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Abstract

Image denoising poses a significant challenge in image

processing, aiming to remove noise and artifacts from in-

put images. However, current denoising algorithms imple-

mented on electronic chips frequently encounter latency is-

sues and demand substantial computational resources. In

this paper, we introduce an all-optical Nonlinear Diffrac-

tive Denoising Deep Network (N3DNet) for image denois-

ing at the speed of light. Initially, we incorporate an im-

age encoding and pre-denoising module into the Diffrac-

tive Deep Neural Network and integrate a nonlinear acti-

vation function, termed the phase exponential linear func-

tion, after each diffractive layer, thereby boosting the net-

work’s nonlinear modeling and denoising capabilities. Sub-

sequently, we devise a new reinforcement learning algo-

rithm called regularization-assisted deep Q-network to op-

timize N3DNet. Finally, leveraging 3D printing techniques,

we fabricate N3DNet using the trained parameters and con-

struct a physical experimental system for real-world appli-

cations. A new benchmark dataset, termed MIDD, is con-

structed for mode image denoising, comprising 120K pairs

of noisy/noise-free images captured from real fiber com-

munication systems across various transmission lengths.

Through extensive simulation and real experiments, we

validate that N3DNet outperforms both traditional and

deep learning-based denoising approaches across various

datasets. Remarkably, its processing speed is nearly 3,800

times faster than electronic chip-based methods.

1. Introduction

Image denoising is a crucial and challenging task across

multiple fields, including signal processing [42, 46], com-

putational imaging [5, 53, 58], and computer vision [50,

51, 60]. For instance, effective noise reduction in computa-

tional imaging is paramount to counteracting the detrimen-

tal effects of various noise sources and artifacts, such as

*Equal contribution. † Corresponding authors.

those originating from image sensors, quantization, chan-

nel transmission, and environmental factors [38, 53]. More-

over, this task also holds considerable importance in fiber

communication systems [4, 21]. As fiber communication

links extend, the noise during mode communication in-

evitably degrades communication quality and increases the

complexity of signal processing [14, 62].

Considering the pivotal role of image denoising, substan-

tial research has been undertaken on noise reduction utiliz-

ing electronic chip-based devices. These methods can be

broadly categorized into two groups: traditional denoisers

such as Wiener filtering [17] and block-matching and 3D

filtering (BM3D) [13], and deep neural network (DNN)-

based methods [35, 39], such as denoising convolutional

neural network (DnCNN) [54], real image denoising net-

work (RIDNet) [3], and masked training (MT) [11]. Despite

being promising, these methods are time-consuming and

impose substantial computational burdens [24, 40]. Con-

sequently, exploring more efficient and effective compu-

tational platforms such as optical computing and quantum

computing presents an intriguing avenue. Diffractive Deep

Neural Network (D2NN) [33] is an all-optical diffractive

neural network trained via deep learning, demonstrating im-

pressive processing speed and performance. However, due

to its oversight of noise filtering during training and its lim-

ited feature representation capability, the denoising perfor-

mance of this architecture is considerably inferior to that of

electronic chip-based methods [23, 36].

This paper introduces a novel all-optical Nonlinear

Diffractive Denoising Deep Network (N3DNet) designed to

filter out image noise at the speed of light. To construct

N3DNet, we first incorporate an image encoding and pre-

denoising module into the original D2NN, with the goal

of achieving preliminary noise suppression and signal en-

hancement. Furthermore, we integrate a novel nonlinear ac-

tivation function, termed the phase exponential linear (PEL)

function, following each phase modulation layer within the

network, thereby enhancing its feature representation capa-

bility and flexibility. The entire structure of the proposed

N3DNet is depicted in Fig. 1, consisting of a sequence
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Figure 1. Schematic of the proposed N3DNet framework. We illustrate an example of utilizing N3DNet for mode image denoising, which

is trained using the RA-DQN algorithm.

of consecutive nonlinear phase modulation planes (layers),

all of which are transmissive. This innovative diffractive

architecture can achieve ultrafast image denoising by uti-

lizing optical diffraction and the pixel-level global atten-

tion mechanism to eliminate noise-related optical modes

while preserving the features of interest. By selectively

diffracting each cell in N3DNet and employing the nonlin-

ear layer to alter phase values, exquisite manipulation of the

output image is achieved. Consequently, after computer-

based training, N3DNet generates denoised images at the

speed of light in real-world applications, eliminating the

need for any digital computation. To optimize N3DNet,

we design a new reinforcement learning algorithm called

regularization-assisted deep Q-network (RA-DQN), which

significantly enhances N3DNet’s convergence performance

and improves the network’s convergence speed. Ultimately,

by leveraging the trained network parameters, we fabricate

N3DNet using 3D printing and establish a physical experi-

mental system to facilitate its practical application.

Extensive simulation and real experiments are conducted

on both mode image and benchmark image processing

datasets. Given that previous studies on mode processing

in fiber communication systems have primarily relied on

optical devices that necessitate only device design with-

out the need for training [16, 37], accessible datasets in

this domain are lacking. Taking the initiative, we intro-

duce a dedicated mode image denoising dataset (MIDD) for

six linearly polarized (LP) modes and three orbital angu-

lar momentum (OAM) modes that are widely used in sci-

entific research and commercial fiber communication sys-

tems [30, 44]. This dataset consists of 100K noisy mode

images for training and 20K noisy images for testing, all

of which are captured from real-world fiber communica-

tion systems. In addition to MIDD, we conduct experi-

ments on four synthetic noisy datasets and two real-world

noisy datasets. The comprehensive experiments demon-

strate that N3DNet significantly enhances denoising per-

formance compared to previous optical computing meth-

ods while maintaining nearly identical processing speed.

Specifically, it achieves an average performance improve-

ment of 9.15 dB in PSNR, 0.248 in SSIM, and 0.202 in

LPIPS compared to the best-performing optical computing

methods. The processing time of N3DNet reaches the mi-

crosecond level, while its power consumption is in the nano-

joule range. Moreover, in comparison with electronic chip-

based noise reduction approaches, including both tradi-

tional and DNN-based methods, N3DNet not only achieves

state-of-the-art (SOTA) performance but also boosts pro-

cessing speed by nearly 3,800 times.

Overall, the main contributions are outlined as follows:

• We introduce N3DNet, an all-optical nonlinear diffractive

deep neural network designed for image denoising at the

speed of light.

• We propose an RA-DQN algorithm to optimize N3DNet,

which is then fabricated using 3D printing to develop a

physical experimental system for real-world applications.

• We introduce MIDD, a benchmark dataset for mode im-

age denoising. It consists of 120K images captured in real

scenarios, including single-mode, few-mode, and multi-

mode fibers across various transmission distances.

• We conduct extensive simulated and real experiments

across various datasets. The results demonstrate that

N3DNet achieves SOTA performance with remarkable ef-

ficiency, operating approximately 3,800 times faster than

methods relying on electronic chips.

2. Related Work

Image denoising is a critical aspect across various do-

mains [9, 22, 50, 59], which aims to improve image qual-
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ity by estimating clean images from noisy observations [15,

49, 61]. Over the years, researchers have proposed numer-

ous denoising techniques based on electronic chips. Tra-

ditional methods include non-local means [8], total vari-

ation regularization [2], and BM3D [13]. More recently,

DNN-based approaches, such as convolutional neural net-

works (CNNs) [31] and generative adversarial networks

(GANs) [12], have shown superior performance in preserv-

ing fine details while effectively removing noise [32, 45,

54]. However, despite great potential, these methods fre-

quently impose substantial computational burdens and la-

tency issues, thereby limiting their scalability, especially in

resource-constrained environments.

Diffractive deep neural network (D2NN) [33] repre-

sents an all-optical diffractive neural network trained via

deep learning [28], which comprises multiple transmitting

and diffractive phase planes, each adorned with numer-

ous neurons manipulating or guiding incident light through

diffraction. In comparison with methods deployed on elec-

tronic devices [12, 19], D2NN offers numerous advantages

such as ultra-high speed, low power consumption, wave-

length multiplexing, and polarization multiplexing [34, 36].

The phases or amplitudes of neurons serve as parameters

awaiting training within D2NN. Through iterative mod-

ulations of incident light across multiple diffractive sur-

faces, D2NN can achieve the capability of all-optical infer-

ence [33, 40, 52]. Recently, researchers have proposed an

analog diffractive image (ADI) denoiser [23] that leverages

the D2NN architecture for image denoising. However, this

method falls short of achieving satisfactory results due to its

negligence of nonlinear modeling capability and reliance on

suboptimal optimization strategies.

3. Methodology

This section first elaborates on the propagation diagram of

N3DNet (§ 3.1), as depicted in Fig. 2, followed by the in-

troduction of the reinforcement learning algorithm (§ 3.2)

aimed at optimizing N3DNet. Ultimately, the construction

of the physical experimental system utilizing N3DNet for

real applications (§ 3.3), as shown in Fig. 3, is delineated.

3.1. Nonlinear Diffractive Denoising Deep Network

The forward propagation of N3DNet, as shown in Fig. 2,

consists of two components: the image encoding and pre-

denoising module (I) and the all-optical diffractive propaga-

tion module (II). These components represent the encoding

process of images and the transmission of optical signals in

free space (prior to the input layer), as well as the propa-

gation of optical signals across nonlinear diffractive layers,

respectively.
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Figure 2. Forward propagation diagram of N3DNet.

3.1.1. Image Encoding and Pre-Denoising Module

The noisy input image is initially encoded onto an optical

carrier through amplitude modulation [56, 57] in free space.

This encoded signal can be represented as

E(x, y, z) = As(x, y)A0 exp [−jk · r(x, y, z)], (1)

where A0 and As(x, y) refer to the amplitude of the car-

rier light and the image signal, respectively. Moreover,

r = xex + yey + zez denotes the position vector at point

(x, y, z) and k = kxex + kyey + kzez is the wave vector,

which delineates the wave’s propagation direction. It sat-

isfies |k| = 2π/λ, where λ denotes the work wavelength.

Additionally, j =
√
−1 represents the imaginary unit.

To achieve preliminary noise suppression and signal en-

hancement, we perform an optical Fourier transform on the

encoded signal, followed by bandpass filtering. The filtered

signal is represented as

h(x, y, z) = F−1{H(ũ, ṽ) · F [E(x, y, z)]}, (2)

where H(ũ, ṽ) denotes a bandpass filter with center fre-

quency ũ and bandwidth ṽ. F(·) and F−1(·) represent the

Fourier transform function and its inverse, respectively.

Drawing from the Rayleigh-Sommerfeld diffraction

equation [48], each neuron within the layers of N3DNet is

regarded as a secondary source of a wave consisting of the

following optical mode:

wl
i(x, y, z) =

z − zi
d2

(

1

2πd
+

1

jλ

)

exp

(

j2πd

λ

)

, (3)

where l denotes the l-th layer of the network, i represents

the i-th neuron located at (xi, yi, zi) of layer l, and d is

calculated as d =
√

(x− xi)2 + (y − yi)2 + (z − zi)2.

Across our diffractive neural network, all neurons adhere

to the optical propagation process. The input pattern

hi(xi, yi, zi) of the i-th neuron in the input plane, is in gen-

eral a complex-valued quantity and can carry information in

its phase and amplitude channels. Accordingly, the result-

ing wave function g0i on the input layer of N3DNet is gen-

erated through the diffraction of the plane-wave interacting
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with the input:

g0i (x, y, z) = w0
i (x, y, z)hi(xi, yi, zi), (4)

which connects the input to the neurons of the first hidden

layer, as shown in Fig. 2. Subsequently, the optical wave

will propagate through the M hidden layers in N3DNet, as

elaborated in the subsequent section.

3.1.2. All-Optical Diffractive Propagation Module

The amplitude and relative phase of the secondary wave are

determined by the product of the input wave to the neu-

ron and its transmission coefficient (pli), both of which are

complex-valued functions. Consequently, the output of the

i-th neuron in the l-th layer, gli (x, y, z), is calculated as

gli = fPEL{wl
i (x, y, z) p

l
i(xi, yi, zi)

∑

k
gl−1

k,i }, (5)

where gl−1

k,i (xi, yi, zi) denotes the output from the k-th

neuron in the (l − 1)-th diffractive layer incident on

the i-th neuron in the l-th layer. Accordingly, the term
∑

k g
l−1

k,i (xi, yi, zi) represents the input wave to the i-th
neuron in layer l. Besides, fPEL refers to our proposed

PEL activation function, which is

fPEL(X) =

{

βX exp(αX), if X > 0,

0, otherwise.
(6)

To obtain this activation function, we initially utilize meta-

surface [18] composed of Si3N4 and Er-doped T iO2 to

achieve phase modulation in the incident light. Then, we

collect data pairs consisting of input and output phases, and

fit these data pairs to obtain Eq. (6), with α = 0.5 and

β=0.2. The secondary waves undergo diffraction between

layers and interfere with each other to form a complex wave

at the surface of the next layer, thereby supplying input to

its neurons, as illustrated in Fig. 2. pli(xi, yi, zi) in Eq. (5)

refers to the transmission coefficient of the i-th neuron in

layer l, expressed as a complex-valued function, and calcu-

lated as

pli(xi, yi, zi) = ali (xi, yi, zi) exp [jϕ
l
i (xi, yi, zi)], (7)

where ali indicates the amplitude term of the i-th neuron in

the l-th layer, and ϕl
i is its phase term, with 0 ≤ ali ≤ 1 and

−π ≤ ϕl
i ≤ π.

From Eq. (5), the cells of the l-th phase plane perform

complex modulation on the light, thereby modifying the

original information of the optical wave. For a better un-

derstanding of these changes, Eq. (5) can be redefined with

the relative amplitude of the secondary wave Âl
i and the

additional phase delay ∆Ωl
i that the secondary wave en-

counters due to the input wave to the neuron and its trans-

mission coefficient. Consequently, we have gli (x, y, z) =

fPEL{wl
i (x, y, z) Â

l
iexp (j∆Ωl

i)}.

In summary, each hidden layer involves computations of

Eqs. (5) and (7), culminating in its output gl∈RH×W . As-

suming N3DNet comprises M hidden layers (excluding the

input and output planes), the input plane’s output g0i is prop-

agated through these M layers. The intensity of the result-

ing optical field Ia detected at the output plane can be ex-

pressed as:

Iai = |gM+1

i |2, (8)

where gM+1

i =
∑

k g
M
k,i (xi, yi, zi) denotes the output of the

i-th neuron in the output plane and |gM+1

i | represents its

magnitude. Based on this forward propagation process, the

results of the output plane Ia are compared with the inten-

sity of the targets It and the resulting errors are backpropa-

gated to iteratively update N3DNet.

3.2. Training Algorithm of N3DNet

To optimize N3DNet, we propose a novel reinforcement

learning algorithm, named RA-DQN, which is adapted

from DQN [41]. Its reward R equals the negative loss L
of N3DNet, consisting of three components: Charbonnier

loss [27] LC , Fourier loss LF , and FSIM loss [25] LS .

Among these, LC assesses the disparity between the pixel

values of the network outputs and targets. To restore high-

frequency information in images, LF =L1(F(Ia),F(It))
directs the model to learn frequency domain features and

restore high-frequency information as effectively as possi-

ble, where L1(·, ·) represents the L1 loss. Additionally, LS

evaluates image quality by comparing the structure and fea-

tures. Accordingly, the loss function utilized to optimize

N3DNet is calculated as

L = LC

(

Ia, It
)

+ α̂LF

(

Ia, It
)

+ β̂LS

(

Ia, It
)

, (9)

where Ia and It represent the outputs and targets, respec-

tively. Moreover, α̂ and β̂ are two modulating hyperparam-

eters used to adjust the relative strength of each loss term.

During the optimization process, the state S refers to the

phase values of neurons in all diffractive layers, denoted as

ϕl
i, where i ranges from 1 to H×W and l ranges from 1

to M , with H×W representing the number of cell grids in

a phase plane. The action A represents the phase changes

across all cells, denoted as ∆ϕl
i. At each step t, the RA-

DQN agent receives the current state St and outputs an ac-

tionAt. Subsequently, the environment (i.e., N3DNet) gen-

erates a new state (St+1) and reward Rt+1 based on At.

Consequently, the agent continually updates its parameters

to enhance its decision-making abilities. The core of this

process is the following value function iteration:

Qθ (St,At)← Qθ (St,At)+

γ
[

Rt+1 + ϵmaxA Q̂
θ̂
(St+1,A)−Qθ (St,At)

]

,

(10)
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where θ and θ̂ refer to the parameters of the deep Q-network

Q and the target network Q̂, respectively. γ and ϵ represent

the learning rate and discount factor, respectively, with set-

tings following those of previous studies [20, 41, 47]. To en-

hance training stability, we apply a penalty to the disparity

in Q-values between consecutive time steps when training

the Q-network. Therefore, we minimize

L̃(θ) = [Rt+1 + ϵmaxA Q̂
θ̂
(St+1,A)−Qθ (St,At)]

2

+ κ[Qθ(St,At)−Qθ(St−1,At−1)]
2,

(11)

to optimize the deep Q-network, where κ denotes the regu-

larization factor.

3.3. Physical Experimental System

The physical experimental system using N3DNet for image

denoising is illustrated in Fig. 3. The energy source (optical

carrier) is generated using a solid-state fiber laser operating

at a wavelength of 1,550 nm. The coherent light wavefront

is collimated using a relay lens, denoted as L1, followed

by ensuring the single polarization property of the incident

light using a polarizer, denoted as P1. Subsequently, the

coherent light is reflected onto a digital micromirror device

(DMD) at the correct incident angle utilizing a mirror. The

DMD, which is mounted on a controller board, consists of

1,280× 1,024 micro-mirrors with a pitch of 10.8 µm. Con-

sequently, through the modulation of the DMD, images can

be encoded onto the incident light.

The optical field from the DMD is then directed into a 4f

optical system [10], which is composed of two relay lenses

(L2 and L3), a linear polarizer (P2), and a Fabry–Perot fil-

ter (FPF). Among these, L2 performs the Fourier transform;

P2 ensures the single polarization property; FPF positioned

at the Fourier plane achieves bandpass filtering; and L3

conducts the inverse Fourier transform. Utilizing 3D print-

ing techniques, the hidden layers of N3DNet are fabricated
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Figure 4. Illustration of the nine modes in the MIDD dataset. Top:

Noise mode images. Below: Clean mode images.

with the trained parameters to modulate optical signals. The

N3DNet consists of 5×1,000×1,000 modulation elements,

each with a size of 40 µm. After processing by the 4f op-

tical system, the optical signal is modulated by the hidden

layers of N3DNet, which are fabricated by a standard 3D-

printing material (VeroBlackPlus RGD875) that have a high

zero-order diffraction efficiency of 97% [33]. Ultimately,

the modulated light from the N3DNet is captured by a sen-

sor (located in an infrared-enhanced charge-coupled device,

CCD) for optical decoding onto the CCD imaging plane.

4. Experimental Investigation

4.1. Configuration

Datasets. Currently, no existing dataset is available for

mode image denoising in fiber communication systems.

Therefore, we develop a benchmark MIDD dataset, which

covers nine different modes, including six LP modes (LP01,

LP11a, LP11b, LP21a, LP21b, and LP02) and three OAM

modes (OAM1, OAM2, and OAM3), as shown in Fig. 4.

The dataset is generated through transmissions and

imaging using various types of optical fibers. A standard

optical fiber communication system [30] was employed for

data collection, comprising a laser source with a commu-

nication wavelength of 1,550 nm, a transmitter, an optical

fiber, a lens, and an infrared-enhanced CCD. To construct

the MIDD dataset, approximately 200 noisy images were
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PSNR (↑) SSIM (↑) LPIPS (↓)
Dataset σ/l BM3D DnCNN RIDNet MT N3DNet BM3D DnCNN RIDNet MT N3DNet BM3D DnCNN RIDNet MT N3DNet

MIDD
20 28.89 29.07 29.10 28.95 30.15 0.835 0.817 0.855 0.849 0.939 0.207 0.204 0.185 0.190 0.130

40 26.21 26.85 26.90 27.25 28.12 0.782 0.775 0.791 0.791 0.914 0.353 0.335 0.317 0.302 0.197

CSet9
25 29.95 31.65 31.71 31.70 31.68 0.941 0.955 0.955 0.957 0.967 0.162 0.155 0.170 0.165 0.101

50 27.46 28.93 29.26 29.29 30.01 0.902 0.922 0.927 0.923 0.930 0.289 0.268 0.234 0.238 0.175

CBSD68
25 28.69 30.48 30.67 30.73 30.70 0.900 0.931 0.932 0.933 0.941 0.157 0.149 0.146 0.150 0.095

50 25.79 27.35 27.65 27.68 28.12 0.836 0.870 0.878 0.882 0.880 0.328 0.300 0.245 0.242 0.190

Set12
25 27.59 29.92 30.01 29.96 30.05 0.777 0.842 0.850 0.845 0.855 0.220 0.159 0.120 0.162 0.159

50 24.62 26.52 26.48 26.68 26.80 0.712 0.731 0.702 0.765 0.780 0.359 0.262 0.242 0.315 0.195

BSD68
25 28.58 29.00 29.31 29.55 29.93 0.800 0.817 0.801 0.785 0.820 0.262 0.221 0.197 0.231 0.148

50 25.60 26.09 26.42 26.83 27.35 0.682 0.705 0.688 0.694 0.715 0.443 0.361 0.315 0.308 0.251

Table 1. Comparison of simulation results with advanced electronic chip-based denoising algorithms. ↑ (↓) denotes higher (lower) values

are better. The best performance is highlighted in bold, while the second best is underlined.

15.54/0.611

MT

29.26/0.238

N3DNet

30.00/0.181

MPLC

16.25/0.603

RIDNet

28.83/0.257

Ground truthBM3D

27.44/0.290

Figure 5. Visualization (simulation experiments) showcasing the denoising performance of various methods on an image from CSet9.

Dataset BM3D DnCNN RIDNet MT N3DNet

Nam 37.30 35.55 39.09 39.11 39.31

SIDD 30.88 26.21 38.71 38.90 38.97

Table 2. The PSNR results for the two noisy real-world datasets.

collected for each of ten different types and manufacturers

of fibers: single-mode, few-mode, and multi-mode, across

50 transmission lengths (l) ranging from 1 km to 50 km.

This process yields over 100K mode images in total. Clean

images were acquired with transmission distances of less

than 1 m. Additionally, to assess the noise reduction per-

formance, a total of 20K noisy mode images were collected

for three additional optical fibers at transmission lengths of

5 km, 12 km, 20 km, 24 km, 36 km, 40 km, and 50 km.

The data acquisition device was situated on a physics labo-

ratory bench in the basement, designed to mitigate external

interference from static electricity and vibrations.

Besides the MIDD data, we assess the performance of

various denoising methods on four widely recognized im-

age datasets: CSet9, CBSD68, Set12, and BSD68. The

synthetic training data with Gaussian noise for these test

sets are generated following the methodology outlined by

Chen et al. [11]. Additionally, we incorporate two noisy

real-world datasets, namely Nam [43] and SIDD [1], with

the training and testing data constructed in accordance with

the methodology outlined by Anwar et al. [3].

Evaluation Metrics. Building upon previous re-

search [11, 45], we evaluate the performance of various

methods using three image quality and perceptual metrics,

including PSNR (dB) [26], SSIM [7], and LPIPS [55].

Furthermore, we compare the time and energy consumption

of various denoising methods to assess their scalability.

Settings. In the simulation experiments, the 5 hidden lay-

ers (diffractive phase planes) in N3DNet operate at an inci-

dent wavelength (i.e., center frequency in the bandpass fil-

ter) of 1,550 nm. These planes are spaced 5 mm apart, each

followed by a PEL activation layer. Moreover, every layer

has dimensions of 40 mm× 40 mm and is divided into a

grid of 1,000×1,000 cells. The input and output layers have

the same structure (including the number of units and plane

spacing) as the hidden layer, except for omitting the PEL

layer. Furthermore, the bandwidth of the bandpass filter is

set to 500 GHz. The model is trained from scratch using the

RA-DQN algorithm with an initial learning rate of 1×10−4

and a batch size of 32 for 2,000 iterations. The values of the

three hyperparameters in the training process, α̂, β̂, and κ,

are set to 0.1, 0.5, and 5×10−3, respectively. All compu-

tations are performed on a Linux x64 server equipped with

a 20-core 2.40 GHz CPU processor, 128 GB of RAM, and

an NVIDIA RTX 3090 GPU. The experimental setups for

all comparative methods are consistent with those described

in the original papers. For real experiments, all electronic

chip-based methods, e.g., MT, are quantized to INT8 and
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l
PSNR (↑) SSIM (↑) LPIPS (↓)

W/o MPLC MT ADI N3DNet W/o MPLC MT ADI N3DNet W/o MPLC MT ADI N3DNet

12 14.13 15.81 28.35 22.75 29.87 0.591 0.587 0.844 0.751 0.934 0.410 0.407 0.191 0.285 0.132

24 14.02 15.15 27.71 20.39 28.93 0.481 0.489 0.830 0.708 0.929 0.485 0.465 0.195 0.352 0.198

36 12.78 13.89 26.21 17.83 27.45 0.458 0.480 0.793 0.637 0.899 0.521 0.492 0.306 0.426 0.205

50 11.09 11.25 25.03 15.17 26.47 0.412 0.431 0.754 0.553 0.877 0.663 0.635 0.337 0.508 0.230

Table 3. Comparison of the results from real experiments with existing methods across various transmission lengths in the MIDD dataset.

“W/o” denotes the results without denoising.

Input

Output

l = 5 km l = 12 km l = 24 km l = 36 km l = 50 km

Figure 6. Visualization (real experiments) of N3DNet’s denoising

performance in the LP21b mode under varying values of l.

deployed on the Snapdragon 8 Gen 3 high-end SoC.

4.2. Main Results

Simulation Experiments. We compare N3DNet with

both traditional and advanced electronic chip-based denois-

ing methods, including BM3D [13], DnCNN [54], RID-

Net [3], and MT [11]. DnCNN and RIDNet are based

on CNNs, while MT is based on visual transformers. Ta-

ble 1 presents the comparative results for the MIDD and

four synthetic noisy datasets, underscoring that N3DNet

achieves superior denoising performance across all three

metrics. Specifically, it outperforms the best-performing

baselines by an average of 0.43 dB in PSNR, 0.032 in SSIM,

and 0.066 in LPIPS. The effectiveness of N3DNet primarily

stems from its reliance on pixel-level computations driven

by the interference and diffraction of light. Because of inter-

ference and diffraction effects, it is possible to control both

the intensity and phase of light at any point with a broader

perspective. This method is significantly more complex

than the multilayer structure in electronic chip-based neu-

ral networks, which only involve real-valued weights.

Moreover, Fig. 5 visually compares the denoising per-

formance of various methods, where MPLC is a traditional

mode processor. The results demonstrate that N3DNet

achieves SOTA denoising performance. Table 2 demon-

strates the effectiveness of our approach on real-world noisy

datasets. It is clear that N3DNet outperforms RIDNet and

MT by a margin of 0.24 dB and 0.14 dB, respectively.

Real Experiments. We utilize the constructed physical

experimental system to perform real experiments on the

MIDD dataset. Table 3 presents the comparison results

among MPLC [6], MT [11], ADI [23], and N3DNet, where

ADI directly utilizes the D2NN architecture for image de-

noising. N3DNet consistently exhibits SOTA performance

across a range of noise levels, underscoring its effective-

ness in real-world denoising applications. Specifically, it

demonstrates an average performance improvement of 9.15

dB in PSNR, 0.248 in SSIM, and 0.202 in LPIPS compared

to the best-performing optical computing methods. Con-

versely, optical devices such as MPLC struggle with mode

image denoising, resulting in poor performance. While ADI

demonstrates improved performance compared to MPLC,

its denoising capability is significantly inferior to that of

N3DNet. This is primarily attributed to its suboptimal

model structure and the oversight of the nonlinear model-

ing capabilities.

It is worth noting that the results of N3DNet’s physical

experiments are slightly inferior to the numerical simula-

tion results. This discrepancy may be attributed to errors

introduced by factors such as 3D printing, the optical sys-

tem, and encoding. Nevertheless, the errors associated with

N3DNet are comparable to or slightly smaller than those ob-

served in algorithms, e.g., MT, deployed on electrical chips.

Additionally, we visualize the denoising performance for

mode images using N3DNet in Fig. 6. These images are

captured by the CCD in the form of infrared imaging maps.

As the level of noise increases, the proportion of energy

in non-signal regions rises. Nevertheless, the results indi-

cate that even in the presence of strong noise, N3DNet can

achieve significant denoising performance.

4.3. Ablation Studies

Comparison of Optimization Algorithms. The loss

variations of various optimization algorithms are illustrated

in Fig. 7(a). The initial phase values of N3DNet for all algo-

rithms are established using the same seed. In comparison

to traditional gradient descent algorithms such as Adam and

SGD, DQN-based methods demonstrate superior effective-

ness in learning the state-action value function for N3DNet,

as well as in enhancing learning efficiency through the im-

plementation of experience replay and a target network.

Moreover, by introducing a penalty for disparity in the Q-

value, RA-DQN smooths the optimization path and reduces

unnecessary fluctuations, leading to faster convergence and

improved performance compared to DQN. Remarkably, af-
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Figure 7. (a): Loss variation across epochs using different optimization algorithms on the MIDD dataset (l = 50). (b) and (c): Comparison

of time and energy consumption across different methods. (d): 3D distribution of loss across various distances in layers and wavelengths.

LC LF LS PSNR (↑) SSIM (↑) LPIPS (↓)
✗ ✗ ✗ 14.890.00 0.4840.00 0.4790.00
✓ ✗ ✗ 27.530.39 0.8500.04 0.1810.05
✓ ✓ ✗ 29.320.45 0.8710.06 0.1520.04
✓ ✗ ✓ 28.780.37 0.8940.05 0.1780.03
✗ ✓ ✓ 23.580.42 0.7310.03 0.2790.05
✓ ✓ ✓ 30.560.37 0.9450.03 0.1030.04

Table 4. Ablation study on the configuration of the loss func-

tion. Both the average performance and standard deviation are

provided. The first row shows the results without denoising.

ter training for less than 750 epochs, the N3DNet trained

with the RA-DQN algorithm converges, whereas most tra-

ditional algorithms require more than 2,000 epochs. Ad-

ditionally, the minimum loss achieved with the RA-DQN

algorithm (1.78) is lower than those obtained with other al-

gorithms (e.g., SGD, 2.70), indicating the superior conver-

gence performance of RA-DQN.

Calculation Efficiency. Figs. 7(b) and (c) compare the

latency and energy consumption of seven approaches de-

ployed in real mode image denoising experiments. Here,

PL [29] and MPLC [6] represent optical devices; ADI [23]

is an analog diffractive image denoiser; and BM3D [13],

RIDNet [3], and MT [11] are electronic chip-based meth-

ods. Unlike devices based on electrical neural networks,

N3DNet operates without the need for electrical signal

modulation, offering the benefits of faster processing and

lower power consumption. Although both N3DNet and

electricity-based methods achieve high PSNR values, sig-

nificant disparities exist in terms of time and energy con-

sumption. For 1,000 × 1,000 pixel images, our device’s

computation time per image is 4.4 µs, which is three or-

ders of magnitude faster than electricity-based algorithms

(16.7 ms, deployed on Qualcomm Snapdragon 8 Gen 3 SoC

processor). Additionally, N3DNet consumes approximately

six orders of magnitude less energy than electrical meth-

ods. Impressively, compared with optical computing ap-

proaches, N3DNet significantly enhances performance with

nearly identical time and energy consumption.

Stability Analysis of Distance in Layers and Wave-

length. Considering the inevitable errors in the distance

between layers (5 mm) and the wavelength of incident

light (1,550 nm) during the real experiments, we investi-

gate the influence of disturbances in distance and wave-

length on the loss in numerical experiments. As depicted

in Fig. 7(d), when the distance between layers ranges from

2 mm to 8 mm and the wavelength varies from 1,540 nm

to 1,560 nm, the loss consistently remains below 1.81, only

approximately 1.69% higher than the optimal value of 1.78.

This discrepancy falls entirely within the acceptable range

of errors in the real-world experimental setup, which facili-

tates convenient processing and experimentation.

Analysis of Loss Function. We examine the influence of

loss function configuration on the denoising performance of

N3DNet. The average performance across various datasets

with l = 12 km is reported in Table 4. Our adopted loss

function demonstrates the highest efficacy. Moreover, all

three loss terms are necessary and crucial for enhancing the

denoising performance of N3DNet.

5. Conclusion

This study introduces N3DNet, an innovative all-optical

nonlinear diffractive neural network, designed for image

denoising at the speed of light. A newly proposed re-

inforcement learning algorithm is employed to optimize

N3DNet, which is then fabricated using 3D printing with

the trained parameters. Ultimately, a physical experimen-

tal system is constructed to apply N3DNet in real-world

scenarios. Through extensive simulation and real experi-

ments, we demonstrate that N3DNet not only outperforms

existing methods in denoising performance but also sig-

nificantly boosts processing speed, achieving a speedup of

3,800 times compared to electronic chip-based approaches.

Given the ultrafast image processing speed, future research

could explore extending this framework to address broader

challenges in computer vision, such as video denoising, im-

age super-resolution, and image restoration.
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