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Abstract

The evaluation of Long Video Understanding (LVU) perfor-
mance poses an important but challenging research problem.
Despite previous efforts, the existing video understanding
benchmarks are severely constrained by several issues, es-
pecially the insufficient lengths of videos, a lack of diversity
in video types and evaluation tasks, and the inappropriate-
ness for evaluating LVU performances. To address the above
problems, we propose a new benchmark called MLVU (Multi-
task Long Video Understanding Benchmark) for the compre-
hensive and in-depth evaluation of LVU. MLVU presents
the following critical values: 1) The substantial and flexible
extension of video lengths, which enables the benchmark to
evaluate LVU performance across a wide range of durations.
2) The inclusion of various video genres, such as movies,
surveillance, egocentric videos, and cartoons, reflects the
models’ LVU performances in different scenarios. 3) The
development of diversified evaluation tasks, which enables a
comprehensive examination of MLLMs’ key abilities in long-
video understanding. The empirical study with 23 latest
MLLMs reveals significant room for improvement in today’s
technique, as all existing methods struggle with most of the
evaluation tasks and exhibit severe performance degrada-
tion when handling longer videos. Additionally, it suggests
that factors such as context length, image-understanding
ability, and the choice of LLM backbone can play critical
roles in future advancements. We anticipate that MLVU will
advance the research of LVU by providing a comprehensive
and in-depth analysis of MLLMs. The code and dataset can
be accessed from https://github.com/JUNJIE99/MLVU.

1. Introduction
Large language models (LLMs) are growing into a general
solution for numerous AI tasks [6, 48]. In recent years,
it becomes increasingly emphasized to extend LLMs with

*Co-first authors
†Corresponding author

multi-modal capabilities and thus bring the Multimodal LLM
(MLLM). Remarkably, it has been made possible for today’s
MLLMs to perceive information in texts, images, videos,
etc., and solve complicated problems in physical environ-
ments [1, 47]. Along with the development of MLLMs, new
benchmarks are continuously created to facilitate comprehen-
sive and in-depth analysis of MLLMs [12, 27, 33, 34, 60].

However, it remains a great challenge to evaluate the
MLLMs’ long-video understanding (LVU) performances
given the following limitations. Firstly, the majority of exist-
ing video understanding benchmarks are made up of short
videos [20, 23, 27, 38, 55], whose lengths can be merely a
few seconds. As a result, they are insufficient to reflect the
MLLMs’ long-video understanding capabilities. Secondly,
there is a notable lack of diversity in both video genres and
evaluation tasks. Existing benchmarks often concentrate on
a single video type, such as egocentric videos [15, 36], or
focus on one specific task, like captioning [55]. These limi-
tations hinder comprehensive evaluation of LVU capabilities.
Last but not least, many previous evaluation tasks are not
properly designed for LVU, as they can be solved without
using the complex information from long videos. For ex-
ample, many questions are simply about one single frame
in the long videos [44, 63]. Besides, numerous others are
about popular movies and celebrities [13, 28], which can be
answered directly by MLLMs based on the textual prompts.

Conceptually, MLLMs are expected to handle any type of
long video and accomplish any related tasks. Therefore, the
evaluation of LVU should emphasize two important prop-
erties: length and diversity. Furthermore, it is crucial that
the evaluation tasks are specifically designed to leverage the
complex information inherent in long videos, addressing
the shortcomings of previous benchmarks. Based on these
principles, we propose a novel benchmark called MLVU
(Mult-task Long Video Understanding Benchmark), which
presents the following critical advantages.
• It makes a substantial extension for the video length.

MLVU is created based on long videos of diversified
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Benchmarks #Videos #QA
Pairs Len. (s) Close-

Ended
Open-
Ended

Various
Genres

Multi-
Level

Multi-
Dimension

Referring
QA

NExT-QA [53] 1,000 8,564 39.5 3 3 3 7 7 7
TVQA [22] 15,253 15,253 11.2 3 7 7 7 7 7
MSRVTT-QA [55] 2,900 72,821 15.2 3 7 7 7 7 7
MVBench [27] 3,641 4,000 16.0 3 7 3 7 7 7

Movie101 [61] 101 - 6144 7 3 7 7 7 7
EgoSchema [36] 5,063 5,063 180 3 7 7 7 7 7
MovieChat-1K [44] 130 1,950 500 3 3 7 7 3 7
Video-MME⇤ [13] 900 2,700 1024 3 7 3 3 7 7
LongVideoBench⇤ [52] 3,763 6,678 473 3 7 3 3 7 3

MLVU 1,730 3,102 930 3 3 3 3 3 3

Table 1. Comparison of MLVU with existing benchmarks, including the number of videos (#Videos), number of QA pairs (#QA pairs),
average video length (Len.), presence of Close-Ended tasks, presence of Open-Ended tasks, inclusion of various video genres (Various
Genres), coverage of multiple duration levels (Multi-Level), inclusion of multiple dimensions of LVU tasks (Multi-Dimension), and
questions involving local information with clear referring context rather than direct timestamps [44] or well-known narrative elements [18, 28]
(Referring QA). The first block represents short video understanding benchmarks, and the second block represents long video understanding
benchmarks. ⇤ denotes work concurrent with MLVU.

lengths, ranging from 3 minutes to 2 hours. The average
video length is about 15 minutes, which makes it much
longer than most of the existing benchmarks. Additionally,
each video is further segmented so that evaluation tasks
can be created w.r.t. different video clips (e.g., summa-
rization for the first 3 minutes, the first 6 minutes, and the
entire duration of the video). Therefore, it is able to flex-
ibly evaluate the MLLMs’ performance across different
video lengths.

• It encompasses a wide variety of video genres. MLVU
includes diverse real-world videos, such as movies, life
records, and egocentric videos. Additionally, it features
typical simulated videos like games and cartoons. This di-
versity allows for a comprehensive assessment of MLLMs’
performance across various application scenarios.

• It introduces diversified evaluation tasks tailored for
LVU. MLVU comprises 9 distinct tasks that collectively
assess a wide range of MLLMs’ LVU capabilities. On
one hand, it includes both multiple-choice and open-ended
generation tasks, reflecting the models’ performance in
handling different task formats. On the other hand, some
tasks are designed to leverage global information from
entire videos, while others require the use of specific local
information from certain clips. Moreover, all questions in-
volving local information are annotated with unambiguous
context, requiring MLLMs to accurately locate or infer the
appropriate clips within long videos.

Table 1 shows that MLVU provides a more comprehensive
evaluation of LVU compared to existing and concurrent
benchmarks. We extensively investigate 23 popular MLLMs
with MLVU, which brings in several critical insights. Firstly,
long-video understanding remains a technically challeng-
ing problem for the existing MLLMs. While GPT-4o [39]
achieves the leading performance in the experiment, it only

attains an average score of 54.5% in multi-choice tasks. All
methods struggle with tasks requiring fine-grained informa-
tion from entire videos, such as action counting, ordering,
and summarization. Secondly, recent open-source long video
MLLMs have made significant strides in LVU [11, 43, 63].
These advancements have improved the models’ capability to
process extended visual sequences, thereby closing the gap
with leading proprietary models in recent months. Finally,
the empirical results underscore influential factors in LVU,
such as the extension of context length, the improvement
of image understanding ability, and the utilization of strong
LLM-backbones. In addition to the benchmark’s overall
conclusion, individual tasks enable fine-grained analysis of
MLLMs’ performances in each specialized aspects. There-
fore, we anticipate the benchmark to assist in improving
MLLMs’ long-video understanding capabilities by provid-
ing insights into their current strengths and weaknesses.

2. Related Work
Multimodal Large Language Models. Multimodal large
language models (MLLMs) have attracted significant interest
from both academia and industry. Recent advancements in
this field have been achieved by integrating LLM backbones
with visual encoders and adapters, and fine-tuning the en-
tire architecture through visual instruction tuning [8, 30, 66].
Based on the same philosophy, MLLMs have been further de-
veloped for video processing using video instruction datasets
and specialized video adapters [26, 27, 29, 35, 57, 62]. How-
ever, most existing models are optimized for short videos,
typically under one minute, due to the difficulty in estab-
lishing sufficient context for longer videos. To address this
challenge, researchers have explored compact video rep-
resentations or extended the context length of MLLMs [].
For instance, LLaMa-Vid [28] compresses each video frame
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Figure 1. Statistical Overview of our MLVU benchmark. Left: Video genres included in MLVU; Top Right: Distribution of video duration;
Bottom Right: Task types and their counts in MLVU.

into two tokens, enabling the model to handle videos sev-
eral hours long. Methods like MovieChat [44] and MA-
LMM [17] introduce specialized memory components for
recursive video processing. Furthermore, approaches such as
LWM [31], LongVA [63], and Video-XL [43] are designed
to extend the context length of MLLMs, facilitating the pro-
cessing of longer video inputs [16, 41]. Additionally, it is
also explored to make selective usage of frames or clips
from long videos based on retrievers or agents [40, 49, 56].
Despite these progresses, it remains an open problem for
MLLMs to effectively handle long videos.

Video Understanding Benchmarks. With the unprece-
dented interest in MLLMs, the creation of benchmarks for
these models has become increasingly emphasized (as ad-
vanced by MMMU [60], MME [12], and many other pio-
neering works). In video understanding, the research com-
munity has made significant efforts as well, particularly for
short videos. There are specialized benchmarks for temporal
perception [51, 59], action understanding [50, 51], video
classification [19], video reasoning [53, 54], and video cap-
tioning [37, 55]. Recently, MVBench [27] provides a com-
prehensive short-video benchmark to evaluate general capa-
bilities via question-answering. For long video understand-
ing, people seek to leverage long-form videos, like movies,
to create benchmarks. For example, LLaMA-Vid [28]
developed a movie question-answering dataset based on
MovieNet [18]. Despite using long videos, many questions
focus on well-known narrative elements, allowing them to be
answered without analyzing the video’s content. In contrast,
MovieChat [44] avoids specific character names or plot de-
tails in its questions. However, since each question provides
a specific timestamp, the tasks can be reduced to short-video

or image understanding problems. Beyond movies, there
are task-specific benchmarks like EgoSchema [36], which
presents video reasoning tasks using first-person footage
from Ego4D [15]. These specialized benchmarks, however,
focus on a single aspect of MLLMs rather than offering a
comprehensive analysis of long video understanding. There-
fore, it is essential to develop a comprehensive benchmark
with carefully designed tasks to effectively evaluate MLLMs’
capabilities in understanding long videos.

3. MLVU: Multi-task Long Video Understand-
ing Benchmark

In this section, we start with an overview of MLVU, which
highlights its constitution and explains its values over the
previous works. Then, we discuss how each evaluation task
is constructed in MLVU.

3.1. Overview
MLVU is a multi-task benchmark consisting of 3,102 ques-
tions across 9 categories, specifically designed for long video
understanding. It is divided into a dev set and a test set,
containing 2,593 and 509 questions, respectively. The bench-
mark is distinguished by the following features.

Diversified Video Categories. MLVU offers a compre-
hensive collection of videos across various categories (Fig-
ure 1 Left). These include typical real-world videos such as
movies, documentaries, TV series, egocentric videos, life
records, sports, tutorials, and surveillance footage. Addition-
ally, it features significant simulated videos from animated
series and game videos.

Substantial Extension of Video Length. MLVU is made
up of videos of diversified lengths, spanning from 3 min to
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more than 2 hours (Figure 1 Top Right). Besides, each video
is further partitioned as incremental segments, e.g., the first
3 min, the first 6 min, and the entire video, where tasks are
created for each individual segment. Thus, the MLLMs can
be flexibly evaluated across different video lengths.

Diversified Evaluation Tasks. MLVU also provides a
diverse array of evaluation tasks, which are closely aligned
with the common visual capabilities of MLLMs, such as
reasoning, captioning, recognition, perception, and summa-
rization (Figure 1 Bottom Right). All the tasks are tailored
for LVU. That is to say, the tasks need to be solved based
on the in-depth understanding of video. Some of tasks are
to examine whether the global information from the entire
video can be effectively utilized (holistic LVU); while oth-
ers focus on whether the MLLMs can make precise usage
of proper local information within the long video (detail
LVU). Additionally, both multi-choice and free-form gener-
ation tasks are included in MLVU, which help to examine
MLLMs’ capabilities in handling different task formats.

3.2. Construction of MLVU
The evaluation tasks of MLVU can be categorized into three
types: 1) holistic LVU, which needs to be solved by mak-
ing use of the global information from the entire video; 2)
single-detail LVU, which relies on leveraging one critical
plot within the long video; and 3) multi-detail LVU, which
necessitates the joint utilization of multiple plots within the
long video. The construction process of MLVU is discussed
w.r.t the above three categories. To facilitate the discussion,
we define ULVC (Universal Long Video Collection) as the
universal collection of long videos from various sources
(more details about ULVC are presented in Appendix C).

3.2.1. Holistic LVU
Topic Reasoning (TR). The topic reasoning task requires
MLLMs to respond to questions about the principal subject
of a long video, as shown with Figure 2 (a). This includes
elements such as the video’s genre, pivotal events, or pri-
mary settings. All questions and answers undergo manual
annotation, resulting in a total of 355 questions. TR tasks
are formatted as multiple-choice questions, with the model’s
performance assessed based on accuracy.
Anomaly Recognition (AR). The anomaly recognition task
involves identifying the anomalous behavior within a surveil-
lance footage (Figure 2 b). We leverage the surveillance
video clips from UCF Crime dataset [46] for this task. The
selected video clips are longer than three minutes. We create
239 questions based on the original annotations provided by
the dataset. The AR task is also conducted in the multiple-
choice format, whose performance is measured by accuracy.
Video Summarization (VS). This task requires MLLMs
to summarize the key events in a long video (Figure 2 c).
We select the narrative-rich videos from ULVC for this task,
including movies, TV series, documentaries, life records,

and animated series. There are 257 selected videos in total,
whose summaries are manually annotated. During evalua-
tion, the MLLMs are prompted with "Please summarize the
main content of this video". We employ GPT-4 to assess the
generated summaries by comparing with the annotation re-
sults. Details about annotation and evaluation are presented
in Appendix F.3 and G.3.

3.2.2. Single-Detail LVU
Needle Question-Answering (NQA). Needle-In-the-
Haystack-Search (NIHS) is a popular evaluation task for
long-context LLM [32]. Taking the inspiration from NIHS,
we create Needle Question-Answering (NQA), shown as
Figure 2 (d). In this task, the MLLM is required to answer a
question related to a specific segment (referred as needle)
within a long video (referred as background video). The
needles are short video clips sampled from WebVid [5]
and Clevrer [58], while the background videos are sampled
from our ULVC. The needle is randomly inserted into
the background video, where a question-answer pair is
annotated. By incorporating necessary details, the question
can always correspond to the needle without ambiguity.
During evaluation, the MLLM needs to infer the location
of the needle based on the details provided in the question,
and solve the problem on top of the needle’s information.
The NQA task is structured as multiple-choice, whose
performance is measured by accuracy.
Ego Reasoning (ER). Ego-centric videos capture a series
of consecutive actions from a first-person perspective. The
MLLM needs to reason for a question about a specific be-
havior in the video, e.g., predicting for the event which is
correlated or satisfies a certain causal relationship with the
behavior (Figure 2 e). Both videos and QA annotations are
collected from the NLQ task of Ego4D [15]. The ER task is
structured as multiple-choice, with a total of 405 questions
created for this task.
Plot Question-Answering (PQA). In this task, the MLLM
needs to reason for questions about a plot in a narrative
video, shown as Figure 2 (f). The video is sampled from the
movies, TV series, and animated series in our ULVC. There
are 589 question-answer pairs created by manual annotation.
During annotation, the human annotators are asked to only
provide necessary details about the plot but not to suggest
any objective hints, e.g., the two characters in the example
video are referred as cat and mouse, rather than Tom and
Jerry. Therefore, it can prevent the question from being
short-cut by the MLLM’s common-sense knowledge (more
details about PQA can be found in the Appendix F.6).
Sub-Scene Captioning (SSC). In this task, the MLLM needs
to generate the caption for a sub-scene in a long video. The
long videos in SSC are sampled from the Movie101 dataset
[61], while the questions and answers are manually anno-
tated. During annotation, the human annotator is asked
to provide a detailed description for the sub-scene as the

13694



Figure 2. Examples of MLVU. There are nine tasks designed to evaluate the holistic, single-detail, and multi-detail LVU capabilities of
MLLMs. The MLLMs are asked to solve the problem (with the ground-truth answers marked in blue) based on the long video input and
textual prompt. For multiple-choice questions, we set 4 candidates in the dev set and 6 candidates in the test set.
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ground-truth answer. Besides, they need to offer necessary
clues in their questions such that the referred sub-scenes
can be identified without ambiguity. During evaluation, we
employ GPT-4 [1] to measure the quality of caption in com-
parison with the ground-truth. Details about annotation and
evaluation are presented in Appendix F.7 and G.3.

3.2.3. Multi-Detail LVU
Action Order (AO). In this task, the MLLM needs to predict
the right order for a sequence of actions (Figure 2 h). The
actions are presented by short video clips, called probes.
The probes are formulated in two different ways. One is
made up of clips from the Kinetics dataset [19], where each
clip represents a distinct action. The other one is from the
consecutive clips of an action in the ActivityNet-Caption
dataset [21]. The probes are inserted into a long background
video, which is sampled from ULVC. There are 329 AO
questions in total. The task is structured as a multiple-choice
prblem, where the right order is selected from the misleading
options provided by the annotator.
Action Count (AC). This task requires the MLLM to count
the occurrences of an action within a long video (Figure 2
i). Each action corresponds to multiple short probe clips
sampled from the Kinetics dataset [19]. The probes of an ac-
tion are inserted into a long background video sampled from
ULVC. We also perform manual examination to ensure that
the inserted action does not exist in the original background
video. A total of 266 evaluation instances have been created.
The AC task is structured as a multiple-choice problem, with
performance measured by accuracy.

4. Experiments and Analysis
4.1. Settings
We conduct a comprehensive investigation of 23 MLLMs us-
ing our MLVU benchmark, encompassing both open-source
and proprietary models. The experimental MLLMs are di-
vided into three categories: 1) Image MLLMs, primarily
fine-tuned using image-related instructions; 2) Short Video
MLLMs, fine-tuned with short-video related instructions;
and 3) Long Video MLLMs, optimized for long-video under-
standing capability. For Image MLLMs, we leverage their
multi-image inference capabilities to process segmented
frames from original videos. For Video MLLMs, we employ
either a uniform sampling strategy or a frame rate sampling
strategy for video processing. All models are evaluated
based on their official implementations or available APIs,
with evaluations conducted in a zero-shot manner. More
details about the evaluation are provided in Appendix G.

4.2. Main Results
The overall evaluation results for all investigated MLLMs
in the MLVU test set are shown in Table 2 (with dev set re-
sults in Appendix B). Individual performances are reported

for each task, while average performances are provided
for multiple-choice (M-Avg) and generation tasks (G-Avg).
From the results, we derive three primary conclusions:

1) The proprietary model GPT-4o [39] achieves opti-
mal performance in our benchmark. It leads in multiple-
choice tasks with an M-Avg of 54.5%(within 0-100%) and
excels in generation tasks with a G-Avg of 5.87 (within
0.0-10.0), outperforming all other methods.

2) Recent advances in LVU have achieved significant
progress, and the gap between open-source long video
MLLMs and GPT-4o on close-ended tasks is narrowing.
Before June 2024, the best open-source long video MLLMs,
MiniGPT4-Video [3], lagged significantly behind GPT-4o.
However, recent models [11, 25, 43, 63] have made substan-
tial progress. For instance, LLaVA-Onevision trails GPT-4o
by only 2.8% in M-Avg. These models have improved their
ability to handle long visual sequences, achieving significant
advancements in single-detail (e.g., NQA) and multi-detail
(e.g., AC) tasks compared to previous open-source models.

3) Existing methods still struggle to handle most tasks
in our benchmark. For instance, GPT-4o only achieves
42.9% in the needle question-answering (NQA) task. In
contrast, analogous tasks in the text domain, such as NIHS
(Needle-In-the-Haystack-Search) and Passkey Retrieval, are
effectively handled by many existing long LLMs [14, 64].
Additionally, GPT-4o shows even less reliability in tasks like
ego-reasoning (ER), action ordering (AO), and action count
(AC), with most baseline methods performing even worse.
These observations indicate that long-video understanding
remains a significant challenge for today’s MLLMs.

In addition to the primary conclusions from the overall
performances, we can also make the following interesting
observations about the individual tasks.

4) The close-ended holistic tasks present much higher
differentiation than other tasks. These tasks, i.e., topic
reasoning (TR) and anomaly recognition (AR), show sig-
nificant variance in performance across different models.
Proprietary MLLMs, like GPT-4o, and superior open-source
models, such as InternVL-2 [8], VideoLLaMA2 [9], and
LLaVA-OneVision [25], can accurately solve these prob-
lems. Meanwhile, many other popular MLLMs still fail to
generate meaningful performances. Since these tasks only
require an overall understanding of long videos, they can
serve as a preliminary indicator of MLLMs’ LVU ability.

5) It’s challenging to deal with tasks that require nu-
anced understanding of multiple details. Although several
MLLMs can handle single-detail LVU tasks to some ex-
tent, their performances suffer from catastrophic degradation
when addressing multi-detail LVU tasks. Most methods,
except for GPT-4o and Video-XL [43], fail entirely in ac-
tion order (AO) and action count (AC) tasks. Additionally,
most approaches struggle with summarization tasks, which
require recalling multiple nuanced details from long videos.
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Methods Date Input
Holistic Single Detail Multi Detail

M-Avg G-Avg
TR AR VS⇤ NQA ER PQA SSC⇤ AO AC

Full mark – – 100 100 10 100 100 100 10 100 100 100 10
Random – – 16.7 16.7 – 16.7 16.7 16.7 – 16.7 16.7 16.7 –
Image MLLMs
Otter-I [24] 2023-05 16 frm 17.6 17.9 2.03 16.7 17.0 18.0 3.90 15.7 16.7 17.1 2.97
LLaVA-1.6 [30] 2024-01 16 frm 63.7 17.9 2.00 13.3 26.4 30.0 4.20 21.4 16.7 27.1 3.10
InternVL-2 [8] 2024-07 16 frm 85.7 51.3 2.55 48.3 47.2 52.0 5.25 32.9 15.0 47.5 3.90
Claude-3-Opus† [2] 2024-03 16 frm 53.8 30.8 2.83 14.0 17.0 20.0 3.67 10.0 6.7 21.8 3.25
Qwen-VL-Max† [4] 2024-01 16 frm 75.8 53.8 3.00 15.0 26.4 4.84 20.0 20.7 11.7 32.2 3.92
Short Video MLLMs
Otter-V [24] 2023-05 16 frm 16.5 12.8 2.18 16.7 22.6 22.0 4.20 12.9 13.3 16.7 3.19
mPLUG-Owl-V [57] 2023-04 16 frm 25.3 15.4 2.20 6.7 13.2 22.0 5.01 14.3 20.0 16.7 3.61
VideoChat [26] 2023-05 16 frm 26.4 12.8 2.15 18.3 17.0 22.0 4.90 15.7 11.7 17.7 3.53
Video-LLaMA-2 [62] 2024-08 16 frm 52.7 12.8 2.23 13.3 17.0 12.0 4.87 15.7 8.3 18.8 3.55
VideoChat2-HD [27] 2024-06 16 frm 74.7 43.6 2.83 35.0 34.0 30.0 5.14 21.4 23.3 37.4 3.99
Video-LLaVA [29] 2023-11 8 frm 70.3 38.5 20.9 2.30 26.4 26.0 5.06 20.0 21.7 29.3 3.68
ShareGPT4Video [7] 2024-05 16 frm 73.6 25.6 2.53 31.7 45.3 38.0 4.72 17.1 8.3 34.2 3.63
VideoLLaMA2 [9] 2024-06 16 frm 80.2 53.8 2.80 36.7 54.7 54.0 5.09 42.9 16.7 48.4 3.95
Long Video MLLMs
MovieChat [44] 2023-07 2048 frm 18.7 10.3 2.30 23.3 15.1 16.0 3.24 17.1 15.0 16.5 2.77
Movie-LLM [45] 2024-03 1 fps 27.5 25.6 2.10 10.0 11.3 16.0 4.93 20.0 21.7 18.9 3.52
LLaMA-VID [28] 2023-11 1 fps 20.9 23.1 2.70 21.7 11.3 16.0 4.15 18.6 15.0 18.1 3.43
MA-LMM [17] 2024-04 1000 frm 44.0 23.1 3.04 13.3 30.2 14.0 4.61 18.6 13.3 22.4 3.83
MiniGPT4-Video [3] 2024-04 90 frm 64.9 46.2 2.50 20.0 30.2 30.0 4.27 15.7 15.0 31.7 3.39
LongVA [63] 2024-06 256 frm 81.3 41.0 2.90 46.7 39.6 46.0 4.92 17.1 23.3 42.1 3.91
Video-CCAM [11] 2024-08 96 frm 79.1 38.5 2.65 45.0 52.8 56.0 4.49 24.3 26.7 46.1 3.57
Video-XL [43] 2024-09 256 frm 78.0 28.2 3.40 50.0 41.5 46.0 5.02 48.6 31.7 46.3 4.21
LLaVA-Onevision [25] 2024-08 32 frm 83.5 56.4 3.75 46.7 58.4 58.0 5.09 35.7 23.3 51.7 4.42
GPT-4o† [39] 2024-05 0.5 fps 83.7 68.8 4.94 42.9 47.8 57.1 6.80 46.2 35.0 54.5 5.87

Table 2. The overall performances on MLVU test set, including the holistic LVU tasks, the single-detail LVU tasks, and multi-detail LVU
tasks. Date: the release date of the MLLM. M-Avg: the average performance of multiple-choice tasks; G-Avg: the average performance of
generation tasks (marked by ⇤). Two input strategies are used by the MLLMs in evaluation: Uniform Sampling (N frm), which evenly
samples N frames from the video; Frame Rate Sampling (N fps), which samples N frames per second. † denotes proprietary models.

As a brief conclusion, although today’s MLLMs can deal
with some preliminary LVU tasks, it remains a tough chal-
lenge to achieve an in-depth understanding of nuanced infor-
mation within long videos.

4.3. Further Analysis
6) Longer videos are more challenging for MLLMs.
We evaluate MLLMs’ performances across various video
lengths. For this purpose, we introduce a derivative dataset
alongside MLVU, called MLVU Time-ladder. In this dataset,
the same kinds of evaluation tasks are created for videos of
variant lengths, including 180s, 360s, and 600s (more details
presented in Appendix D). As shown in Figure 3, the per-
formances of all models tend to decline as the video length
grows, which indicates that the existing MLLMs’ LVU abili-
ties are severely constrained by the video length. Moreover,
the short video model Video-LLaMA-2 [62] maintains a cer-

tain level of LVU ability at 3 minutes, but its performance
approaches random results at 10 minutes.

7) The performance of recent advanced long video
MLLMs remains robust regardless of the position of the
referring clip within the long video. In single-detail tasks,
the referring clip denotes the specific segment of the long
video that is referenced or inferred to answer a question.
As shown in Figure 4, we categorize clip positions into
four intervals and assess model performance on two single-
detail tasks: ego reasoning (ER) and plot question-answering
(PQA). Recent long video MLLMs, such as LongVA [63]
and Video-XL [43], maintain consistent performance re-
gardless of the referring clip’s position within the video.
Conversely, short video MLLMs are more sensitive to clip
location. This indicates that recent advancements in long
video MLLMs enhance both reliable clue retrieval and effec-
tive reasoning from extended visual sequences.
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Impact of Context Length Impact of IU Impact of LLM
Model Context Len. M-Avg Model MMMU (Val) M-Avg Model LLM M-Avg

MGV
16 24.2 Otter-I 32.2 17.1

VLM2
Vicuna-7B 13.3

90 31.7"7.5 LLaVA-1.6 35.8 27.1"10.0 Vicuna-13B 18.8"5.5

GPT-4o
16 45.8 GPT-4V 58.1 43.3

MGV
LLaMA-7B 20.6

256 54.5"8.7 GPT-4o 63.8 45.8"2.5 Mistral-7B 31.7 "11.1

Table 3. Detailed discussions about the impact from context length, image understanding (IU) ability, and LLM Backbone. For the IU
impact experiment, we used 16-frame uniform sampling for both GPT-4V and GPT-4o. MGV: MiniGPT4-Video, VLM2: Video-LLaMA-2.

Figure 3. Experimental performance on varying video lengths. The
evaluated metric is the average accuracy across five multiple-choice
tasks involving local information: NQA, ER, PQA, AC, and AO.
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Figure 4. Model performance across different referring clip posi-
tions, spanning from the beginning to the end of the entire video.

8) The challenge of multi-detail tasks increases with
the number of details. We analyzed model performance
on the action count (AC) task by grouping questions based
on the number of probes (which correspond to details) and
evaluating the average performance within these groups. As
shown in Figure 5, performance significantly declines across
all models as the number of probes increases. This indi-
cates that current MLLMs face substantial difficulties com-
prehending and processing multiple details simultaneously,
highlighting a critical area for future improvement in long
video understanding capabilities.

9) Context Length, Image-Understanding ability, and
the choice of LLM Backbones are key factors in LVU
performance. As shown in Table 3, we conducted abla-
tion experiments on several factors affecting MLLMs, using
M-Avg as the evaluation metric. First, we examined the
models’ handling of different context lengths. Specifically,
we increased MiniGPT4-Video’s input from 16 to 90 frames

Figure 5. Model performance on the action count (AC) task in
relation to the number of probes.

and GPT-4o’s input from 16 to 256 frames (as shown on the
left side of Table 3). Both models showed consistent perfor-
mance improvements with longer input lengths. To assess the
impact of image understanding (IU) capabilities, we referred
to the results from MMMU [60] (presented in the middle of
Table 3). It is evident that MLLMs’ LVU performance gener-
ally aligns with their IU performance in MMMU. Finally, we
compared MLLMs using different backbones (depicted on
the right side of Table 3). The findings indicate that LVU per-
formance improves with larger (Vicuna-13B vs. Vicuna-7B)
and more advanced backbones (Mistral-7B vs. Llama-2-
7B). These observations indicate that LVU is the result of
multiple complex factors, with the ability to perceive longer
videos and effectively utilize the perceived information being
crucial for the improvement of LVU.

5. Conclusion
This paper presents MLVU, a novel benchmark for the as-
sessment of long video understanding. With several critical
innovations: the substantial extension of video lengths, the
inclusion of various video genres, and the development of di-
versified LVU-oriented evaluation tasks, the new benchmark
is able provide a comprehensive and in-depth analysis for
MLLMs’ long-video understanding performance. The em-
pirical study on MLVU reveals LVU remains a technically
challenging problem for today’s state-of-the-art MLLMs.
Future advancements may call for the joint optimization
of complex factors, such as context length, image under-
standing ability, and even LLM backbones. We anticipate
this benchmark will facilitate future research in long-video
understanding of MLLMs.
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