Metrics. Building upon previous re-
search [11, 45], we evaluate the performance of various
methods using three image quality and perceptual metrics,
including PSNR (dB) [26], SSIM [7], and LPIPS [55].
Furthermore, we compare the time and energy consumption
of various denoising methods to assess their scalability.

BM3D DnCNN RIDNet MT N3DNet

Nam 37.30 35.55 39.09  39.11 39.31
SIDD 30.88 26.21 38.71  38.90 38.97

Dataset

Table 2. The PSNR results for the two noisy real-world datasets.

Settings. In the simulation experiments, the 5 hidden lay-
ers (diffractive phase planes) in N3DNet operate at an inci-
dent wavelength (i.e., center frequency in the bandpass fil-
ter) of 1,550 nm. These planes are spaced 5 mm apart, each
followed by a PEL activation layer. Moreover, every layer
has dimensions of 40 mm x 40 mm and is divided into a
grid of 1,000 x 1,000 cells. The input and output layers have
the same structure (including the number of units and plane
spacing) as the hidden layer, except for omitting the PEL
layer. Furthermore, the bandwidth of the bandpass filter is
set to 500 GHz. The model is trained from scratch using the
RA-DQN algorithm with an initial learning rate of 1x 10~
and a batch size of 32 for 2,000 iterations. The values of the
three hyperparameters in the training process, &, B , and k&,

collected for each of ten different types and manufacturers
of fibers: single-mode, few-mode, and multi-mode, across
50 transmission lengths (/) ranging from 1 km to 50 km.
This process yields over 100K mode images in total. Clean
images were acquired with transmission distances of less
than 1 m. Additionally, to assess the noise reduction per-
formance, a total of 20K noisy mode images were collected
for three additional optical fibers at transmission lengths of
5 km, 12 km, 20 km, 24 km, 36 km, 40 km, and 50 km.
The data acquisition device was situated on a physics labo-
ratory bench in the basement, designed to mitigate external
interference from static electricity and vibrations.

Besides the MIDD data, we assess the performance of

various denoising methods on four widely recognized im-
age datasets: CSet9, CBSD68, Setl2, and BSD68. The
synthetic training data with Gaussian noise for these test
sets are generated following the methodology outlined by
Chen et al. [11]. Additionally, we incorporate two noisy
real-world datasets, namely Nam [43] and SIDD [1], with
the training and testing data constructed in accordance with
the methodology outlined by Anwar et al. [3].

are set to 0.1, 0.5, and 5x 1073, respectively. All compu-
tations are performed on a Linux x64 server equipped with
a 20-core 2.40 GHz CPU processor, 128 GB of RAM, and
an NVIDIA RTX 3090 GPU. The experimental setups for
all comparative methods are consistent with those described
in the original papers. For real experiments, all electronic
chip-based methods, e.g., MT, are quantized to INT8 and
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PSNR (1)

SSIM (1)

LPIPS (})

W/o  MPLC MT ADI  N3DNet W/o  MPLC

MT ADI

N3DNet W/o MPLC MT ADI  N3DNet

12 1413 1581 2835 2275 29.87 0.591  0.587
24 1402 1515 27.71 20.39 28.93 0.481  0.489
36 1278  13.89 2621 17.83 27.45 0.458  0.480
50 11.09 1125 25.03 15.17 26.47 0412  0.431

0.844 0751 0934 0410 0407 0.191 0285  0.132
0.830 0708 0929 0485 0465 0195 0352  0.198
0793 0.637 0899 0521 0492 0306 0426  0.205
0754 0553 0877 0.663 0.635 0337 0508  0.230

Table 3. Comparison of the results from real experiments with existing methods across various transmission lengths in the MIDD dataset.

“W/0” denotes the results without denoising.

[=5km [=12km

[ =24 km [ =36km

Input

oo
Output o0

Figure 6. Visualization (real experiments) of N3DNet’s denoising
performance in the LP21, mode under varying values of [.

deployed on the Snapdragon 8 Gen 3 high-end SoC.
4.2. Main Results

Simulation Experiments. We compare N3DNet with
both traditional and advanced electronic chip-based denois-
ing methods, including BM3D [13], DnCNN [54], RID-
Net [3], and MT [11]. DnCNN and RIDNet are based
on CNNs, while MT is based on visual transformers. Ta-
ble 1 presents the comparative results for the MIDD and
four synthetic noisy datasets, underscoring that N3DNet
achieves superior denoising performance across all three
metrics. Specifically, it outperforms the best-performing
baselines by an average of 0.43 dB in PSNR, 0.032 in SSIM,
and 0.066 in LPIPS. The effectiveness of N3DNet primarily
stems from its reliance on pixel-level computations driven
by the interference and diffraction of light. Because of inter-
ference and diffraction effects, it is possible to control both
the intensity and phase of light at any point with a broader
perspective. This method is significantly more complex
than the multilayer structure in electronic chip-based neu-
ral networks, which only involve real-valued weights.

Moreover, Fig. 5 visually compares the denoising per-
formance of various methods, where MPLC is a traditional
mode processor. The results demonstrate that N3DNet
achieves SOTA denoising performance. Table 2 demon-
strates the effectiveness of our approach on real-world noisy
datasets. It is clear that N3DNet outperforms RIDNet and
MT by a margin of 0.24 dB and 0.14 dB, respectively.

Real Experiments. We utilize the constructed physical
experimental system to perform real experiments on the
MIDD dataset. Table 3 presents the comparison results
among MPLC [6], MT [11], ADI [23], and N3DNet, where

ADI directly utilizes the D?NN architecture for image de-
noising. N3DNet consistently exhibits SOTA performance
across a range of noise levels, underscoring its effective-
ness in real-world denoising applications. Specifically, it
demonstrates an average performance improvement of 9.15
dB in PSNR, 0.248 in SSIM, and 0.202 in LPIPS compared
to the best-performing optical computing methods. Con-
versely, optical devices such as MPLC struggle with mode
image denoising, resulting in poor performance. While ADI
demonstrates improved performance compared to MPLC,
its denoising capability is significantly inferior to that of
N3DNet. This is primarily attributed to its suboptimal
model structure and the oversight of the nonlinear model-
ing capabilities.

It is worth noting that the results of N3DNet’s physical
experiments are slightly inferior to the numerical simula-
tion results. This discrepancy may be attributed to errors
introduced by factors such as 3D printing, the optical sys-
tem, and encoding. Nevertheless, the errors associated with
N3DNet are comparable to or slightly smaller than those ob-
served in algorithms, e.g., MT, deployed on electrical chips.
Additionally, we visualize the denoising performance for
mode images using N3DNet in Fig. 6. These images are
captured by the CCD in the form of infrared imaging maps.
As the level of noise increases, the proportion of energy
in non-signal regions rises. Nevertheless, the results indi-
cate that even in the presence of strong noise, N3DNet can
achieve significant denoising performance.

4.3. Ablation Studies

Comparison of Optimization Algorithms. The loss
variations of various optimization algorithms are illustrated
in Fig. 7(a). The initial phase values of N3DNet for all algo-
rithms are established using the same seed. In comparison
to traditional gradient descent algorithms such as Adam and
SGD, DQN-based methods demonstrate superior effective-
ness in learning the state-action value function for N3DNet,
as well as in enhancing learning efficiency through the im-
plementation of experience replay and a target network.
Moreover, by introducing a penalty for disparity in the Q-
value, RA-DQN smooths the optimization path and reduces
unnecessary fluctuations, leading to faster convergence and
improved performance compared to DQN. Remarkably, af-
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Figure 7. (a): Loss variation across epochs using different optimization algorithms on the MIDD dataset (I = 50). (b) and (c): Comparison
of time and energy consumption across different methods. (d): 3D distribution of loss across various distances in layers and wavelengths.
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Table 4. Ablation study on the configuration of the loss func-
tion. Both the average performance and standard deviation are
provided. The first row shows the results without denoising.

ter training for less than 750 epochs, the N3DNet trained
with the RA-DQN algorithm converges, whereas most tra-
ditional algorithms require more than 2,000 epochs. Ad-
ditionally, the minimum loss achieved with the RA-DQN
algorithm (1.78) is lower than those obtained with other al-
gorithms (e.g., SGD, 2.70), indicating the superior conver-
gence performance of RA-DQN.

Calculation Efficiency. Figs. 7(b) and (c) compare the
latency and energy consumption of seven approaches de-
ployed in real mode image denoising experiments. Here,
PL [29] and MPLC [6] represent optical devices; ADI [23]
is an analog diffractive image denoiser; and BM3D [13],
RIDNet [3], and MT [11] are electronic chip-based meth-
ods. Unlike devices based on electrical neural networks,
N3DNet operates without the need for electrical signal
modulation, offering the benefits of faster processing and
lower power consumption. Although both N3DNet and
electricity-based methods achieve high PSNR values, sig-
nificant disparities exist in terms of time and energy con-
sumption. For 1,000 x 1,000 pixel images, our device’s
computation time per image is 4.4 us, which is three or-
ders of magnitude faster than electricity-based algorithms
(16.7 ms, deployed on Qualcomm Snapdragon 8 Gen 3 SoC
processor). Additionally, N3DNet consumes approximately
six orders of magnitude less energy than electrical meth-
ods. Impressively, compared with optical computing ap-
proaches, N3DNet significantly enhances performance with

nearly identical time and energy consumption.

Stability Analysis of Distance in Layers and Wave-
length. Considering the inevitable errors in the distance
between layers (5 mm) and the wavelength of incident
light (1,550 nm) during the real experiments, we investi-
gate the influence of disturbances in distance and wave-
length on the loss in numerical experiments. As depicted
in Fig. 7(d), when the distance between layers ranges from
2 mm to 8 mm and the wavelength varies from 1,540 nm
to 1,560 nm, the loss consistently remains below 1.81, only
approximately 1.69% higher than the optimal value of 1.78.
This discrepancy falls entirely within the acceptable range
of errors in the real-world experimental setup, which facili-
tates convenient processing and experimentation.

Analysis of Loss Function. We examine the influence of
loss function configuration on the denoising performance of
N3DNet. The average performance across various datasets
with [ = 12 km is reported in Table 4. Our adopted loss
function demonstrates the highest efficacy. Moreover, all
three loss terms are necessary and crucial for enhancing the
denoising performance of N3DNet.

5. Conclusion

This study introduces N3DNet, an innovative all-optical
nonlinear diffractive neural network, designed for image
denoising at the speed of light. A newly proposed re-
inforcement learning algorithm is employed to optimize
N3DNet, which is then fabricated using 3D printing with
the trained parameters. Ultimately, a physical experimen-
tal system is constructed to apply N3DNet in real-world
scenarios. Through extensive simulation and real experi-
ments, we demonstrate that N3DNet not only outperforms
existing methods in denoising performance but also sig-
nificantly boosts processing speed, achieving a speedup of
3,800 times compared to electronic chip-based approaches.
Given the ultrafast image processing speed, future research
could explore extending this framework to address broader
challenges in computer vision, such as video denoising, im-
age super-resolution, and image restoration.
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