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Figure 1. SceneCrafter is a versatile and dexterous editor for realistic 3D-consistent manipulation of driving scenes captured from multiple
camera angles. It allows users to seamlessly insert or remove arbitrary objects in the foreground (second row) and modify global features
like weather (third row) and time of day (fourth row), while preserving fine-grained details of scene layout and geometry.

Abstract

Simulation is crucial for developing and evaluating
autonomous vehicle (AV) systems. Recent literature builds
on a new generation of generative models to synthesize
highly realistic images for full-stack simulation. However,
purely synthetically generated scenes are not grounded
in reality and have difficulty in inspiring confidence in
the relevance of its outcomes. Editing models, on the
other hand, leverage source scenes from real driving
logs, and enable the simulation of different traffic layouts,
behaviors, and operating conditions such as weather and
time of day. While image editing is an established topic
in computer vision, it presents fresh sets of challenges
in driving simulation: (1) the need for cross-camera
3D consistency, (2) learning “empty street” priors from
driving data with foreground occlusions, and (3) obtaining
paired image tuples of varied editing conditions while
preserving consistent layout and geometry. To address

these challenges, we propose SceneCrafter, a versatile
editor for realistic 3D-consistent manipulation of driving
scenes captured from multiple cameras. We build on
recent advancements in multi-view diffusion models, using
a fully controllable framework that scales seamlessly to
multi-modality conditions like weather, time of day, agent
boxes and high-definition maps. To generate paired data
for supervising the editing model, we propose a novel
framework on top of Prompt-to-Prompt [15] to generate
geometrically consistent synthetic paired data with global
edits. We also introduce an alpha-blending framework to
synthesize data with local edits, leveraging a model trained
on empty street priors through novel masked training and
multi-view repaint paradigm. SceneCrafter demonstrates
powerful editing capabilities and achieves state-of-the-art
realism, controllability, 3D consistency, and scene editing
quality compared to existing baselines.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
Simulation is a core component in autonomous vehicle
(AV) development for enabling system-level evaluation and
quality hillclimbing at lower cost and faster turnaround
times than real-world testing. Critical use-cases are
evaluating the performance of the AV in new traffic
scenarios (different agent location and behavior) as well as
new operating conditions (such as different weather).

Most existing works in the driving simulation literature
reduce simulation to an agent behavior simulation
problem [7, 13, 38] so as to enable closed-loop simulation
of motion planners. This formulation bypasses the
perception system, which limits their applicability and can
cause simulations to be untrustworthy under behavioral
changes due to pose divergence. These methods are unable
to simulate changing operating conditions challenging the
perception system, nor can they support evaluation of
end-to-end planners [22, 23] requiring realistic sensor
inputs.

Sensor simulation approaches have benefited from
recent advances in reconstructive modeling through neural
fields/primitives [27, 37] or image/video generation models
[45, 46]. While reconstructive techniques are faithful to
real scenes, they lack the flexibility of efficiently simulating
varied lighting and weather conditions, or manipulating
existing objects. Generative sensor simulation methods are
typically formulated as an image or video generation task
conditioned on attributes such as text descriptions or scene
layout. However, such scenes are usually not grounded
in real scenes and do not inspire confidence in their
actual occurrence under real driving conditions. Editing
models, on the other hand, offer the best combination of
realism-grounding as well as the ability to rely upon large
data priors for flexible edits.

While there is a large body of work in generic image
editing tasks, there is limited work, to our knowledge, in
applying this in the context of multi-view driving imagery.
In particular, to facilitate the two aforementioned sensor
simulation tasks of evaluating under new traffic scenarios
and operating conditions, we require two types of editing
modalities: local foreground editing such as agent removal
and injection conditioned on agent location, size and type,
as well as global editing pertaining different operating
conditions, such as varying weather conditions and time
of day. To train the final editing model, we require paired
image tuples before and after the edit to supervise the final
editing model. Obtaining paired supervision data for local
and global editing poses different sets of challenges.

Local editing requires pairs of “empty streets” (with no
agents) and “populated streets”. However as we show in
Sec. 4.4, directly applying inpainting techniques such as
RePaint [33] to erase agents does not result in high quality
results due to the model not having good priors of “empty

streets” as almost all training data contains “populated
streets”. We develop a novel training paradigm that we coin
masked training that enables us to learn to priors of empty
streets from datasets of populated streets, resulting in high
quality “empty street” priors. It enables us to generate high
quality pairs of populated and unpopulated scenes, from
which we can selectively curate pairs of partially populated
scenes via alpha blending to train the editing model.

Global editing poses a different set of challenges.
While seminal work such as Prompt-to-Prompt [15]
and InstructPix2Pix [5] offer an exciting new avenue
for creating paired synthetic images, directly applying
Prompt-to-Prompt to the multi-camera setting does not
perform well due to the absence of text conditions whose
attention-weights are frozen during Prompt-to-Prompt
inference. Through this work, we come to the interesting
finding that instead of freezing the image-to-condition
cross-attention weights, freezing image-to-image
self-attention weights resulted in much more consistent
geometry across synthetic pairs in pixel-level. Furthermore,
inclusion of more scene conditions such as agent 3D
locations and high-definition (HD) maps helps to improve
the geometric consistency across paired synthetic images.

Finally, we train a unified editing model: SceneCrafter,
to jointly learn the aformentioned editing tasks. We
propose novel 3D consistency metrics for multi-view
image generation tasks, demonstrating significant realism,
controllability, editing quality, and 3D consistency
improvement on top of available baselines.

In summary, our key contributions are as follows:

• We present SceneCrafter, a multi-view driving scene
editing model supporting local foreground object
removal and injection, as well as global editing of
operating conditions such as weather and time of day
(See Fig. 1).

• We propose a masked training paradigm and a multi-view
repaint algorithm to remove agents from input images,
along with an alpha-blending method for generating
synthetic data, enabling training an editing model for
flexible object insertion, removal, and replacement
operations.

• Our novel approach extends Prompt-to-Prompt [15]
for synthetic data generation in driving scenes. By
integrating a modified attention-weight replacing
mechanism and conditioning on scene layouts, we
achieve significant improvements in both the realism
and geometric consistency of generated data pairs across
diverse operating conditions.

• We propose 3D LPIPS, a metric to measure multi-view
image consistency. Our results demonstrate a marked
increase in realism, controllability, 3D consistency, and
editing quality over established baselines.

6813



5:46
23:11

Sunny
Rainy
Snowy

cross attention

Diffusion Architecture

. . .

self 
attention

cross 
attentionDenoising U-Net

. . .

21:00 (target prompt)

SceneCrafter Teacher
w/ Prompt-to-Prompt

7:00 (source prompt)

(a)  Generate paired data with global edits

. . . . . .

(b)  Generate paired data with local edits

. . . . . .
SceneCrafter Teacher
w/ Masked Training

 alpha blending

Generate Paired Data for Training the Student Editing Model                                                          Controllable Diffusion Framework 

concatenation

 agent masks raymaps source images time of day weather  agent boxes and HD maps

Figure 2. Overview. Our method consist of two main stages. First, we train two teacher models to synthesize a large-scale paired dataset
with several novel ideas (Sec. 3.3). We then train a unified student model with the generated data for 3D-consistent scene editing (Sec. 3.4).

2. Related Work

Diffusion models. Diffusion models [45, 46] have shown
promising generation results in various domains, such as
image [4, 39, 41, 44], video [6, 14, 19], text [30], and
audio [28]. Latent diffusion models (LDMs) [43] in
particular mark a major milestone. By learning the diffusion
models in latent instead of pixel space, LDM greatly
reduce the learning difficulty in the high-dimensional pixel
space, and thus enable easier training and generation at
higher resolutions. In this work, we build our controllable
multi-view scene editing model on top of the state-of-the-art
LDM-based novel view synthesis model [10].
Image editing. Image editing is an important task
in computer vision and graphics research. In general,
there are two ways to perform generative image editing:
training-free and training-based. Training-free approaches
aim to leverage image priors from well-trained generative
models without training a specific editing model. To
utilize the StyleGAN priors [25, 26], previous approaches
invert [1–3] or encode [8, 42, 47] the input images into
the StyleGAN latent space and then perform editing by
manipulating the latent vectors. For diffusion models,
Prompt-to-Prompt [15] can edit generated images by
updating the input text prompt and manipulating the cross
attention weights so that the edit can be grounded to
a specified region. However, Prompt-to-Prompt mainly
focuses on editing images generated by the text-conditioned
diffusion model, instead of user-specified input images. To
edit real imagery, SDEdit [36] uses a pre-trained diffusion
model to add noise and then denoise the input images, but
it struggles to maintain the fine-grained geometry of the
edited results. On the other hand, we can train specialist
feed forward models to directly conduct the editing tasks.
In this work, we propose to generate training data with
ideas from training-free approaches, and then train a unified

editing model with synthetic data.
Synthetic training data generation. Training deep
neural networks usually requires large amounts of data.
However, collecting high-quality data at scale is not a
trivial task and usually involves a significant amount of
human efforts. As generative models are evolving in visual
fidelity, more and more research works [29, 52, 53, 57] have
been exploring training deep models with these generated
synthetic data. Our method is inspired by the pioneering
work InstructPix2Pix [5], which leverages GPT3 [35] and
Prompt-to-Prompt to generate the editing prompts and
training image pairs. We extend Prompt-to-Prompt for
multi-view image editing, replacing text prompts with
driving-specific signals for precise control. We also
leverage Repaint algorithm to generate local editing data.
Unlike DriveEditor [32], which masks objects randomly for
faster processing, our method removes identified vehicles,
ensuring structured and realistic results.
Simulation for autonomous driving. Historically, most
simulation works focus on driving policy simulation and
scenario generation [7, 13, 38], which are then used to
evaluate and improve performance of motion planners.
However, this formulation fails to evaluate the whole AV
system in a closed-loop setting. Given the recent trend of
end-to-end driving models [12, 21–23], how to realistically
generate sensor data for full system closed-loop simulation
becomes a critical problem. Recently generative world
models [9, 11, 20, 31, 34, 48–50, 54, 55, 58] are capable
of generating photo-realistic future frames, conditioned on
language or action prompts. Panacea [51] can even generate
multi-view videos given vehicle actions, agent locations,
and the environment map. However, these methods mainly
focus on generating the future or a completely new scene,
but not editing real driving footage. In this paper, we aim to
fill this gap by proposing a versatile editor for realistic 3D
consistent driving scene editing.
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3. Method
In this section, we first provide a preliminary review of
the multi-view diffusion model in Sec. 3.1. We then
provide details on the architecture in Sec. 3.2 and explain
the process of creating synthetic datasets using the teacher
model in Sec. 3.3. Specifically, we train two separate
teachers models to generate data for global edits and local
edits, respectively. Lastly, in Sec. 3.4 we describe how to
train a unified student editing model with the generated
paired data. An overview of our pipeline for synthetic
dataset generation and the controllable diffusion framework
is illustrated in Fig. 2.

3.1. Preliminary: Multi-View Diffusion Models

Our method is based on multi-view diffusion models [10],
which extends the latent diffusion models (LDM) [43]
by enabling view consistency and camera pose control
over the image generation. The goal of this architecture
is to estimate the joint distribution of multi-view images
under given camera poses, and generate photo-realistic and
view-consistent images. Specifically, given a set of N
camera poses p = p0:N where N = 8 in our setting,
the model learns to estimate the distribution of N images
I = I0:N under the corresponding camera poses: P (I|p).

Following [43], the base architecture is a latent diffusion
model with an encoder E , a denoiser U-Net εθ and a decoder
D. The images are encoded into latents z = z0:N and then
denoised in latent space: I = D(z), z = E(I).

Two key architecture changes are adopted to achieve the
aforementioned goal: a view-spatial joint attention module
and camera pose conditioning generation.
View-spatial joint attention. The 2D attention blocks in
the LDM are replaced with 3D attention blocks (2D in space
and 1D cross views) to perform the attention mechanism
among multi-view images. To reuse the parameters from the
original LDM, the 2D attention module is directly inflated
to 3D without introducing extra parameters. All other 2D
blocks are applied to each image separately.
Camera poses conditioning. The camera poses are
represented via raymaps, which encode the ray origin and
direction at each spatial location. All camera poses are
normalized w.r.t. the first camera so the raymaps are
invariant to global rigid transformations. The diffusion
U-Net takes the the concatenated noisy latents and raymaps
as input, and outputs the denoised latents.

3.2. Teacher Model for Scene Generation

In this section, we introduce how we accommodate various
conditional modalities in the teacher model. The model
estimates the multi-view image distribution given groups of
conditions as p(I|p,m, cg, cl).

Specifically, the diffusion model takes four types of
conditions: global conditions cg (weather and time of day),

local conditions cl (HD map and agent boxes), foreground
masks m and raymaps p. The global conditions are
essential for simulation under novel operating conditions,
and the latter two help the model capture the scene layout
and geometry. We encode all the conditions and integrate
them into the cross-attention blocks of the diffusion U-Net.
Weather. Based on the driving log data, we use the
CLIP [40] text encoder to encode the text “sunny”, “rainy”,
“foggy”, or “snowy” as the weather condition cw.
Time of day. Given the local time of day and the geographic
location of the recorded driving logs, we compute the
sun angles for each frame, which is then encoded using
positional encoding and used as time of day condition ct.
High-definition map. We also utilize a high-definition
(HD) environment map and process it to the local HD map
conditions cr. The map is represented by lane segments
and lane types. We sample up to 4,096 lane segments, feed
the segment start and end locations, and lane types to a
PerceiverIO [24] to reduce the token size to 512, and use
a MLP to encode the features into the condition cr.
Agent boxes. We use the AV perception system’s 3D object
detector to gather up to 256 agents in the scene, including
both foreground and background objects. Each agent is
represented by an 8-dimensional feature tensor comprising
the center coordinates (x, y, z), dimensions (length, width,
height), heading angle (yaw), and agent type. We apply an
one-hot encoding of agent type and concatenate it with the
remaining features. We then feed the concatenated features
to a MLP to get output cb as the agent condition.
Foreground mask. We project all 3D bounding boxes of
foreground objects into each camera view to generate binary
masks. We then resize them and append them to the latents
along the channel dimension similar to raymaps.

We apply a 10% dropout rate to each conditions during
training. So our model does not rely on these conditions and
works robustly without them.

3.3. Synthetic Data Generation with Teacher Model

3.3.1 Generating Data for Global Edits

To generate paired data for global edits (time of day
and weather), an intuitive idea is to feed the initial
and edited conditions into a well-trained conditional
generation model to generate the source and target images
respectively. However, this simple strategy fails to generate
geometrically consistent source and target image pairs, as
shown in the first and second rows of Fig. 5. This is
because generative models inherently lack guarantees for
image coherence, even when only minor changes are made
to the conditioning prompt [5]. To address this issue,
we employ Prompt-to-Prompt [15], a method designed to
maintain similarity across multiple outputs of a conditional
diffusion model. However, the original Prompt-to-Prompt
approach falls short in terms of controllability and realism
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Figure 3. Qualitative Results on Global Editing. Given multi-view image inputs, our model performs versatile edits like changing the
time of day (daytime to dawn/night) and weather (sunny to snowy/foggy) while preserving geometric consistency. Best viewed zoomed in.

for our multi-view driving scene setting. Thus, we make the
following adaptation to Prompt-to-Prompt.
Replacing self-attention weights. Different from the
original Prompt-to-Prompt approach that manipulates
image-to-condition cross-attention weights, we extend this
to image-to-image self-attention layers to better handle
global conditions. While Prompt-to-Prompt uses text
tokens and substitutes semantically meaningful text tokens,
our setting handles various multi-modal tokens and replaces
certain tokens associated with global effects, while keeping
other conditions unaffected. The editing should affect all
parts of the image, but still retain the original layout, such
as the location and underlying appearance of the vehicles.
Therefore, we manipulate pixel-level attention weights in
all self-attention layers instead of the cross-attention layers.
Conditioning on more control signals. We observed that
incorporating more control signals into our model enables
generating more realistic paired results with consistent
geometry. With more control signals, the model better
preserves fine-grained details which ground the geometry
specifically while primarily modifying high-level attributes
such as weather. So we incorporate more local conditions
into our teacher model, like agent boxes and HD maps.
Choice of source images. The time of day choice for
source images plays a crucial role in our method, as it
impacts the overall style of the generated results. We
empirically found that using only daytime for source images
produces superior results compared to using nighttime or
using both. Thus we sample the time of day for source
images from daytime only and sample target time from all
times across a day. We randomly flip the order of source
and target images as the paired synthetic data.

3.3.2 Generating Data for Local Edits

In local edits, we aim to remove or insert arbitrary agents
into the scene. Our log data is populated with vehicles,
but if we can extract “empty streets” data from it, we can
then perform alpha blending for the pairs, which enables
generating synthetic data with arbitrary numbers of agents.
Inpainting methods like RePaint [33] have been widely
applied to erase objects in 2D images, however it faces two
challenges in our settings: It can not produce multi-view

consistent results; and our “populated streets” training data
makes it difficult to ensure inpainted results are free of
agents when directly training a diffusion model. Thus, we
propose a novel framework with two key ideas: masked
training and multi-view repaint to tackle these issues.
Masked training enables the model to learn priors of empty
streets in a self-supervised manner and multi-view repaint
ensures view-consistent results.
Masked training. We propose a simple yet effective
training strategy that enables our model to learn the “empty
street” prior. Specifically, given a set of image foreground
mask for each camera views, we resize them to the same
shape with latents, denoted as m = m0:N . We denote
foreground latents as m � z and background latents as
(1−m)� z.

We apply different noise levels when computing zt. We
maintain a noise level of zero for the foreground and apply
regular noise to background, as:

zt = (1−m)� (αtz0 + σtε) + m� z0 (1)

where αt and σt are predefined noise scheduling terms.
Consequently the model focuses on learning to denoise the
background while leaving the foreground unchanged.

We only compute training loss on background pixels,
and minimize the following training objective,

Ez∼E(I),t,ε∼N (0,1)

∥∥∥(1−m)� (ε− εθ(zt, t, c
g, cl,m))

∥∥∥2

2
(2)

The model εθ is trained with foreground-free priors and
thus can generate scenes of “empty streets”.
Multi-view repaint. We propose a 3D-aware approach
to get view-consistent inpainting examples, replacing
foreground pixels with backgrounds. Note that we only
conduct multi-view repaint with the teacher model with
masked training. Specifically, we split the images into
masked and unmasked regions representing foreground and
background, respectively. In each reverse step, we modify
the foreground region m � zt while preserving the correct
properties of the corresponding distribution. Background
region (1 − m) � zt is sampled at any time step t given
known latents z0. Thus, we have:

zbackground
t−1 ∼ N

(√
ᾱtz0, (1− ᾱt)I

)
zforeground
t−1 ∼ N

(
µθ(zt, t, c

g, cl),Σθ(zt, t, c
g, cl)

)
(3)

6816



Methods Time of day editing Weather editing
FID↓ CLIP Score↑ User Study↑ FID↓ CLIP Score↑ User Study↑

SDEdit [36] 60.4 0.204 2.7% 78.3 0.203 1.8%
P2P* [15] 46.8 0.223 13.6% 55.4 0.207 12.7%
SceneCrafter 37.2 0.220 83.6% 38.9 0.221 85.5%

Table 1. Quantitative Comparison on Global Editing. SceneCrafter shows clear improvement over two baselines in terms of realism,
controllability and editing quality, achieving preference rates of over 80% across both editing benchmarks.

Here, zbackground
t−1 is sampled based on the known pixels

in the given image, while zforeground
t−1 for all camera views

is sampled simultaneously from the multi-view diffusion
model, using the previous iteration zt. Finally, we
merge these two latents where the foreground regions are
progressively denoised to background:

zt−1 = m� zforeground
t−1 + (1−m)� zbackground

t−1 (4)

Alpha blending. After applying multi-view repaint to
“populated streets” data, we obtain the corresponding
“empty streets” data, denoted as Iempty and I full. We then
employ alpha blending to generate paired data for object
insertion or removal. More specifically, we first project all
agent bounding boxes onto 2D planes to create a vehicle
mask. We then sample any desired number of these masks
to form a new composite mask, msampled, which contains
varying numbers of agents.

The alpha blending of Iempty and I full is performed as:

Isampled = msampled � Iempty + (1−msampled)� I full (5)

which allows us to seamlessly blend the images, creating
realistic scenes with any specified number of agents.

3.4. Student Model for Scene Editing

We frame the image-to-image editing as a generation task,
conditioning on source images Isource and the control
signals. To effectively incorporate the source images into
the model, we introduce an additional conditioning branch
that concatenates the latent of the source images zsource

0

directly with the latents zt. We find that concatenating
pixel-level features, such as source images, masks, and
raymaps yields better results than using cross-attention
techniques, as shown in Sec. 4.4.

For training the editing model, we employ the synthetic
dataset detailed in Sec. 3.3, which includes changes in
weather, time of day and agents boxes. The editing model’s
weights are initialized from the weights of the global editing
teacher model. We maintain the original conditioning
mechanisms of the generation model and also update their
parameters during training. This integration ensures that
the editing model can leverage the detailed contextual data
from the source images while maintaining the generative
capabilities of the original model.

At test time, our model takes source images and arbitrary
target prompts, then generates target images that preserve

the geometric structure and layout of the source images
while aligning with the specified prompts. It’s worth noting
that our model uses box conditions for agent editing rather
than masks, and agent insertion or removal are controlled by
agent types. Unlike mask-based methods that often produce
imprecise boundaries, our box conditioning offers more
precise control, especially for smaller objects illustrated in
Fig. 1. This allows us to achieve fine-grained edits while
maintaining geometric consistency with the original image.

4. Experiments
4.1. Metrics

Evaluating generative 3D editing models presents unique
challenges. Metrics for novel view synthesis typically
emphasize generation quality, but additional criteria are
essential for 3D editing tasks. Specifically, we assess
models based on realism, controllability, 3D consistency
and editing quality. We utilize existing metrics such as
Fréchet Inception Distance (FID) [17] and CLIP Score [16],
run a user study, and propose a novel 3D LPIPS metric to
comprehensively assess these aspects.
Realism. FID is the most commonly used metric for
estimating the realism of generated images by measuring
how similar the distribution of edited images is to the
distribution of the origin images in a feature space.
Controllability. The CLIP score originally aims to measure
how well an image caption aligns with the semantics of an
image. We adapt CLIP Score to evaluate controllability by
converting a control signal into a text to describe how to
edit a image, then calculate the cosine similarity between
the text and edited image embeddings.
Editing quality. We conduct a user study to evaluate
the editing quality of our method compared to baselines.
The user study involved 11 human raters evaluating 20
groups of images, where each group corresponds to a
unique edit prompt. For each group, we show users the
images generated by three methods (randomized order) and
the source images. Users were asked “which of these
images is the most faithful result of editing the source
image according to the given prompt?” and then selected
the image they thought most aligned with the question. We
compiled their selections to summarize user preferences.
3D Consistency. We leverage the overlapping field of view
between cameras to measure consistency across multiple
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P2P* [15]
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Figure 4. Qualitative Comparison on Time of Day Editing.
SceneCrafter is able to conduct realistic editing to 8PM while still
maintaining the geometric structure of the input images.

Source: 8AM

Target: 7PM
(w/o P2P.)

Target: 7PM
(w/ cross.)

Target: 7PM
(w/ self.)

Figure 5. Attention Weights Manipulation in Prompt-to-Prompt.
Manipulating self-attention weights enables accurate conditioning
while preserving the same geometry.

Method FID↓
Removal Insertion

2D-RePaint [33] 30.6 31.9
MV-RePaint 26.0 28.5
SceneCrafter 23.5 21.7

Table 2. Quantitative Comparison on Local Editing.
SceneCrafter, which uses agent boxes to manipulate agents, shows
obvious advantages over two mask-based methods, which often
struggle with imprecise segmentation, where masks exceed object
boundaries. Our box-based conditioning enables more accurate,
fine-grained edits, especially for small objects.

views. More specifically, for each neighboring view pair
(Ci, Ci+1), we project Ci into Ci+1, as well as Ci+1 into
Ci, and compare the overlapping regions. We use the LPIPS
metric as it is known to be sufficiently robust to effects
such as exposure differences and motion blur [56], and
subsequently also refer to this metric as 3D LPIPS.

4.2. Experimental Settings

Dataset. Since our multi-view driving scene editing and
generation tasks are unique, we require a novel dataset to
enable control over both global and local scene conditions,
as well as camera poses. We curated a dataset that
consists of 13,867,496 unique segments of driving videos
for training the teacher diffusion models. Each segment
consists of 17 frames of 8 surrounding cameras, captured
in the frequency of 10 Hz. The log data contains versatile
labels such as camera poses, weather, time of day, HD map,
and agent bounding boxes, estimated by the AV onboard
stack. These labels enable our teacher model to associate
control signals with scene generation. We held out 1%
videos for testing and used the remaining data for teacher
model training.
Implementation details. We base our two teacher models
for global and local edits on a pre-trained multi-view
diffusion model [10] and fine-tune the global teacher model
for final student editing model. We train our models on

Method FID ↓ 3D LPIPS ↓
Real 11.5 0.186
CAT3D [10] 121.3 0.249
SceneCrafter (w/o cond.) 68.5 0.254
SceneCrafter (full) 36.2 0.187

Table 3. Quantitative Results on Generation Task.
With conditioning signals encoded, SceneCrafter can generate
more realistic multi-view images compared to the baselines.
SceneCrafter can even achieve the same degree of 3D consistency
as real log data, measured by the novel 3D LPIPS metric.

128 Google TPU v5 for 100k iterations, with learning rate
of 1e−5 and batch size 128. We generate 1M synthetic
paired data to train the student model. We resize all
the inputs to 512 × 512 to align with the pre-trained
VAE. At inference time, we use 50 denoising steps with
classifier-free guidance [18].

4.3. Results

Qualitative editing results. We demonstrate our
qualitative editing results in Fig. 3. Given arbitrary
multi-view source images as input (first row), our model can
perform many challenging edits, including changing time
from day to dawn and night (left), and changing weather
from sunny to snowy and foggy (right), while keeping the
scene geometrically consistent. We show more creative
editing results in the supplemental material.
Comparison to other editing baselines. For global edits,
we provide quantitative comparisons with SDEdit [36] and
P2P* in Tab. 1, along with qualitative comparisons on time
of day editing in Fig. 4. SDEdit is a general image editing
method where a partially noised image is denoised to
generate a new edited one. We extend Prompt-to-Prompt for
editing tasks by replacing the latents of the source images
with that of the images to be edited, and the generated
target images are the image after editing, denoted as P2P*.
In Tab. 1, we observe that our realism, controllability and
editing quality are consistently better than other baselines in
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Cross Increase Daytime for FID↓ CLIP Score↑Attention Conditioning Source Images

7 7 7 57.1 0.204
3 7 7 41.5 0.202
3 3 7 39.9 0.214
3 3 3 36.2 0.223

Table 4. Ablation Study on Prompt-to-Prompt Design.
We show three key components to improve the quality of
synthetic data. First, replacing self-attention weights led to
better geometric consistency for generated pairs. Second, using
additional conditions (agent features and HD maps) improved
controllability. Finally, using only daytime source images
enhanced the generation quality by a large margin.

all but one instance. SceneCrafter outperforms SDEdit and
P2P∗ by 40.6 and 16.5 in FID and achieves a 83.6% and
85.5% preference rating from our user study, respectively,
demonstrating that our method conditions precisely on the
source images and achieves accurate editing. Visually, as
shown in Fig. 4, our method excels at generating consistent
geometry while keeping highly detailed textures. Other
baselines provide results aligned to the target prompts, but
exhibit sub-optimal geometric consistency.

We also compare our method against 2D-RePaint and
MV-RePaint for local editing tasks, as shown in Tab. 2.
For the 2D-RePaint baseline, we utilize a pretrained Stable
Diffusion model [43], applying it independently to each
camera view. For the MV-RePaint baseline, we use
our editing model without conditioning on source images
and adopt the multi-view repaint method in Sec. 3.3.2,
using 2D-projected agent bounding boxes as masks. We
evaluated on agent insertion and removal scenarios. Our
method consistently demonstrated superior object editing
quality compared to both approaches, and achieves the
best FID scores. 2D RePaint lacks editing type control
and MV-RePaint, on the other hand, relies heavily on
masks, which might not always accurately align with object
boundaries. Our method conditions on specific agent
bounding boxes, allowing precise insertion and removal.
Comparison to other generation baselines. To validate
that our editing model also possesses generation ability,
we present some pure generation results in Tab. 3. We
compare with CAT3D [10] by using a single view as the
conditional input and generating the other seven views. We
also test our SceneCrafter without any conditions. Notably,
the full SceneCrafter model surpasses the baselines across
both metrics. Moreover, our quantitative results closely
match real image data, particularly in the 3D LPIPS metric.
This superior performance can be attributed to the use of
local conditions, which effectively grounds the geometric
structure of 3D scenes and enables the creation of highly
3D consistent scenes well aligned with the real-world. In
contrast, the other two baselines lack such geometrical
constraints and show lower 3D consistency.

Method FID ↓ CLIP Score ↑
Cross-attention 50.3 0.203
Concatenation 37.2 0.220

Table 5. Ablation Study on Source Image Conditioning.
Concatenating the multi-view source images clearly outperforms
applying the cross-attention operation as woth other conditions.

4.4. Ablation Study

We ablate our design choices for Prompt-to-Prompt in
Tab. 4 and different ways for source image condition in
Tab. 5. We conduct ablation studies with time of day edits.
Design choices for prompt-to-prompt. Tab. 4
demonstrates the improvement on generating synthetic
data by introducing several key components, such as
replacing self-attention weights, including more conditions
and using only daytime for source images. Starting from
the original Prompt-to-Prompt (first row), we find that
replacing self-attention weights results in more consistent
geometry in pixel-level image-to-image translation (second
row). Including more scene conditions such as agent boxes
and HD maps also helps to improve the condition quality
across paired synthetic images (third row). Using daytime
as the time of day for source images further enhances the
generation quality and controllability (fourth row).

We also show qualitative visualizations of the effects of
replacing different attention layers in Fig. 5. We compare
not replacing any attention layers, replacing cross-attention
layers, and replacing self-attention layers. We find that
replacing self-attention layers only preserves the geometric
consistency of the generated pairs.
Source image conditioning. We explore methods for
conditioning source images in Tab. 5. For cross-attention,
we encode images using the VAE and feed them directly,
along with other conditions, into the cross-attention
module. We find that concatenation yields better
performance, notably improving FID by 13.1. This
suggests that concatenation is more effective for pixel-level
features like source images, masks, and raymaps, while
cross-attention performs better with global and local
conditions.

5. Conclusion
We present SceneCrafter, a versatile editor for realistic 3D
consistent multi-view driving scene image editing. We
decompose the problem into two steps. First, we train
teacher models to generate high-quality synthetic data using
novel training paradigms. Next, we distill knowledge from
these teacher models by training a unified student model
on the generated dataset. We show that our student model is
able to conduct several challenging editing tasks, with either
global or local editing prompts.
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