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Abstract

Generative inbetweening aims to generate intermediate
frame sequences by utilizing two key frames as input. Al-
though remarkable progress has been made in video gener-
ation models, generative inbetweening still faces challenges
in maintaining temporal stability due to the ambiguous in-
terpolation path between two key frames. This issue be-
comes particularly severe when there is a large motion gap
between input frames. In this paper, we propose a straight-
forward yet highly effective Frame-wise Conditions-driven
Video Generation (FCVG) method that significantly en-
hances the temporal stability of interpolated video frames.
Specifically, our FCVG provides an explicit condition for
each frame, making it much easier to identify the inter-
polation path between two input frames and thus ensur-
ing temporally stable production of visually plausible video
frames. To achieve this, we suggest extracting matched
lines from two input frames that can then be easily inter-
polated frame by frame, serving as frame-wise conditions
seamlessly integrated into existing video generation mod-
els. In extensive evaluations covering diverse scenarios
such as natural landscapes, complex human poses, cam-
era movements and animations, existing methods often ex-
hibit incoherent transitions across frames. In contrast, our
FCVG demonstrates the capability to generate temporally
stable videos using both linear and non-linear interpola-
tion curves. Our project page and code are available at
https://fcvg-inbetween.github.io/.

1. Introduction
Given the presence of low framerate videos, the genera-
tion of high framerate videos has emerged as an active re-
search area with a wide range of applications that demands
smooth and stable visual contents. Video interpolation or
inbetweening, which focuses on synthesizing intermediate
frames between two given frames, has been extensively
studied in the literature [7, 22, 23, 38, 61]. However, tra-
ditional video interpolation methods are inherently limited
in dealing with significant motions due to their reliance on

optical flow for modeling frame motion. Recently, gener-
ative image-to-video (I2V) models have made remarkable
progress in generating coherent videos [4, 31], offering po-
tential solutions to enhance framerates through generative
inbetweening [47, 53]. Compared to traditional video in-
terpolation, generative inbetweening leverage the creative
ability of generative models and focuses more on handling
scenarios with larger time intervals.

When start and end frames are provided, it is a straight-
forward task to separately generate two coherent videos us-
ing an I2V model, but the challenge of inbetweening lies
in the ambiguity of the interpolation path caused by large
motions. To address this issue, a time reversal strategy [8]
is proposed to average the fusion of bidirectional diffusion
denoising steps conditioned on start and end frames. Then,
temporal attention layers in the I2V model are fine-tuned to
enhance motion coherence [47]. More recently, Yang et al.
[53] introduced a multi-channel sampling strategy to substi-
tute direct average fusion. However, the ambiguity of inter-
polation path remains severe and often results in incoherent
transitions in generated videos, as shown in Fig. 1.

In this paper, our aim is to mitigate the ambiguity in in-
terpolation path and achieve temporal stability in video gen-
eration. We propose a straightforward yet highly effective
Frame-wise Conditions-driven Video Generation (FCVG)
method. Our FCVG model provides an explicit condition
when generating each frame using an I2V model, making
it easier to identify the interpolation path between start and
end frames, and thus ensuring temporally stable production
of visually plausible video frames. Firstly, we extract two
conditions from the input key frames to establish robust cor-
respondences between start and end frames using matched
lines. In addition, pose skeletons can be incorporated into
the conditions to better capture human poses. Subsequently,
linear interpolation is employed on a frame-by-frame basis
to interpolate the start and end conditions. These frame-
wise conditions effectively alleviate ambiguity in determin-
ing the interpolation path, and can be seamlessly integrated
into the I2V model as control for video frame generation.

The linear frame-wise conditions for generative inbe-
tweening are generally feasible from two perspectives: (i)
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Figure 1. Video results of GI [47] and our FCVG. More videos are provided in https://fcvg-inbetween.github.io/.

In pioneering video interpolation methods [2, 19, 25], the
linear assumption is commonly adopted, which may not
truly align with ground-truth temporal consistency but can
lead to temporally stable videos for most scenes. As de-
picted in Fig. 1, our FCVG demonstrates a significantly
higher level of video stability compared to existing meth-
ods; (ii) As illustrated in Fig. 2(b), our frame-wise condi-
tions provide a control path for inbetweening, while still al-
lowing some flexibility for video generation models, whose
influence can be further adjusted by tuning the fusion
weight between features of condition and video generation
branches. Moreover, our FCVG allows users to specify a
non-linear interpolation path for frame-wise conditions to
generate desired video frames, providing more flexibility in
determining the interpolation path.

Extensive experiments are conducted on the collected di-
verse testing samples including natural landscapes, complex
human poses, camera movements and animations, where
our FCVG is compared with both video interpolation meth-
ods and generative inbetweening methods. Regarding sev-
eral evaluation metrics, our method outperforms existing
methods in terms of frame textures and temporal stabil-
ity. Particularly when dealing with large motions, unlike
other methods that suffer from incoherent transitions across
frames, our FCVG exhibits significantly enhanced temporal
stability in the generated videos.

2. Related Work

Optical Flow-based Frame Interpolation. Video frame
interpolation aims to synthesize intermediate frames be-
tween two given input frames [3, 28]. Previous methods
primarily rely on optical flow-based approaches[14, 22, 23],
which estimate optical flow and apply forward [27] or back-
ward warping to generate intermediate frames. Some tech-
niques incorporate flow reversal techniques to estimate the
intermediate flows [19, 40, 50], while others concentrate on
directly predicting the intermediate flows [15, 21, 55, 60].
Although these methods yield stable interpolation results
in real-world scenes, they exhibit significant artifacts when

confronted with large motion or complex scenarios, such as
human motion. Moreover, they struggle with the impact of
optical flow estimation accuracy [6] in varying data distribu-
tions, such as animation or line art. While some approaches
have developed models tailored for animation [6, 41] or line
art [37, 42, 64], restricting them for specific data types.

Diffusion-based Frame Interpolation. In recent years,
diffusion models have demonstrated remarkable capabili-
ties in generating high-quality images and videos [1, 5,
12, 34, 43, 46]. Several studies have explored the effec-
tiveness of diffusion models for video frame interpolation
[7, 17, 38, 45], particularly in addressing complex motions
that pose significant challenges for optical flow-based meth-
ods. Some approaches treat the input frames as conditions
and utilize large-scale data to train a diffusion model for
video frame interpolation [18, 51, 52]. Other approaches
leverage pre-trained image-to-video diffusion models, in-
corporating new sampling strategies to achieve frame in-
terpolation [8, 47, 53]. TRF [8] proposes a time reversal
sampling strategy that fuses bidirectional motion from two
parallel diffusion denoise steps conditioned on the start and
end frame. Based on the time reversal strategy, Generative
Inbetweening [47] fine-tunes diffusion models by utilizing
temporal attention information to maintain motion consis-
tency, while VIBIDSampler [53] introduces a bidirectional
sampling approach rather than direct average fusion ensur-
ing on-manifold generation of intermediate frames.

Controllable Video Generation. Recent works try to in-
troduce controllable conditions to video generation mod-
els [59], such as camera motion [9, 49] and human pose
[13, 58, 63]. Among these methods, the approach utiliz-
ing lightweight adapters [26, 56] is preferred by many re-
searchers due to its elimination of the need for pre-training
the large diffusion model. ControlNet [56] uses zero con-
volution to connect certain trainable layers copied from pre-
trained large models to the original layers. To reduce the ad-
ditional computational cost, ControlNeXt [31] introduces a
lightweight module and fine-tunes several parameters in the
diffusion model, aligning them using cross normalization.
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Figure 2. (a) The ambiguity in interpolation path, where the
stochastic nature of forward and backward paths leads to mis-
alignment or even generating substantially different contents in
two paths. (b) Our frame-wise conditions serve as a control path,
enabling rough alignment of the forward and backward paths,
thereby confining the fusion process closer to the manifold.

3. Method
3.1. Preliminaries

Diffusion model [12] is a type of generative model that uses
a denoising network to iteratively denoise random Gaussian
noise to generate a high-quality image or video. Specifi-
cally, for I2V diffusion models, such as Stable Video Diffu-
sion (SVD) [4], given a video x ∈ RN×3×H×W containing
N frames, SVD first encode x using an autoencoder E(·) to
get latent representation z ∈ RN×C×H×W [20]. The for-
ward process of diffuse gradually adds noise to latent repre-
sentation z as follows

zt = αtz + σtϵ, (1)

where ϵ ∼ N (0, I), αt and σt represent the noise level
for denoising time t, defined by the noise schedule. As for
backward process, a 3D UNet [35] denoiser fθ is used for
iteratively denoising under the image condition cimage. The
optimization objective is formulated as

L = Ez,cimage,ϵ∼N (0,I),t

[
∥v − fθ(zt, cimage, t)∥22

]
, (2)

where v = αtϵt − σtzt is referred as v-prediction [36].
Finally, the generated videos are obtained through the VAE
decoder x̂ = D(z0).

Inspired by the strong capability of diffusion models in
video generation, several studies have endeavored to inte-
grate diffusion models into video inbetweening to tackle
challenges posed by intricate and extensive motions that
are difficult to address using optical flow-based methods
[7, 8, 17]. A direct approach for applying diffusion mod-
els in video inbetweening involves utilizing key frames as
conditions for retraining the diffusion model. However, this
often necessitates substantial data and computational re-
sources and may also be influenced by discrepancies in data
distribution. Consequently, some approaches leverage pre-
trained diffusion models for video inbetweening [8, 47, 53].

c1→N

Istart

Iend

Interpolate

… …

… …

c1 cN

cN→1

Same color indicates 
corresponding matches

Figure 3. The process for acquiring forward and backward frame-
wise conditions c1→N and cN→1. Two initial conditions c1 and
cN can be obtained by establishing correspondence between start
frame Istart and end frame Iend, where the same color indicates
corresponding matches. Then, frame-wise conditions are obtained
by interpolating c1 and cN .

The fundamental concept behind these methods is to fuse
the temporal forward path and backward path after each de-
noising step conditioned on start and end frames, respec-
tively, i.e., a process referred to “time reversal” [8, 47].

3.2. Motivation of Frame-wise Conditions

Although time reversal provides a means to directly utilize
pre-trained video generations for inbetweening, it exhibits
certain limitations [8] that are summarized as follows: (i)
The motion generated by I2V models tends to be diverse
rather than stable. While this diversity is advantageous for
pure I2V tasks, it introduces significant ambiguity when ap-
plying the time reversal strategy for video inbetweening.
As depicted in Fig. 2(a), the stochastic nature of generat-
ing forward and backward paths leads to misalignment and
even substantially different contents in two paths, resulting
in an unstable and unrealistic videos. (ii) Tedious tuning
of hyper-parameters related to temporal conditioning within
the I2V model is required for each input pair, such as mo-
tion bucket ID and frames per second. (iii) Inference effi-
ciency is constrained by certain techniques, e.g., noise re-
injection [8], aimed at mitigating the ambiguity but signif-
icantly increasing inference time (approximately 1.5 to 3
times longer).

Indeed, if the first fundamental limitation in ambiguity
can be addressed, the subsequent two issues can also be
readily resolved. To this end, several studies have made
significant efforts in mitigating the misalignment between
forward and backward paths [47, 53]. Nevertheless, as de-
picted in Fig. 2(b), there still exists considerable stochas-
ticity between these paths, thereby constraining the effec-
tiveness of these methods in handling scenarios involving
large motions such as rapid changes in human poses. The
ambiguity in the interpolation path primarily arises from in-
sufficient conditions for intermediate frames, since two in-
put images only provide conditions for start and end frames.
Therefore, in this work, we suggest offering an explicit con-
dition for each frame, which significantly alleviates the am-
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Figure 4. Inference of FCVG at time t.

biguity of the interpolation path. As shown in Fig. 2(b),
frame-wise conditions ensure that the forward and back-
ward paths are relatively aligned during the denoising pro-
cess, thereby rendering a simple fusion method adequate to
confine the fusion process closer to the manifold.

3.3. Proposed FCVG

Given two input frames Istart and Iend, our FCVG aims
to generate N video frames, whose start and end frames
should be consistent with Istart and Iend, respectively. As
shown in Fig. 4, our FCVG provides frame-wise conditions
for video generation model to make the generated frames be
temporally stable. Based on the time reversal strategy, our
FCVG at time t can be specifically formulated as

z̃t = fθ (zt+1, Istart, c1→N , t) , (3)

z̃′t = fθ (flip(zt+1), Iend, cN→1, t) , (4)

zt = λ · z̃t + (1− λ) · flip(z̃′t), (5)

where zt+1 ∈ RN×C×H×W is diffusion noises from time
t+1, fθ is the pre-trained denoiser model with control mod-
ule, c1→N , cN→1 ∈ RN×3×H×W are temporal aligned for-
ward and backward frame-wise conditions, flip(·) denotes
flipping the sample along the time dimension, and λ ∈ RN

is fusion weights with λi = 1 − i−1
N−1 , i ∈ {1, ..., N}. The

symbol · denotes frame-wise multiplication, i.e., λi is mul-
tiplied with noises for i-th frame. By iteratively denoising
until time t = 0, final inbetweening video frames can be
obtained by x̂0 = D(z0).

3.3.1 Frame-wise Conditions

Currently, we only have access to two image conditions,
i.e., Istart and Iend. However, extending them as frame-
wise conditions is infeasible. In order to acquire frame-
wise conditions, the initial conditions should satisfy two
properties that can effectively capture frame motion, and

Algorithm 1: Inference of FCVG
Input: Istart, Iend, fθ,D,zT ∼ N (0, I)
Computing λ with λi = 1− i−1

N−1
, i ∈ {1, ..., N};

Extracting conditions c1, cN from Istart, Iend;
c1→N = interpolate(c1, cN );
cN→1 = flip(c1→N );
for t← T : 1 do

z̃t = fθ (zt, Istart, c1→N , t);
zt,f = flip(zt);
z̃′
t = fθ (zt,f , Iend, cN→1, t);

z̃′
t,f = flip(z̃′

t);
zt−1 = λ · z̃t + (1− λ) · z̃′

t,f ;
end
Return: D(z0)

are amenable for extension as frame-wise. Drawing inspi-
ration from prior works [23, 64] that showcase the robust-
ness of global matching in handling large motions and com-
plex scenes, we propose to employ the line matching model
to extract the initial conditions from Istart and Iend. Com-
pared to conditioning on optical flow, which is often erro-
neous in certain regions, using line matches as conditions
focuses on the most stable regions, avoiding the introduc-
tion of erroneous conditions that could disrupt the genera-
tion process. Specifically, we utilize the pre-trained Glue-
Stick [30] as our line matching model to establish corre-
spondences between Istart and Iend, and subsequently visu-
alize these matches as images with distinct colors represent-
ing different line matches, resulting in two initial conditions
c1 and cN . Moreover, to further improve human motions,
we extract human poses that can be directly added into c1
and cN .

As shown in Fig. 3, the control condition ci for i-th
frame can be obtained by accordingly interpolating c1 and
cN , where the forward frame-wise conditions c1→N are
the concatenation of {ci}Ni=1 along the time dimension, and
backward frame-wise conditions cN→1 are the flip of c1→N

along the time dimension. We empirically found that linear
interpolation is sufficient for most cases to guarantee tem-
poral stability in inbetweening videos, and our method al-
lows users to specify non-linear interpolation paths for gen-
erating desired videos.

3.3.2 Injection to Video Generation Model

We follow ControlNeXt [31] to inject frame-wise condi-
tions into the I2V model. We choose SVD [4] as our base
I2V model. Compared to other controllable video gener-
ation methods, ControlNeXt is light-weight and does not
significantly increases inference time. Specifically, the con-
trol conditions are first encoded by a lightweight module
composed of multiple ResNet [10] blocks. These encoded
conditions are first processed using cross normalization to
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Figure 5. Overview of injecting frame-wise conditions into SVD.
To make frame-wise conditions better fit pre-trained SVD, we only
need to fine-tune a small set of parameters including the value
and output projection matrices within the attention layers, and the
lightweight ResNet blocks.

align the distributions of yCon and ySVD from the condition
and SVD branches. Then at denoising time t, frame-wise
conditions can be injected into SVD as follows

ŷt = ySVD
t + γ yCon

t , (6)

where γ is a tunable weight for controlling the significance
of yCon. The inference of FCVG is detailed in Algorithm 1.
Moreover, in order to enhance the compatibility of pre-
trained SVD with our frame-wise conditions, we employ
a small set of videos for fine-tuning. We freeze the majority
of SVD parameters and solely optimize the value and out-
put projection matrices within attention layers, along with
lightweight ResNet blocks, as shown in Fig. 5.

The limitations in Sec. 3.2 have been largely resolved in
FCVG: (i) By explicitly specifying the condition for each
frame, the ambiguity between forward and backward paths
is significantly alleviated; (ii) Only one tunable parameter
γ is introduced, and setting it to 1, while keeping hyper-
parameters in SVD as default, yields favorable results in
most scenarios; (iii) A simple average fusion, without noise
re-injection, is adequate in FCVG, and the inference steps
can be substantially reduced by 50% compared to GI [47].

4. Experiments

4.1. Experimental Setup

Datasets. To verify the performance of our FCVG across
diverse scenes, we collect a dataset encompassing a vari-
ety of scenes, such as natural environments, indoor/outdor
scenes, and human poses, where diverse motion types are
encompassed such as camera movements, object motion,
human dance actions, and facial expression transitions.
Specifically, our dataset consists of 524 video clips, each
containing 25 frames, selected from the DAVIS dataset [32]

and RealEstate10K dataset [62], supplemented by high-
frame-rate videos from Pexels1. We randomly split the
dataset in a 4:1 ratio for fine-tuning and testing respectively.
Evaluation Metrics. Following previous works [8, 47],
we adopt LPIPS [57] and Fréchet Inception Distance (FID)
[11, 29] to evaluate the quality of individual frames, while
employing Fréchet Video Distance (FVD) [44] to assess the
overall quality of videos. Additionally, we take two recently
proposed metrics VBench [16] and FVMD [24] to assist
the evaluation, where VBench assesses videos across multi-
ple dimensions based on pre-trained models, while FVMD
refines FVD by emphasizing more on motion consistency.
Furthermore, it should be noted that all these metrics are not
capable of precisely evaluating temporal stability of gener-
ated videos, and thus we highly recommend directly observ-
ing more video results provided in our project page.
Implementation Details. For obtaining initial conditions,
we utilize the pre-trained GlueStick [30] for line match-
ing and DWPose [54] for estimating human poses. The
fine-tuning is performed on ResNet blocks, and the value
and output projection matrices within the attention layer
of SVD. The fine-tuning process is conducted for 70k it-
erations using the AdamW optimizer on an NVIDIA A800
GPU, with a learning rate of 1 × 10−6 and β1 = 0.9, β2 =
0.999. For fine-tuning, we crop the frames to patches with
resolution 512 × 320. The inference of FCVG is done in
T = 25 steps without noise re-injection. Without specific
clarity, the balancing weight γ = 1 is set for all the exper-
iments. Due to the robustness of our FCVG, all the hyper-
parameters in SVD adopt the default settings.

4.2. Comparison with State-of-the-arts

We compare FCVG with state-of-the-art optical flow-based
interpolation method FILM [33], and diffusion-based meth-
ods including DynamiCrafter [52], TRF [8] and GI [47].

Quantitative evaluation. To evaluate performance under
different motion conditions, we conduct assessments with
frame gaps setting to 23 and 12, respectively. As shown in
Tab. 1, our method achieves the best performance among
four generative approaches across all the metrics. Re-
garding the LPIPS comparison with FILM, our FCVG is
marginally inferior, while demonstrating superior perfor-
mance in other metrics. Considering the absence of tem-
poral information in LPIPS, it may be more appropriate
to prioritize other metrics and visual observation. More-
over, by comparing the results under different frame gaps,
FILM may work well when the gap is small, while genera-
tive methods are more suitable for large gap. Among these
generative methods, our FCVG exhibits significant superi-
ority owing to its explicit frame-wise conditions.
Qualitative evaluation. The visual comparison in Fig. 6 il-

1https://www.pexels.com/
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Table 1. Quantitative comparison on different interpolation gaps. Our primary focus lies in generative approaches, with FILM being the
sole method that employs optical flow. Bold refer to the best results. All these metrics are not capable of precisely evaluating temporal
stability of generated videos, and thus we highly recommend directly observing video results.

Method Frame Gap = 23 Frame Gap = 12
LPIPS (↓) FID (↓) VBench (↑) FVMD (↓) FVD (↓) LPIPS (↓) FID (↓) VBench (↑) FVMD (↓) FVD (↓)

FILM[33] 0.1540 25.00 0.8615 8208.7 543.4 0.1980 24.44 0.8667 6975.9 495.4

DynamiCrafter[52] 0.3886 52.66 0.8410 13221.9 978.9 0.3839 37.49 0.8458 11810.7 652.5
TRF[8] 0.3687 42.76 0.8438 10458.0 823.4 0.3742 39.01 0.8478 10076.6 818.4
GI[47] 0.2155 31.39 0.8606 5682.6 524.0 0.2615 32.37 0.8651 4721.0 565.8

Ours 0.1832 24.05 0.8619 5607.2 437.9 0.2378 22.77 0.8672 4537.4 465.6

Start Frame End Frame FILM TRF GI Ours
Figure 6. Qualitative evaluation on diverse scenes, where our FCVG is superior in texture details and coherent intermediate motions.

lustrates the superior performance of our method compared
to other counterparts in terms of motion stability, consis-
tency, and overall quality. While FILM produces smooth
interpolation results for small motion scenarios, it strug-
gles with large scale motion due to inherent limitations of
optical flow, resulting in noticeable artifacts such as back-

ground and hand movement (in the first case). Generative
models like TRF and GI suffer from ambiguities in fusion
paths leading to unstable intermediate motion, particularly
evident in complex scenes involving human and object mo-
tion. In contrast, our method consistently delivers satisfac-
tory results across various scenarios. Even when significant
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Figure 7. The effect of control weight γ. Red arrows indicate the movement directions. As the value of γ decreases, the diversity of
intermediate motion increases, e.g., up-and-down swinging of the arm, while temporal stability is guaranteed for two cases. The videos are
available in the project page.

occlusion is present (in the second case and sixth case), our
method can still capture reasonable motion. Furthermore,
our approach exhibits robustness for complex human ac-
tions (in the last case).

Computational efficiency. In Tab. 2, we evaluate the infer-
ence time of diffusion-based methods. DynamiCrafter gen-
erates 16 frames at resolution of 512× 320, while the other
methods generate 25 frames at resolution of 1024 × 576.
DynamiCrafter exhibits advantages in inference time due to
its single-pass denoising process. In comparison to TRF and
GI, our FCVG facilitates easier alignment between forward
and backward paths, ensuring that the results remain within
the manifold as in Sec. 3.2. Consequently, although FCVG
requires slightly less extra time for conditions extraction, it
eliminates noise re-injection step and achieves satisfactory
results with only 25 steps, in contrast to the requirement of
50 steps by the other methods. Real-time applications still
pose challenges for generative inbetweening due to the high
inference cost of pre-trained video generation models.

Table 2. Evaluation of computational efficiency.

Methods N × (H,W ) T Time (s)

DynamiCrafter [52] 16×(512, 320) 50 37
TRF [8] 25×(1024, 576) 50 1230
GI [47] 25×(1024, 576) 50 975
Ours 25×(1024, 576) 25 523

4.3. Flexibility of Frame-wise Conditions

Our FCVG allows some flexibility to SVD by setting dif-
ferent values for γ. In Fig. 7, one can see that adjusting
γ within a certain range has little impact on video stabil-
ity but can lead to different directions of movement. Albeit
fine-tuned for linear frame-wise conditions, FCVG enables
users to specify non-linear motion trajectories, such as ease-
in and ease-out motion trajectories. The video examples can
be found in our project page.

4.4. Generalization to Animation Videos

We further evaluate the generalization ability of FCVG to
hangle animation and lineart videos, whose data types do
not appear in the fine-tuning dataset. As depicted in Fig. 8,
our FCVG consistently produces visually appealing results,
even for challenging scenarios such as head turns, liquid
flow, and object deformations. This can be attributed to the
robust guidance provided by frame-wise conditions that are
beneficial for interpolation involving large motion in lin-
earts and animations [23, 64].

Table 3. Ablation study on condition components.

LPIPS (↓) FID (↓) FVMD (↓) FVD (↓)

w/o Control 0.2485 27.55 7217.5 536.5
w/o Pose 0.1843 24.70 5520.9 446.1
w/o Matching 0.2124 24.17 6546.8 498.8
Full Model 0.1832 24.05 5607.2 437.9

4.5. Ablation Study

We conduct ablations to to discuss the components of con-
ditions and control weight γ.
Condition components. In Tab. 3, ‘w/o Control’ denotes
the exclusion of the entire frame-wise conditions control,
while ‘w/o Pose’ and ‘w/o Matching’ indicate the removal
of human pose and line matching conditions, respectively.
The visual results are presented in Fig. 9, from which one
can see that the line matching condition governs the overall
motion of the scene, and the pose condition benefits details
with human movements.
Control weight γ. The impact of γ has been discussed in
Sec. 4.3. Based on the findings in Figure 7 and Table 4,
FCVG is not very sensitive to the value of γ, and the weight
γ = 1 proves to be suitable for the majority of scenarios.

5. Limitations and Future Work
Due to the dependence on line matching, incorrect match-
ing results may arise when two input frames exhibit highly
similar features, thereby impacting the quality of generated
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Figure 8. Inbetweening results on animations and linearts. FCVG exibits favorable performance without fine-tuning on these data types.

w/o Pose

w/o Matching

Ours

w/o Control

Figure 9. Ablation study on condition components.

Table 4. Quantitative analysis on control weight γ.

LPIPS (↓) FID (↓) FVMD (↓) FVD (↓)

γ = 0.5 0.1912 23.80 5920.0 431.4
γ = 1.0 0.1832 24.05 5607.2 437.9
γ = 2.0 0.1861 24.66 5726.9 441.1

frames. This limitation can be alleviated by manually re-
ducing the control weight, as exemplified in the first in-
stance in Fig. 10. However, when there is a significant dif-
ference between the two input frames, matched lines may
be sparse, making simple adjustment of the control weight
ineffective, as the second example in Fig. 10. This limita-
tion could potentially be addressed in future research by re-
placing SVD with more robust I2V models. Furthermore,
enhancing the interpolation process through diverse con-
trol conditions could offer improvements, e.g., incorporat-
ing user-specified drag effects like Dragdiffusion [39] or
generating control conditions based on generative models
using user-defined text inputs [48].

Start Frame End Frame γ = 1.0 γ = 0.5

Figure 10. Failure cases. Incorrect matches and significant differ-
ence between input frames lead to intermediate artifacts, some of
which can be mitigated by adjusting the control weight.

6. Conclusion

In this paper, we propose a frame-wise conditions-driven
video generation method, FCVG, for generative inbetween-
ing. To fully exploit the potential of a video generation
model in producing temporally stable videos, an explicit
condition is provided for each frame. Specifically, frame-
wise conditions can be obtained by interpolating two initial
conditions that contain matched lines extracted from two in-
put frames, and subsequently injecting them into the video
generation model alleviates the ambiguity of inbetweening
path. Our FCVG is not very sensitive to the introduced
control weight, and thus exhibits robustness across diverse
scenes with a fixed weight setting. Moreover, FCVG is able
to handle specific interpolation paths defined by users.
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