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Abstract

Recently, 3D Gaussian Splatting (3DGS) provides a new
framework for novel view synthesis, and has spiked a new
wave of research in neural rendering and related appli-
cations. As 3DGS is becoming a foundational compo-
nent of many models, any improvement on 3DGS itself can
bring huge benefits. To this end, we aim to improve the
fundamental paradigm and formulation of 3DGS. We ar-
gue that as an unnormalized mixture model, it needs to
be neither Gaussians nor splatting. We subsequently pro-
pose a new mixture model consisting of flexible Student’s
t distributions, with both positive (splatting) and negative
(scooping) densities. We name our model Student Splatting
and Scooping, or §SS. When providing better expressivity,
SSS also poses new challenges in learning. Therefore, we
also propose a new principled sampling approach for opti-
mization. Through exhaustive evaluation and comparison,
across multiple datasets, settings, and metrics, we demon-
strate that SSS outperforms existing methods in terms of
quality and parameter efficiency, e.g. achieving matching
or better quality with similar numbers of components, and
obtaining comparable results while reducing the component
number by as much as 82%.

1. Introduction

Presented initially as a neural rendering technique, 3D
Gaussian Splatting (3DGS) [13] has quickly become a ver-
satile component in various systems, e.g. geometry recon-
struction, autonomous driving [3, 6]. Given its importance
as a foundational component, very recently researchers start
to investigate possible alternatives to the basic framework of
3DGS, e.g. more expressive distributions instead of Gaus-
sians [8, 18], more principled optimization [14], which all
focus on improving the model expressivity. Our research is
among these attempts.

The key to 3DGS’ success lies in its name: Gaussian
and splatting. 3DGS can be seen as a (unnormalized) Gaus-
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sian mixture, which provides two advantages. As a general-
purpose distribution, Gaussians can approximate an arbi-
trary density function hence good expressivity. Also, Gaus-
sians have analytical forms under e.g. affine transformation,
enabling quick evaluation in 3D-2D projection, thus quick
learning from images. Meanwhile, splatting provides a flex-
ible way of identifying only the relevant Gaussians to an
image for learning. Despite the success, the framework can
still suffer from insufficient expressivity [16, 34], and low
parameter efficiency, i.e. needing a large number of compo-
nents [17, 28]. Therefore, we re-examine the three key com-
ponents in 3DGS: Gaussian, splatting, and the optimization.
Since its underlying principle is essentially to fit a 3D mix-
ture model to a radiance field, we argue it needs not to be
restricted to Gaussians or splatting.

To this end, we propose a simple yet effective general-
ization of 3DGS. We first replace Gaussians with Student’s
t distribution with one degree of freedom, referred to sim-
ply as t-distribution. Similar to Gaussians, t-distribution
also enjoys good properties such as analytical forms un-
der affine transformation. More importantly, t-distribution
can be seen as a generalization of Gaussians and therefore
is more expressive. t-distribution has a control parameter
for the tail fatness, representing distributions ranging from
Cauchy distribution to Gaussian distribution, and any dis-
tribution inbetween. Compared with Gaussians, Cauchy is
fat-tailed, i.e. a single Cauchy can cover a larger area with
comparatively higher densities than a Gaussian. Further-
more, by making this control parameter learnable, we learn
components with a wide range of varying tail thicknesses.

Next, we extend the splatting scheme which only oper-
ates in the positive density space. Inspired by mixture mod-
els with negative components [20], we propose to employ
both positive and negative components to splat (adding) and
scoop (subtracting) densities from the model. This leads to
more complex mathematical forms than 3DGS but we de-
rive their close-form gradients for learning.

Finally, as the increased model complexity, optimiza-
tion methods based on naive stochastic gradient descent be-
come insufficient, due to parameter coupling. Therefore, we
propose a principled sampling scheme based on Stochastic
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Gradient Hamiltonian Monte Carlo (SGHMC).

We refer to our model as Student Splatting and Scoop-
ing (SSS). SSS is evaluated on multiple datasets and com-
pared with existing methods. Experiments show that SSS
achieves higher quality often with fewer number of compo-
nents, demonstrating more expressivity and higher parame-
ter efficiency. Formally, our contributions include:

* A new model named Student Splatting and Scooping
(SSS), which is highly expressive and parameter efficient.

* A new mixture model with flexible components learned
from a set of distribution families for neural rendering.

* A mixture model with negative components, which ex-
tends the learning into the negative density space.

* A principled sampling approach to tackle parameter cou-
pling during learning.

2. Related Work

3D Reconstruction and Novel View Synthesis 3D re-
construction and Novel View Synthesis have been long-
standing research topics in computer vision. Traditional
methods mainly include Multi-View Stereo (MVS) [27] and
Structure from Motion (SFM) [30]. Recently, the advent of
Deep Learning has brought important changes to the field.
In particular, the techniques based on Neural Radiance Field
(NeRF) [22] and 3D Gaussian Splatting (3DGS) [13] have
set new state-of-the-art (SOTA) benchmarks.

NeRF methods NeRF [22] proposes to implicitly encode
the radiance field of a 3D object/scene into a neural network
and renders the 3D geometry and textures through a contin-
uous volume rendering function. Since then, a large num-
ber of methods based on NeRF have been proposed, namely
NeRF++ [38], Mip-NeRF [2] and Mip-NeRF360 [2] to im-
prove rendering quality, Plenoxels [7] and Instant-NGP [23]
to accelerate NeRF training, D-NeRF [25] to extend NeRFs
to dynamic scenes, DreamFusion [24] and Zero-1-to-3 [19]
to employ it for text-to-3d generation models, etc. How-
ever, the biggest drawback of NeRF is that the ray casting
process for rendering is time consuming. Despite the effort
in improving its rendering efficiency e.g. SNeRG [10] and
mobileNeRF [5], it still cannot be used for real-time render-
ing in most cases.

Splatting methods 3DGS [13] solves the above problem
for real-time rendering, by replacing the volume rendering
with a differentiable rasterization method, which achieves
the SOTA render quality. 3DGS uses 3D Gaussian as the
primitive for the splatting method [40, 41]. It directly
projects 3D Gaussians onto the 2D image plane through
view/projective transformation for rasterization. Similar
to NeRFs, prolific follow up research has been conducted
based on 3DGS. GS++ [12] and Mip-Splatting [36] aim

to improve rendering quality, 4D Gaussian Splatting [33]
and Deformable 3D Gaussians [35] extend 3DGS to dy-
namic scenes, Dreamgaussian [29] employs 3DGS for text-
to-3D tasks. One particular line of research is to im-
prove the fundamental paradigm of 3DGS. This includes
FreGS [37], 3DGS-MCMC [14] and Bulo et al. [26] which
optimize the training process and adaptive density control
in 3DGS, Scaffold-GS [21] and Implicit Gaussian Splat-
ting [34] which combine grid representation with 3DGS for
better rendering quality. More recently, there is also re-
search exploring different primitives other than 3D Gaus-
sians. 2DGS [11] obtains better surface reconstruction by
changing the primitives from 3D Gaussian to 2D Gaussian
for aligning the 3D scene. GES [8] uses a generalized ex-
ponential kernel to increase the expression ability of prim-
itives and reduce memory cost. 3DHGS [18] decomposes
one Gaussian into two half-Gaussians to obtain asymmetry
and better expressivity.

Our research is among the few recent efforts in improv-
ing the fundamental formulation of 3DGS. Different from
them, we propose to use more expressive and flexible dis-
tributions, 3D Student’s t distribution, as the basic primitive.
In addition, we also use both positive and negative densities
to extend the optimization into the negative density space
for better representation. Finally, we propose a principled
sampling approach for learning, deviating from most of the
above research.

3. Methodology

3.1. Preliminaries: 3DGS as a mixture model

3DGS essentially fits a (unnormalized) 3D Gaussian mix-
ture model to a radiance field [13]:

P(Jj) = szGq(l‘), G(J:) = 67%@*#)7‘271(&:7#) (1)

where w; > 0. p is the center position of Gaussian. ¥ €
R3*3 is the covariance matrix, parameterized by a scaling
matrix S and a rotation matrix R to maintain its positive
semi-definiteness: ¥ = RSSTRT. Additionally, every 3D
Gaussian is associated with opacity o € [0, 1] and color ¢ €
R27 which is represented by spherical harmonics and view-
dependent [13].w; is determined by o, ¢ and compositing
values after projection.

Since the mixture can only be evaluated in 2D, when ren-
dering an image, a 3D Gaussian is projected onto the 2D im-
age plane, G*P, via integrating it in the camera view space
along a ray, for computing a pixel color:

N i—1
C(u) = Z ci0;G?P (u) H(l - ojG?D(u)). )

i=1 j=1
where N is the number of the Gaussians that intersect with
the ray cast from the pixel u. Finally, the Gaussian param-
eters, opacity, and colors are learned based on the observed
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Comparison of Student's t-Distributions with Various Degrees of Freedom
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Figure 1. Student’s t with varying degrees of freedom v. (standard
deviation is 5).

2D images. Eq. (2) reveals that C'(u) can be seen as a 2D
Gaussian mixture, except that now a component weight is
also a function of other components, introducing additional
cross-component interactions.

Numerically, Gaussians, as the mixture component, are
closed under affine transformation and marginalization of
variables, so that the forward/backward pass can be quickly
computed. 3DGS is a monotonic mixture as it is additive,
i.e. w; > 0. Due to the success of 3DGS, existing works
have since followed this paradigm [12, 21, 36, 37].

3.2. Student’s t as a basic component

We propose an unnormalized t-distribution mixture model,
where a t-distribution is defined by a mean (location) 1 €
R3, a covariance matrix (shape) ¥ = RSSTRT € R3%3,
a degree of freedom (tail-fatness) v € [1, +00), associated
with opacity o, and color c:

P(z) = Zwsz(ﬂU) ,w; >0
Vi3

T(el) =14 (- )57 @ = ] 5, G)

_ T@3)/2 i the origi-
T(v/2)v2n2|2|2
nal t-distribution safely to facilitate learning. The choice is
driven by two main factors. First, t-distribution is a strong
generalization of Gaussians. As shown in Fig. 1, when
v — 1, T — Cauchy; when v — oo, T' — Gaussian. So
t-distribution can capture what Gaussians capture and be-
yond. Furthermore, since Cauchy is fat-tailed, it can cover
larger areas with higher densities than Gaussians therefore
potentially reducing the number of components. As v, u
and X are learnable, SSS becomes a mixture of components
learned from an infinite number of distribution families, in-
stead of one family [13], providing further flexibility.

The second reason for t-distribution is it also provides
good properties similar to Gaussians, e.g. close under affine
transformation and marginalization of variables. Rendering
a pixel requires an affine transformation, then a projective
transformation, followed by an integration along a ray, to be

where we can drop the scalar

applied to a component, which has a simple form in 3DGS.
In SSS, t-distribution also has a close form:

1 v+2

T2 (w) =1+ - (u — )7 (520) " (u — p2P)] =3

pPP = (Wp+t)1a/(Wp+t)s)
220 — (JWEWT I ) 10100, “)

where the subscripts select the corresponding rows and
columns. W, t and J are the affine transformation (i.e.
scale, translation) and (approximated) projective transfor-
mation [40, 41]. This enables us to easily derive the key
gradients for learning shown in the supplementary material
(SM), unlike existing research also using alternative mix-
ture components but requiring approximation [8].

In summary, the mixture of learnable t-distributions en-
hances the representational power and provides good math-
ematical properties for learning.

3.3. Splatting and Scooping

While monotonic mixture models are powerful, a non-
monotonic mixture model recently has been proposed by
introducing negative components [20], arguing that it is sub-
optimal to only operate in the positive density space:

K K
P(z)= O wTi(x)” =YY waw,;Ti(x)T;(x) (5)

i=1 j=1

where w € R. In our problem, a negative density makes
good sense as it can be seen as subtracting a color. How-
ever, our experiments using Eq. (5) show that it is not ideal
as it introduces interactions between every pair of compo-
nents, increasing the model evaluation complexity to O(n?)
where n is the number of components in the model, mak-
ing it significantly slower than before. Therefore, we still
use Eq. (3) but with w € R instead of w > 0 where
w; = ¢;0; [[1_, (1 =0, T2P (u)) and 0 € [—1, 1]. Normally
this might cause issues as Eq. (3) is then not well defined
with negative components. However, we can parameterize
the density in an energy-based form explained later which
is well defined. In learning, we constrain the opacity by a
tanh function so that positive and negative components can
dynamically change signs while being bounded. Introduc-
ing negative t-distribution can enhance the representation
power and the parameter efficiency. We show a simple ex-
periment in Fig. 2, where fewer components are needed to
fit the shape topology of a torus. In SSS, a component with
negative densities is equivalent to removing its color from
the mixture. Negative components are particularly useful in
subtracting colors.

3.4. Learning via sampling

Recently, it is argued that principled sampling is better in
3DGS, e.g. Markov Chain Monte Carlo [14], instead of
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Figure 2. High parameter efficiency by negative components.
We use a torus with only ambient lighting and frontal views (a),
where the challenge is to capture the shape topology with as few
components as possible. We initialize the component means near
the center. Only using positive densities either underfits if two
components are used (b), or requires at least 5 components to cap-
ture the topology correctly (c). In contrast, in (d), we only need
two components (one positive and one negative), to capture the
topology of the shape. Both components are co-located at the cen-
ter of the torus. The positive component covers the torus but also
the hole, while the negative component subtracts densities in the
middle to make a hole.

naive stochastic gradient descent (SGD). Empirically, we
found training SSS involves learning more tightly coupled
parameters compared with 3DGS, namely among v, u, and
Y. We speculate that this is because changing v in learning
is changing the family of distributions within which we op-
timize p and Y. Therefore, we propose a sampling scheme
that mitigates such coupling, based on Stochastic Gradient
Hamiltonian Monte Carlo (SGHMC).

Starting from the Hamiltonian Monte Carlo, we first pa-
rameterize the posterior distribution as:

PO,r) x exp(—Lg(x) — %TTIT) (6)

where Lgy(x) is our loss function, 7 is an identity matrix, r
is a momentum auxiliary variable, and 6 is the learnable pa-
rameters. This is because Eq. (3) with w € R is not a well-
defined distribution, which makes direct sampling difficult.
Using an energy function circumvents this issue and pre-
scribes the high density regions of good 6. Intuitively, we
would like to sample € to minimize Lg(z). In addition, to
decouple parameters during learning, the momentum term
%TTI r creates frictions for each dimension of the parameter
space, enabling adaptive learning for each parameter.

For Ly(x), our rendering function computes the pixel
value based on the N components associated with a ray:

N _
u) = ZcioinD H 1- OJT2D (w). @
i=1 j=1

where w is the pixel. c and o are the color and opacity asso-
ciated with a component 7". We then employ the following

loss function [14]:

L=(1-ep_ssim)L1+€ep—ssimLp—_ssim

+EOZ\Oi|1 +€ZZZ|\//\i,j 1
i i

where the L norm, and the structural similarity Lp_gsgs7as
loss aim to reconstruct images, while the last two terms act
as regularization, with A\ being the eigenvalues of 3. The
regularization applied to the opacity ensures that the opac-
ity is big only when a component is absolutely needed. The
regularization on A ensures the model uses components as
spiky as possible (i.e. small variances). Together, they min-
imize the needed number of components [14].

Furthermore, directly sampling from Eq. (6) requires the
full gradient of U = Lg(x) — $r™ Ir which is not possi-
ble given the large number of training samples. Therefore,
replacing the full gradient with stochastic gradient will in-
troduce a noise term: VU = VU 4+ N(0, V), where A\ is
Normal and V' is the covariance of the stochastic gradient
noise. Under mild assumptions [4], sampling Eq. (6) us-
ing stochastic gradients becomes (with detailed derivation
in the SM):

®)

df =M~ trdt

r=—VU()dt — CM~'rdt + N(0,2Cdt)  (9)

where N\ is Gaussian noise, M is a mass matrix, and C' is
a control parameter dictating the friction term CM ~lrdt
and noise N (0,2Cdt). In our problem, it is crucial to de-
sign good friction and noise scheduling. The effect of this
principled sampling method is further discussed in SM.
3.4.1. Friction and Noise Scheduling

We first use SGHMC on p and Adam on the other parame-
ters. To learn p, we modify Eq. (9) to:

o
F =0(0)e(l —eC)rsi—1
N =o(o)N , 22 C)

oL
[l = pt — € {} +F+N
t

(0
Tt41 =T¢ — € l: :l — EC?“t_l +N(O, 250)
t+1
) =

where 0(0) = o(—k(o — 1)) (10)
where ¢ is the learning rate and decays during learning. N
is Gaussian noise. o is the opacity. The main difference be-
tween Eq. (10) and Eq. (9) is we now have adaptive friction
F and noise N for p. o (sigmoid function) switches on/off
the friction and noise. We use & = 100 and ¢t = 0.995, so
that it only activates for components with opacity lower than
0.005. When it is activated, friction and noise are added
to these components. Note that if F' is disabled, Eq. (10)
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is simplified to a Stochastic Gradient Langevin Dynamics
scheme [32].

When learning, we initialize with a sparse set of (SfM)
points without normals [13], run Eq. (10) without F' for
burn-in for exploration, then run the full sampling for ex-
ploitation until convergence. During burn-in stage, we mul-
tiply IV by the covariance ¥ of the component to maintain
the anisotropy profile of the t-distribution. After the burn-
in, X is removed, and the anisotropy is then maintained by
F" due to the momentum 7.

Key gradients Overall, the key learnable parameters for

each component in SSS include the mean p, covariance %

(i.e. S and R), color ¢, opacity o, and degree parameter v.
OL 8L 9L L

To compute Eq. (9), the key gradients are Bi 08 "OR* 90
oL

5o and g—ﬁ. For simplicity, we give them in the SM.

3.4.2. Adding and Recycling Components

Components can become nearly transparent during sam-
pling, i.e. near zero opacity. In 3DGS, they are removed.
Recently, it is argued that they should be recycled [14], by
relocating them to a high opacity component. However,
careful consideration needs to be taken as the overall distri-
bution before and after relocation should be the same [26].
When moving some components to the location of another
component, this is ensured by:

mln/ ||Cnew(,u/) - Cold(ﬂ)"%du (1 1)

where C,,., and C,;4 are the color after and before relo-
cation respectively. Minimizing this integral ensures the
smallest possible pixel-wise color changes over the whole
domain. Minimizing Eq. (11) in SSS leads to:

Hnew = Hold » (]- - Onew)N - (]- - Oold)

VO ﬂ 17 Vold+2
Enew = (Oold)2y d ( (2 K2 ))220ld
N i—1 i—1
k=33 (1) C0Fonn 2
i=1 k=0
1 (k+1)(Vpew +3) — 1
z=p, B 23 1, (12)

Hnew and Kold> Onew and Oold> Enew and Zold are the mean,
opacity, and covariance after and before relocation respec-
tively. IV is the total number of components after relocation,
i.e. moving N-1 low opacity components to the location of
1 high opacity component. 3 is the beta function. We leave
the detailed derivation in the SM. Note we do not distin-
guish between positive and negative components during re-
location. This introduces a perturbation on the sign of the
opacity. In Eq. (12), if 0,4 > 0 then all 0,,¢,, > 0, or other-
Wise opew < 01if 057 < 0, regardless their original opacity

signs. This sign perturbation in practice helps the mixing
of the sampling. Furthermore, to ensure the sampling sta-
bility, we limit the relocation to a maximum of 5% of the
total components at a time. Finally, we also add new com-
ponents when needed, but do not use the adaptive density
control (clone and split) in 3DGS [13]. Instead, we add 5%
new components with zero opacity and then recycle them.

4. Experiments

4.1. Experimental setting

Datasets and Metrics Following existing research, we
employ 11 scenes from 3 datasets, including 7 public scenes
from Mip-NeRF 360 [2], 2 outdoor scenes from Tanks &
Temples [15], and 2 indoor scenes from Deep Blending [9].
Also, following the previous evaluation metrics, we use
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Metric (SSIM) [31], and Learned Perceptual Image
Patch Similarity (LPIPS) [39]. We provide average scores
of each dataset, and detailed scores are in the SM.

Baselines Due to there being many publications based on
3DGS, we only choose the original 3DGS [13] and the
most recent work that focuses on improving the funda-
mental paradigm of 3DGS and has achieved the best per-
formances. The methods include Generalized Exponen-
tial Splatting (GES) [8] and 3D Half-Gaussian Splatting
(3DHGS) [18] which also use different (positive only) mix-
ture components, Scaffold-GS [21] and Fre-GS [37] which
optimize the training procedure to achieve faster conver-
gence and better results, 3DGS-MCMC [14] which pro-
poses a principled MCMC sampling process, and Mip-
NeRF [1] which is a state-of-the-art method with Neural Ra-
diance Field (NeRF) [22]. Overall, our baselines compre-
hensively include methods with new mixture components,
new optimization approaches, and the SOTA quality.

The results of all baselines in general benchmarking are
from their papers. In addition, we run their codes with other
settings for more comparison. Since not all baseline meth-
ods are implemented in exactly the same setting, we need to
adapt them for comparison. These details are in the SM.

4.2. General Benchmarks

We first compare SSS with the baselines on all scenes in
their default settings, shown in Tab. 1. SSS achieves over-
all the best results on 6 of the 9 metrics, and the second
best on 2 metrics. The only exception is the LPIPS in
Deep Blending, where the difference between SSS and the
best is 7x 1073, Furthermore, when investigating individual
scenes, SSS achieves the largest leading margin on Train. It
achieves 23.23/0.844/0.170, where the second best method
3DHGS achieves 22.95/0.827/0.197, in PSNR, SSIM, and
LPIPS, which is a 1.22%/2.05%/13.7% improvement. De-
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Dataset Mip-NeRF360 Dataset Tanks&Temples Deep Blending
Method—Metric | PSNR 1 SSIMtT LPIPS| | PSNR{ SSIMt LPIPS| | PSNR{ SSIMtT LPIPS|
Mip-NeRF 29.23 0.844 0.207 22.22 0.759 0.257 29.40 0.901 0.245
3DGS 28.69 0.870 0.182 23.14 0.841 0.183 29.41 0.903 0.243
GES 2691 0.794 0.250 23.35 0.836 0.198 29.68 0.901 0.252
3DHGS 29.56 0.873 0.178 24.49 0.857 0.169 29.76 0.905 0.242
Fre-GS 27.85 0.826 0.209 23.96 0.841 0.183 29.93 0.904 0.240
Scaffold-GS 28.84 0.848 0.220 23.96 0.853 0.177 30.21 0.906 0.254
3DGS-MCMC 29.89 0.900 0.190 24.29 0.860 0.190 29.67 0.890 0.320
Ours | 2990 0893  0.145 | 2487 0873 0138 | 3007 0907 0247

Table 1. Comparison. The red, orange and yellow colors represent the top three results. Competing metrics are extracted from respective

papers, and ours are reported as the average of three runs.

tailed scores for each scene are in the SM. We show quali-
tative comparison in Figure 3.

4.3. Parameter Efficiency

SSS has stronger representation power than 3DGS and its
variants. The varying tail-thickness of its components en-
ables SSS to fit the data with fewer components, i.e. higher
parameter efficiency. We show this via experiments under
different component numbers.

Since the SfM initialization gives different components
in different scenes and a method normally increases the
component number during learning, we introduce a coef-
ficient to describe the latter as a multiplicity of the former.
Denoting the initial component number as d, we test d, 1.49,
1.86,2.24, and 2.66 as the maximum component number for
comparison. Note even with 2.69, the component number is
still much smaller than the experiments in Tab. 1. Specifi-
cally, the 2.60 vs the original 3DGS component number are
468k/1.1m, 364k/2.6m, 208k/3.4m, 96k/2.5m, 140k/5.9m,
520k/1.3m, 416k/1.2m, 364k/5.2m, 624k/1.8m, 286k/1.5m,
83k/4.75m, in Train, Truck, DrJohnson, Playroom, Bicy-
cle, Bonsai, Counter, Garden, Kitchen, Room, Stump, cor-
responding to merely 42.5%, 14%, 6.1%, 3.8%, 2.4%, 40%,
34.7%, 1%, 34.7%, 19.1%, 1.7% of the original compo-
nents, a maximum of 98.3% reduction.

PSNR is averaged over the scenes in each dataset and
shown in Figure 4. First, SSS outperforms all other meth-
ods in 15 out of 15 settings, demonstrating strong expressiv-
ity across all scenarios. Furthermore, when the component
number decreases, all methods deteriorate, but SSS deteri-
orates slowly comparatively, demonstrating that SSS can fit
the data much more efficiently than the rest. One specific
example is the Tanks & Temples in Tab. 1. SSS achieves
23.6 PSNR with merely 180k components, already surpass-
ing Mip-NeFR, 3DGS and GES. With around 300k com-
ponents, SSS achieves 24.4 PSNR, which is only slightly
worse than 3DHGS and 3DGS-MCMC, by a margin at the
scale of 10~2. Note this is a comparison with the methods

in Tab. 1 where they use at least Im components, e.g. 3DGS
employs around 1.1m and 2.6m in Train and Truck, while
SSS employs only around 364k and 468k, a maximum re-
duction of 82% of the components.

4.4. Qualitative Comparison

We further show a qualitative comparison in one scene
across the different component numbers in Fig. 5. The
ground-truth is one view from the Train. When restricting
the component number to around 180k, the original 3DGS
and one of the state-of-the-art methods 3DHGS show sig-
nificant blur. This is likely to be caused by the struggle
between stretching Gaussians to cover large areas and nar-
rowing them to reconstruct details, given a limited number
of components at proposal. Due to the optimization relying
on stochastic gradient descent, a local minimum is sought
where the distribution of the Gaussians is sub-optimal. In-
tuitively, the issue can be mitigated by more flexible compo-
nents and/or better optimization. As expected, this is shown
in GES and 3DGS-MCMC, where the former employs a
more flexible component (generalized exponential function)
while the latter improves the optimization itself by MCMC.
The improvements by both methods suggest that these are
the correct directions to improve the paradigm of 3DGS.
Next, SSS outperforms GES and 3DGS-MCMC visually
when using 180k components. One example is the sky and
the hill in the background in the left half of the image. GES
creates a blurry background mixing the sky and the hill,
with no discernible details, suggesting it uses a few com-
ponents that are stretched to cover large areas. In contrast,
3DGS-MCMC can separate the sky from the hill. But it
creates random white patches in the sky, which do not ex-
ist in the ground truth. This suggests that 3DGS-MCMC
employs a relatively larger number of slim Gaussians to fit
the details but meanwhile introduces additional noises. SSS
not only successfully separates the sky and the hill, but si-
multaneously retains the homogeneous color in the sky and
reconstructs the details on the hill, e.g. the trees and lawns.
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Figure 3. Visual comparison Zoom-in for better visualization. (a) SSS restores better the indentations of the box lid; (b) SSS is the best
at detailing windows in the upper center; (c) Only the image rendered by SSS contains the green track detail in the upper right corner; (d)
SSS is the best at restoring the reflection in the front window of the truck; (e) SSS perfectly restores the light switch next to the stairs.

(a) Mip-NeRF 360 Dataset (b) Tanks & Temples Dataset (c) Deep Blending Dataset

—— 3DGS - GES —— 3DHGS —— 3DGS-MCMC —— SSS —— 8DGS —— GES —— 3DHGS —— 3DGS-MCMC —— SSS —— 8DGS —— GES —— 3DHGS —— 3DGS-MCMC —— SSS

// . % . ///_,’/,/:‘

e

26

8

N
N
\

m
PSNR Value (dB)
B
PSNR Value (dB)
3

&

PSNR Value (dB)
R OB R

——

10 14 18 22 26 10 14 18 22 26 10 14 18
Component Number Component Number Component Number

@
=)
@

Figure 4. All methods with reduced component numbers.

This is attributed to SSS’ capability of learning components 468k, all results are improved, as expected. 3DGS and

with varying tail-fatness to adaptively capture large homo- 3DHGS still cannot work as well as other methods, sug-
geneous areas and small heterogeneous regions. gesting they need more components. In addition, the differ-
Furthermore, when increasing the component number to ence between GES, 3DGS-MCMC, and SSS starts to nar-
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Figure 5. Visual results of all methods with varying component numbers. In addition to the well-reconstructed main body of the train
compared to other baselines, our method can use a small number of components to restore more details, such as plants on distant mountains,
rocks on the ground nearby, etc. Besides, our sky has fewer noises and appears more similarly to the ground truth. Zoom in for details.
Note that ours with 252k components has already achieved SOTA quality and beats most baselines.

row. GES can separate the sky and the hill. Both GES and
3DGS-MCMC have fewer artifacts. However, as the com-
ponent number increases, there are still noticeable noises in-
troduced to the sky, which suggests that it is a common issue
for both methods when using more components to cover an
area with mixed homogeneous and heterogeneous regions.
Comparatively, SSS gives consistent performance across all
component numbers, i.e. clearly separating and reconstruct-
ing the homogeneous sky and the heterogeneous hill. Also,
the visual quality from 180k to 468k does not change sig-
nificantly for SSS, but is noticeably improved for GES and
3DGS-MCMC, suggesting a higher parameter efficiency of
SSS in perception.

Ablation Study We conduct an ablation study to show the
effectiveness of various components in SSS. These results
prove how each component contributes to the final perfor-
mance improvement. We give details in the SM.

5. Conclusion, Discussion, and Future Work

We proposed Student Splatting and Scooping (SSS), a new
non-monotonic mixture model, consisting of positive and
negative Student’s t distributions, learned by a principled
SGHMC sampling. SSS contains a simple yet strong and
non-trivial generalization of 3DGS and its variants. SSS
outperforms existing methods in rendering quality, and
shows high parameter efficiency, e.g. achieving comparable
quality with less than % of components.

SSS has limitations. Its primitives are restricted to sym-
metric and smooth t-distributions, limiting its representa-
tion. The sampling also needs hyperparameter tuning such
as the percentage of negative components. In the future,
we will combine other distribution families (e.g. Laplace)
with t-distribution to further enhance the expressivity, and
make the SGHMC self-adaptive to achieve better balances
between the positive and negative components.
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