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Abstract

Polarization cameras can capture multiple polarized im-
ages with different polarizer angles in a single shot, bring-
ing convenience to polarization-based downstream tasks.
However, their direct outputs are color-polarization filter
array (CPFA) raw images, requiring demosaicing to recon-
struct full-resolution, full-color polarized images; unfortu-
nately, this necessary step introduces artifacts that make
polarization-related parameters such as the degree of po-
larization (DoP) and angle of polarization (AoP) prone to
error. Besides, limited by the hardware design, the resolu-
tion of a polarization camera is often much lower than that
of a conventional RGB camera. Existing polarized image
demosaicing (PID) methods are limited in that they cannot
enhance resolution, while polarized image super-resolution
(PISR) methods, though designed to obtain high-resolution
(HR) polarized images from the demosaicing results, tend to
retain or even amplify errors in the DoP and AoP introduced
by demosaicing artifacts. In this paper, we propose PIDSR,
a joint framework that performs complementary Polarized
Image Demosaicing and Super-Resolution, showing the abil-
ity to robustly obtain high-quality HR polarized images with
more accurate DoP and AoP from a CPFA raw image in
a direct manner. Experiments show our PIDSR not only
achieves state-of-the-art performance on both synthetic and
real data, but also facilitates downstream tasks.

1. Introduction

Polarization-based vision has benefited various applications,
such as shape from polarization [1, 2], reflection removal
[19], image dehazing [41], HDR imaging [42], etc. By
fully utilizing the physical clues encoded in the polarization-
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Figure 1. Top: The concept of polarized image demosaicing (PID)
and polarized image super-resolution (PISR). Mid: An example
shows that the baseline (PID→PISR) works in a sequential manner,
where the AoPs calculated from the demosaicing results (produced
by TCPDNet [23]) and the HR polarized images (produced by
PSRNet [8]) suffer from severe artifacts. Bottom: An example
shows that our PIDSR works in a complementary manner, where
the calculated AoPs are more accurate. We choose k = 4 here.

relevant parameters such as the degree of polarization (DoP)
and angle of polarization (AoP), polarization-based meth-
ods often achieve higher performance compared with the
image-based ones, showing promising potentials. To acquire
the DoP and AoP, at least three polarized images with dif-
ferent polarizer angles are required. While a polarizer can
be used for this purpose, it demands multiple shots, making
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the capture process quite inconvenient. Empowered by the
division of focal plane (DoFP) technology, a polarization
camera can capture four color polarized images with dif-
ferent polarizer angles (0◦, 45◦, 90◦, 135◦) in a single shot,
bringing convenience to the acquisition of the DoP and AoP.

Since DoFP uses color-polarization filter array (CPFA) to
record the color and polarization information simultaneously,
the direct output of a polarization camera is a CPFA raw im-
age. As shown in the left part of Fig. 1 (top), each pixel in a
CPFA raw image contains information about only one color
channel and one polarizer angle, which means that demosaic-
ing is required to reconstruct the corresponding polarized
images. Since unavoidable demosaicing artifacts tend to be
amplified by the non-linearity of subsequent calculations,
the DoP and AoP acquired from a polarization camera usu-
ally have a higher level of error than those acquired from a
polarizer, making the physical clues less distinctive. Besides,
limited by the hardware design, the resolution of a polariza-
tion camera is often much lower than that of a conventional
RGB camera, restricting the fidelity of the recorded infor-
mation. Thus, obtaining high-quality high-resolution (HR)
polarized images with more accurate DoP and AoP from a
polarization camera is of practical significance.

Despite its importance, a practical and reliable approach
to simultaneously achieve demosaicing and super-resolution
of polarization images has yet to be developed. As shown in
Fig. 1 (top), the most straightforward way is to sequentially
perform polarized image demosaicing (PID) [20, 22, 23]
and polarized image super-resolution (PISR) [8, 37] on the
CPFA raw image, i.e., perform “PID→PISR”. Defining R ∈
R1×h×w (h and w are the height and width respectively)
as the CPFA raw image, Iα1,2,3,4

∈ R3×h×w (α1,2,3,4 =
0◦, 45◦, 90◦, 135◦ are the polarizer angles) as the four full-
color polarized images, and IHR

α1,2,3,4
∈ R3×kh×kw (k is the

SR scale) as the four HR polarized images respectively, the
process of PID→PISR can be written as

Iα1,2,3,4 = D(R) first, then IHR
α1,2,3,4

=↑ (Iα1,2,3,4), (1)

where D and ↑ represent demosaicing and super-resolution
(SR) respectively. However, PID→PISR would produce
degenerated results, reducing the accuracy of the DoP and
AoP, as shown in Fig. 1 (mid). This is because existing
PISR methods [8, 37] usually assume that the inputs are
free of demosaicing artifacts, while existing PID methods
[20, 22, 23] cannot guarantee perfect outputs. Therefore, the
essential question needs to be addressed is: How to robustly
obtain IHR

α1,2,3,4
from R in a direct manner?

We observe that the spatial resolution often correlates
negatively with the severity of demosaicing artifacts, sug-
gesting that enhancing resolution can benefit PID, while
suppressing demosaicing artifacts could, in turn, improve
the performance of PISR. The observation indicates that PID
and PISR may be complementary, i.e., optimizing both of

them in a single framework can potentially enhance each
other’s performance. This motivates us to propose PIDSR,
a joint framework that performs complementary Polarized
Image Demosaicing and Super-Resolution. As shown in
Fig. 1 (bottom), given a CPFA raw image R, our PIDSR can
not only output the demosaicing results Iα1,2,3,4

with fewer
artifacts, but also output the HR polarized images IHR

α1,2,3,4

with higher quality, which can be described as

IHR
α1,2,3,4

, Iα1,2,3,4
= D↑(R), (2)

where D↑ denotes complementary demosaicing and SR.
Here, it is non-trivial to carefully design the formulation
of D↑, since naively formulating D↑ as a combination of D
and ↑ would result in error accumulation. To reduce the level
of error, we propose to formulate D↑ as a series of polarized
pixel reconstruction sub-problems, and introduce a two-stage
pipeline to handle the intra-resolution and cross-resolution
components of each sub-problem in a recurrent manner, fully
exploiting the complementary aspects of D and ↑ to optimize
each other jointly. Tailored to the pipeline, we design a neu-
ral network to explicitly inject the physical clues into both
two stages to preserve the polarization properties, making
full use of the Stokes-domain information of the polarized
images. To summarize, this paper makes contributions by
demonstrating: (1) PIDSR, a complementary polarized
image demosaicing and super-resolution framework, in-
cluding: (2) a two-stage recurrent pipeline to fundamen-
tally reduce the level of error; and (3) a Stokes-aided neural
network to preserve the polarization properties.

2. Related work
Polarized image demosaicing (PID). Unlike the demo-
saicing methods designed for conventional RGB images
[7, 10, 24] that handle the mosaic generated from color fil-
ter array (CFA), the methods designed for PID aim to deal
with the mosaic from color-polarization filter array (CPFA).
Maeda developed Polanalyser [20], an open-source software
that provides an interpolation-based basic PID tool, which
is widely adopted in polarization-based vision tasks [1, 2].
For higher performance, some methods attempted to adopt
numerical optimization based on handcrafted priors to sup-
press the demosaicing artifacts [5, 13, 16, 21, 22, 25, 34–36].
Some works adopted learning-based approaches to solve
this challenging problem, including convolutional neural net-
work (CNN) [14, 15, 23, 28, 31, 39], generative adversarial
network (GAN) [4], dictionary learning [17, 18, 32, 40], etc.
Li et al. [12] proposed a no-reference physics-based quality
assessment metric and show that it can be used to address
the PID problem. However, these methods can only restore
full-color polarized images from a CPFA raw image, and
cannot further enhance the resolution.
Polarized image super-resolution (PISR). Unlike the SR
methods designed for conventional RGB images [3, 27, 29,
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30] that focus solely on resolution enhancement, the methods
designed for PISR aim to not only improve the resolution
of multiple polarized images but also preserve polarization
properties in them, making the task much more challeng-
ing. Hu et al. [8] proposed two polarized image degradation
models to simulate real image degradation, and designed a
network named PSRNet to perform polarization-aware SR
on monochrome polarized images along with a loss func-
tion to refine the DoP and AoP in a direct manner. Yu et
al. [37] proposed a network named CPSRNet to perform
polarization-aware SR on color polarized images, which in-
corporated a cross-branch activation module (CBAM) [33]
to leverage high-frequency information contained in the DoP
and AoP for preserving the polarization properties explicitly.
However, they are largely based on an assumption that the
demosaicing artifacts are not that significant, and ignore the
errors in the DoP and AoP of the input polarized images.

3. Method
3.1. Background

CPFA raw image formation model. Since polarization
cameras have a linear camera response function (i.e., the
pixel values linearly relate to the input irradiance), here we
follow other works [19, 41] by not applying any special
adjustments for non-linearity. As shown in Fig. 1 (top), a
full-color polarized image Iαi

∈ R3×h×w can be regarded as
a collection of single-channel polarized images, i.e., Iαi

=
{Icjαi}, where i = 1, 2, 3, 4 and α1,2,3,4 = 0◦, 45◦, 90◦, 135◦

denote the polarizer angles, j = r, g, b and cr,g,b denote
RGB color channels. Here, each single-channel polarized
image I

cj
αi ∈ R1×h×w can be written as

Icjαi
= Cj(Pi(E)), (3)

where E ∈ R1×h×w denotes the input irradiance sampled
by an h × w pixel array, Cj and Pi denote the color and
polarization filtering operations at cj and αi performed by
the CPFA respectively. A CPFA raw image R ∈ R3×h×w

captured by a polarization camera can be regarded as the
weighted sum of each single-channel polarized image I

cj
αi :

R =
∑

i∈{1,2,3,4}
j∈{r,g,b}

Mij · Icjαi
=

∑
i∈{1,2,3,4}
j∈{r,g,b}

Mij · (Cj(Pi(E))),

(4)
where Mij ∈ R1×h×w denotes the weight of each summa-
tion term whose pixel value at coordinates (x, y) satisfies

Mij(x, y) =

{
1 if Icjαi(x, y) is in the CPFA pattern
0 otherwise

.

(5)
Combing Eq. (3) and Eq. (4), we can see that PID is similar
to performing interpolation on the missing pixels (i.e., the

pixels at coordinates (x, y) satisfying Mij(x, y) = 0) from
one out of twelve necessary intensity measurements, and it
is an ill-posed problem without closed form solution.
Acquisition of the DoP and AoP. Given a CPFA raw im-
age R, one can perform PID on it to obtain four full-color
polarized images Iα1,2,3,4

and use them to acquire the DoP
p ∈ [0, 1] and AoP θ ∈ [0, π] for downstream tasks by

p =

√
S2
1 + S2

2

S0
and θ =

1

2
arctan(

S2

S1
), (6)

where S0,1,2
1 are called the Stokes parameters [6, 11] that

can be computed as{
S0 = 2Īαi

= Iα1
+ Iα3

= Iα2
+ Iα4

S1 = Iα3
− Iα1

, and S2 = Iα4
− Iα2

, (7)

where Īαi
=

∑4
i=1 Iαi

/4 is the average polarized image.
Acquisition of the HR counterparts. As the polarized
images Iα1,2,3,4

become available, one can perform PISR on
them to acquire their HR counterparts IHR

α1,2,3,4
. Similarly, the

HR counterparts of the Stokes parameters SHR
0,1,2, DoP pHR

and AoP θHR can also be acquired by substituting Iα1,2,3,4

with IHR
α1,2,3,4

in Eq. (7) and Eq. (6). It is important to note
existing PISR methods [8, 37] cannot directly perform super-
resolution on CPFA raw images, and they require PID as a
pre-processing step to generate the polarized images first.

3.2. Motivation and overall framework

As indicated in Eq. (7) and Eq. (6), p and θ exhibit non-
linear relationships with Iα1,2,3,4

. This non-linearity would
exacerbate demosaicing artifacts, meaning errors arising
from imperfections in PID (e.g., inaccurate interpolation,
failure to handle sensor noise, etc.) are more noticeable in p
and θ than in Iα1,2,3,4 . To verify it, we design an experiment
on our test dataset to evaluate the average error rates of p,
θ, and S0

2 acquired from the demosaicing results. Here, we
choose Polanalyser [20], IGRI2 [22], and TCPDNet [23]
as the PID methods, and define the error rate of a variable
v (normalized to [0, 1]) similar to the one in [43]: ERv =∑

p/w |v−vgt|∑
p/w v , where

∑
p/w denotes the pixel-wise sum, the

subscript gt stands for the ground truth throughout this paper.
As shown in Fig. 2 (a), the average error rates of p and θ are
much larger than S0 for all PID methods. Besides, obtaining
high-quality HR polarized images is challenging because the
performance of PISR is constrained by the effectiveness of
the pre-processing step, PID. To verify it, we design another
experiment on our test dataset to evaluate the performance of

1S0 describes the total intensity (which can be regarded as the unpolar-
ized image), and S1 (S2) describes the difference between the intensity of
the vertical and horizontal (135◦ and 45◦) polarized light.

2Since S0 has a linear relationship with Iα1,2,3,4 (see Eq. (7)), we can
use S0 to represent Iα1,2,3,4 in such a proof-of-concept experiment.
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Figure 2. (a) The average error rates of p and θ are much larger than
the one of S0 for PID methods (Polanalyser [20], IGRI2 [22], and
TCPDNet [23]). (b) The performance of PISR methods (PSRNet
[8] and CPSRNet [37]) on both p, θ, and S0 is much better when
using mosaic-free ground truth polarized images compared with
using demosaicing results. (c) The average error rates of both p, θ,
and S0 decrease as the resolution increases.

two PISR methods (PSRNet [8] and CPSRNet [37]) under
different input conditions. Specifically, we use polarized
images generated by an existing PID method (Polanalyser
[20]) and their corresponding mosaic-free ground truth as
inputs respectively for comparison. As shown in Fig. 2 (b),
the performance of PISR methods using polarized images
generated by Polanalyser [20] as input is inferior to that
using the ground truth as input for both p, θ, and S0.

Notably, we observe that the spatial resolution at which
the input irradiance E is sampled (i.e., the same scene sam-
pled at different h×w resolutions) often correlates negatively
with the severity of demosaicing artifacts. As a proof of con-
cept, we use a virtual camera with varying resolutions to
sample the input irradiance from rendered scenes (using Mit-
suba 33), and adopt Eq. (4) to obtain the CPFA raw images at
different resolutions; then, a PID method (Polanalyser [20])
is adopted to produce the corresponding demosaicing re-
sults. Results are shown in Fig. 2 (c), which demonstrate the

3https://www.mitsuba-renderer.org/
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severity of demosaicing artifacts (measured using average
error rates of both p, θ, and S0) decreases as the resolution
increases. We can see these results align with the fact that
existing PID methods [20, 22, 23] typically leverage inter-
actions among neighboring pixels for interpolation, where
preserving finer details could lead to more accurate interpo-
lated pixel values (i.e., at higher resolutions, artifacts such as
blurring or jagged edges (aliasing) are less likely to occur).
This observation suggests enhancing resolution can bene-
fit PID. Combining the fact that suppressing demosaicing
artifacts could improve the performance of PISR, we can
deduce that PID and PISR may be complementary.

Based on the above analysis, we propose to design a joint
framework that performs complementary polarized image
demosaicing and super-resolution, named PIDSR. As shown
in Eq. (2), given a CPFA raw image R as input, our PIDSR
aims to perform complementary demosaicing and SR (D↑)
on it to output not only demosaicing results Iα1,2,3,4

but also
HR polarized images IHR

α1,2,3,4
with more accurate DoP and

AoP. Thus, the overall process of PIDSR can be regarded as
maximizing a posteriori of the outputs Iα1,2,3,4

and IHR
α1,2,3,4

conditioned on the inputs R along with the complementary
demosaicing and SR function D↑ parameterized by Ψ:

argmax
Ψ

D↑(Iα1,2,3,4 , I
HR
α1,2,3,4

|R,Ψ). (8)

3.3. Two-stage recurrent PIDSR pipeline

The most straightforward way to solve the maximum a pos-
teriori estimation problem in Eq. (8) is directly formulating
the complementary demosaicing and SR function D↑ as a
cascade of two stages, i.e., demosaicing function D and SR
function ↑, as shown in Eq. (1). However, such a pipeline
has two main drawbacks that limit its overall performance.
First, errors tend to accumulate across stages because D
and ↑ are independent, preventing the formation of negative
feedback loops to stabilize the level of error. Second, the
sequential nature of these stages fails to leverage the comple-

16084



𝐑𝐑

𝐈𝐈𝛼𝛼1,2,3,4

C

𝐒𝐒1,2
𝑎𝑎S

𝐓𝐓𝛼𝛼1,2,3,4𝒜𝒜𝑓𝑓

S

𝐒𝐒1,2
𝑏𝑏

𝒜𝒜𝑔𝑔
𝐑𝐑𝛼𝛼1,2,3,4
int

I

Spatial-physical coherence 
reconstructor 𝑓𝑓

Polarization-aware 
resolution enhancer 𝑔𝑔

Input

Output

Repeat 
for SR

Feature extraction for 
the Stokes vectors & 

polarized images 

Feature refinement

Feature upsampling

Add

Multiply

Converting using 
the way in Fig. 3 C

I Interpolation

Inner-stage & inter-
stage data flow

Recurrent data flow

S Calculating the 
Stokes parameters

ℱ𝑠𝑠
𝑓𝑓

ℱ𝑠𝑠
𝑔𝑔

Preprocessing

Conv

Norm

MDTA

Conv

Norm

Output 
features

Stokes feature 
injection (SFI)

GELU

Stokes 
features

GDFN

Input
features

Skip link

𝐑𝐑𝛼𝛼1,2,3,4

Figure 4. The workflow and network design of our PIDSR framework, consisting of two stages: spatial-physical coherence reconstructor f(·)
and polarization-aware resolution enhancer g(·). Here we only illustrate the demosaicing workflow, and the SR one is in a repeated manner.

mentary aspects of D and ↑, missing the opportunity for joint
optimization. Therefore, a more robust pipeline is required.

Prominently, we found that a CPFA raw image R can be
approximately converted to four half-resolution, full-color
polarized images Rα1,2,3,4 . As shown in Fig. 3, first, by
filtering out the pixels corresponding to a specific polarizer
angle αi from a given CPFA raw image R and arranging
them together, we could form an image R∗

αi
∈ R1×h/2×w/2

with a format similar to a CFA raw image (i.e., the mosaic
pattern produced by a color filter array); then, by applying a
simple RGB demosaicing method (e.g., bi-linear interpola-
tion) to R∗

αi
, we could generate a half-resolution, full-color

polarized image Rαi
, though it would exhibit spatial dis-

continuities between neighboring pixels. This suggests that
D can be formulated into two sub-problems: spatial discon-
tinuity alleviation and resolution enhancement, equivalent
to performing intra-resolution and cross-resolution polar-
ized pixel reconstruction. Similarly, ↑ can also be formu-
lated into two sub-problems: physical correlation restoration
(the intra-resolution one) and resolution enhancement (the
cross-resolution one). This decoupled formulation ensures
that the disrupted physical correlation among multiple po-
larized images, caused by demosaicing artifacts from the
pre-processing step (PID), has minimal negative impact on
resolution enhancement, facilitating the accurate acquisition
of DoP and AoP. To this end, we could unify D and ↑ into a
recurrent structure, which can not only avoid error accumu-
lation but also make full use of the complementary aspects
of D and ↑ to optimize each other jointly.

We design a two-stage recurrent PIDSR pipeline to im-
plement D↑, as illustrated in Fig. 4. The first stage f is a
spatial-physical coherence reconstructor that performs intra-
resolution pixel reconstruction, aiming to alleviate the spa-

tial discontinuities between neighboring pixels, restore the
physical correlation among multiple polarized images, and
deal with the potential sensor noise; the second stage g is a
polarization-aware resolution enhancer that performs cross-
resolution pixel reconstruction, with a focus on both SR and
preserving polarization properties. Starting with a CPFA
raw image R as the initial input, we first approximately con-
vert it into four half-resolution, full-color polarized images
Rα1,2,3,4 using the way shown in Fig. 3 as a pre-processing
step, then send Rα1,2,3,4

to f and g in a sequential manner
to finish the first round of iteration to obtain four full-color
polarized images Iα1,2,3,4

; after that, we can repeat the iter-
ation for n additional rounds to produce four HR polarized
images IHR

α1,2,3,4
with an SR factor of k = 2n×.

3.4. Stokes-aided PIDSR network

Spatial-physical coherence reconstructor (f ). As shown
in the first stage of Fig. 4, it aims to solve the intra-resolution
polarized pixel reconstruction sub-problem, which alleviates
the inherent spatial discontinuity in Rα1,2,3,4 and restores
the imperfect physical correlation in Iα1,2,3,4

during the de-
mosaicing and SR workflows, respectively. Taking the demo-
saicing workflow as an example, this stage learns the residual
between Rα1,2,3,4

and Tα1,2,3,4
(which are the spatially con-

tinuous intermediate results). First, two feature extraction
heads Fi and Ff

s are used to extract the image and polariza-
tion features from Rα1,2,3,4

and their corresponding Stokes
parameters Sa

1,2 respectively. Then, a backbone network is
adopted to process the extracted features to compensate the
missing spatial information in the high-dimensional feature
space. Here, we should not directly concatenate the extracted
features and send them into the backbone network, since the
domain gap between the features of Rα1,2,3,4

and Sa
1,2 could
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Table 1. Quantitative comparisons on synthetic data. The comparisons involve our PIDSR, three state-of-the-art PID methods (Polanalyser
[20], IGRI2 [22], and TCPDNet [23]), and the only existing two PISR methods (PSRNet [8] and CPSRNet [37]).

Metric PSNR↑/SSIM↑ MAE↓
Demosaicing Iα1

(0◦) Iα2
(45◦) Iα3

(90◦) Iα4
(135◦) S0 p θ

Polanalyser [20] 31.95/0.8955 32.08/0.8968 32.44/0.8989 32.14/0.8973 33.28/0.9138 26.68/0.7164 17.8666
IGRI2 [22] 34.25/0.9349 34.33/0.9359 34.64/0.9369 34.46/0.9365 35.50/0.9450 27.78/0.7486 16.5830
TCPDNet [23] 37.26/0.9585 37.60/0.9602 37.90/0.9609 37.81/0.9612 38.65/0.9669 32.26/0.8262 13.1881
PIDSR 38.90/0.9717 38.98/0.9719 39.11/0.9721 39.21/0.9732 40.24/0.9780 33.33/0.8447 12.2383

Super-resolution IHR
α1

(0◦) IHR
α2

(45◦) IHR
α3

(90◦) IHR
α4

(135◦) SHR
0 pHR θHR

PSRNet (2×) [8] 35.66/0.9309 35.49/0.9301 35.65/0.9306 35.65/0.9319 36.46/0.9439 32.01/0.8298 13.1884
CPSRNet (2×) [37] 32.97/0.8936 33.11/0.8944 33.35/0.8947 33.17/0.8958 33.60/0.9021 24.14/0.7649 15.5811
PIDSR (2×) 36.55/0.9488 36.64/0.9493 36.85/0.9502 36.77/0.9505 37.44/0.9553 32.97/0.8438 12.3520

PSRNet (4×) [8] 35.15/0.9227 35.41/0.9247 35.74/0.9264 35.57/0.9257 36.13/0.9311 31.95/0.8305 13.7751
CPSRNet (4×) [37] 30.82/0.8599 30.75/0.8596 30.98/0.8600 30.76/0.8608 31.16/0.8677 22.52/0.7325 16.5469
PIDSR (4×) 35.48/0.9297 35.58/0.9307 35.83/0.9321 35.70/0.9319 36.31/0.9371 32.43/0.8379 13.0520

be very large, i.e., the features of Rα1,2,3,4
contain mainly

low-frequency structures, while the features of Sa
1,2 contain

mainly high-frequency structures. To handle this issue, we
design the backbone network as a modified U-Net [26] archi-
tecture, where in each scale the original convolution block
is substituted with a Stokes feature injection (SFI) block to
explicitly utilize the physical clues encoded in the Stokes
parameters to provide guidance for bridging the domain gap.
The SFI block contains two different branches for processing
the input and Stokes features respectively, which learn a bias
by multiplying the processed features to adjust the input fea-
tures. To effectively capture long-range feature interactions,
we design the SFI block to incorporate a multi-Dconv head
transposed attention (MDTA) module [38] at the beginning
of the branch for input features along with a gated-Dconv
feed-forward network (GDFN) module [38] before output.
After the backbone network, a feature refinement block Af

(containing an MDTA and a GDFN module [38]) is used to
reconstruct the residual between Rα1,2,3,4

and Tα1,2,3,4
.

Polarization-aware resolution enhancer (g). As shown
in the second stage of Fig. 4, it aims to solve the cross-
resolution polarized pixel reconstruction sub-problem, which
focuses on resolution enhancement during both the demo-
saicing and SR workflows. Also taking the demosaicing
workflow as an example, this stage learns the residual be-
tween Rint

α1,2,3,4
(the interpolated version of Rα1,2,3,4) and

Iα1,2,3,4 . Since Tα1,2,3,4 are spatially continuous, their corre-
sponding Stokes parameters Sb

1,2 could offer robust physical
clues to facilitate the SR process with polarization-awareness.
Besides, since the backbone network in f already encodes
fine-grained multiscale features in the image domain, we
do not need to extract features from Tα1,2,3,4 additionally.
Therefore, in this stage, we choose to directly grab the fea-
tures from the coarsest level of the backbone network in f

and send them into a decoder (sharing the same architecture
with the decoder part of the backbone network in f ), under
the guidance of the features of Sb

1,2 extracted by another
feature extraction head Fg

s . Then, the output features of the
decoder are fed into another feature refinement block Ag

and a feature upsampling block U in a sequential manner to
form the residual between Rint

α1,2,3,4
and Iα1,2,3,4

.
Loss function. We design the loss function for both demo-
saicing and SR rounds as L = λ1Limg + λ2LStokes + λ3Lpol,
where Limg is the image loss aiming to ensure the pixel accu-
racy in the image domain, LStokes is the Stokes loss aiming
to preserve the continuity in the Stokes domain, and Lpol
is the polarization loss aiming to enforce the physical cor-
rectness of the DoP and AoP, λ1,2,3 are set to be 1.0, 10.0,
and 10.0 respectively. Here, we only detail each loss term in
the demosaicing round, and the SR round could be similar
(just replace the variables with the corresponding HR coun-
terparts). For the second stage (g), Limg can be written as
Limg = L1(Iα1 +Iα3 , Iα2 +Iα4)+Lgrad(Iα1,2,3,4 , I

gt
α1,2,3,4),

where L1 and Lgrad denote the ℓ1 loss and gradient loss re-
spectively, the superscript gt labels the ground truth through-
out this paper. Here, L1(Iα1

+Iα3
, Iα2

+Iα4
) aims to adjust

the numerical relationship among Iα1,2,3,4
since Iα1

+Iα3
=

Iα2 + Iα4 always holds for polarized images. LStokes can
be written as LStokes = Lgrad(S0,S

gt
0 )+L1(S1,2,S

gt
1,2). Lpol

can be written as Lpol = L1(p,p
gt) + L1(θ,θ

gt). For the
first stage (f ), we use Tgt

α1,2,3,4 (the half-resolution version
of Igt

α1,2,3,4 ) along with the corresponding Stokes parameters,
DoP, and AoP for supervision.
Training strategy. Our PIDSR is implemented using Py-
Torch and trained on an NVIDIA A800 GPU. For both de-
mosaicing and SR, we train the two stages f and g for 100
epochs simultaneously in total, with a learning rate of 0.005.
We use Adam optimizer [9] for optimization.
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Figure 5. Qualitative comparisons on both synthetic (the top group) and real data (the bottom group) of both demosaicing and 4× SR tasks.

4. Experiment
4.1. Evaluation

Since existing public datasets are insufficient for the setting
of our PIDSR, we generate a synthetic dataset4 for evalua-
tion. As for the demosaicing performance evaluation, we
compare our PIDSR with three state-of-the-art PID methods
Polanalyser [20], IGRI2 [22], and TCPDNet [23]; as for the
SR performance evaluation, we compare our PIDSR with
the only existing two PISR methods PSRNet [8] and CPSR-
Net [37]. Here, since PSRNet [8] is initially designed for
grayscale polarized images, we make slight modifications on
it to allow it to accept the color polarized images. Besides,
since the compared PISR methods [8, 37] can only take the
polarized images (instead of the CPFA raw image) as input,
we provide them the demosaicing results from TCPDNet
[23] (which achieves the best performance among the com-
pared PID methods [20, 22, 23]). Note that all compared
methods based on deep-learning [8, 23, 37] are retrained on
our dataset for a fair comparison. As the compared methods
do, we not only evaluate the quality of Iα1,2,3,4

(for demo-
saicing task) and IHR

α1,2,3,4
(for SR task), but also p, θ, S0

4Details about our dataset can be found in the supplementary material.

(for demosaicing task) and pHR, θHR, SHR
0 (for SR task).

We evaluate the results quantitatively on synthetic data us-
ing: Mean Angular Error (MAE), Peak Signal-to-Noise Ra-
tio (PSNR), and Structural Similarity Index Measure (SSIM).
Here, MAE (lower values indicating better performance) is
exclusively used to evaluate angular variables (θ and θHR),
while PSNR and SSIM are applied to the remaining variables.
Results are shown in Tab. 1, where our framework consis-
tently outperforms the compared methods on all metrics in
both demosaicing and SR tasks. Visual quality comparisons
on both synthetic and real data are shown in Fig. 55. From
the results, we can see that our PIDSR can produce more
accurate DoP and AoP, while the compared methods suffer
from severe artifacts (e.g., broken edges and discontinuity).

4.2. Ablation study

We conduct several ablation studies in Tab. 2 to verify the
validity of each design choice. First, we show the signifi-
cance of our PIDSR framework design that formulates D↑

as complementary demosaicing and SR, by comparing with
an alternative design that naively formulates D↑ as a com-
bination of D and ↑ using the same network architecture

5Additional results can be found in the supplementary material.
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Table 2. Quantitative evaluation results of ablation study.

Metric PSNR↑/SSIM↑ MAE↓
Demosaicing S0 p θ

Sequential D and ↑ 32.32/0.9134 23.78/0.6661 19.2907
Single-stage pipeline 34.61/0.9426 27.95/0.7406 38.2174
Without SFI blocks 37.18/0.9612 32.73/0.8392 13.1242
Ours (demosaicing only)→PSRNet [8] 40.24/0.9780 33.33/0.8447 12.2383
TCPDNet [23]→ ours (SR only) 38.65/0.9669 32.26/0.8262 13.1881
Our complete PIDSR 40.24/0.9780 33.33/0.8447 12.2383

Super Resolution SHR
0 (2×) pHR (2×) θHR (2×)

Sequential D and ↑ 32.16/0.8965 20.07/0.6225 21.8965
Single-stage pipeline 34.35/0.9278 28.10/0.7584 38.2203
Without SFI blocks 36.35/0.9458 31.65/0.8322 14.1309
Ours (demosaicing only)→PSRNet [8] 36.81/0.9513 32.68/0.8412 12.5958
TCPDNet [23]→ ours (SR only) 36.83/0.9457 32.19/0.8308 13.1530
Our complete PIDSR 37.44/0.9553 32.97/0.8438 12.3520

(Sequential D and ↑). The performance degenerates, since
such a naive pipeline would result in error accumulation.
Next, we verify the necessity of our two-stage pipeline, by
comparing to a single-stage pipeline that does not explic-
itly reconstruct spatial-physical coherence under the same
PIDSR framework (Single-stage pipeline). The results are
not that good since the still remaining spatial discontinu-
ity and disrupted physical correlation would have negative
impact on resolution enhancement. Then, we validate the
effectiveness of our Stokes-aided neural network, by sub-
stituting the SFI blocks with original convolution blocks
(Without SFI blocks). We find that it does not perform well
since it cannot make full use of the Stokes-domain infor-
mation to preserve the polarization properties. Finally, we
also compare with two different hybrid baselines that feed
our demosaicing results into PSRNet [8] for SR (Ours (de-
mosaicing only)→PSRNet [8]), and feed the demosaicing
results of TCPDNet [23] into our PIDSR for SR (TCPDNet
[23]→ ours (SR only)), respectively. We can see that our
complete PIDSR achieves the first performance.

4.3. Application

To show that our PIDSR can be beneficial to down-
stream polarization-based vision applications, we take
polarization-based reflection removal (PRR, which takes
reflection-contaminated polarized images as input and out-
puts reflection-removed unpolarized images) as an example,
and try to obtain a reflection-removed unpolarized image
from a reflection-contaminated CPFA raw image captured
by a polarization camera. To achieve it, the following ap-
proaches could be used: (1) “PID→PISR→PRR”: perform-
ing PID and PISR sequentially on the CPFA raw image, then
performing reflection removal; (2) “PID→PRR→SISR”:
performing PID on the CPFA raw image first, then per-
forming reflection removal, and performing single image
super-resolution (SISR) in the end; (3) “PIDSR→PRR”: per-
forming our PIDSR on the CPFA raw image first, then per-
forming reflection removal. Here, the SR scale is 2, and the

Input reflection-contaminated 
CPFA raw image

(1) PID→PISR→PRR (2) PID→PRR→SISR (3) PIDSR→PRR (ours)

Reflection-free CPFA raw image
(for reference)

Figure 6. Results of polarization-based reflection removal. Our
method is not influenced by the zigzag artifacts. Please zoom-in
for better details.

involved PRR, PID, PISR, and SISR methods are selected to
be RSP [19], TCPDNet [23], PSRNet [8], and OmniSR [29]
respectively. Visual comparisons are shown in Fig. 6, where
we can see the result from PIDSR→PRR (ours) contains
more detailed textures and less reflection contamination.

5. Conclusion
We propose PIDSR, a joint framework that performs comple-
mentary polarized image demosaicing and super-resolution.
By carefully designing a two-stage recurrent pipeline to
fundamentally reduce the level of error and a Stokes-aided
neural network to preserve the polarization properties, our
PIDSR can robustly obtain HR polarized images with more
accurate polarization-related parameters such as the DoP and
AoP from a CPFA raw image in a direct manner.
Limitations. Since our PIDSR is specifically designed to
process a single CPFA raw image, it is unsuitable for recon-
structing a polarized video. Additionally, it cannot handle
CFA raw images, as it requires the Stokes parameters as
input, which are unavailable in this setting.
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