
Towards Source-Free Machine Unlearning

Supplementary Material

Supplementary Overview:
Contents

1 . Proof for Lemma 1 in more details 2

2 . Additional Experiments 5
2.1 . Linear Classifier Experiments . 6
2.2 . Mixed-Linear Network Experiments . 6

1. Proof for Lemma 1 in more details
Proof. From the definition of Ψ(H):

Ψ(X) = Eδw∼N (0,I)

[
(
1

2
δw⊤Xδw +∇⊤

r δw − δLr)
2

]
(1)

By neglecting higher order terms in the taylor approximation we can say, δLr ≈ 1
2δw

⊤Hrδw+∇⊤
r δw. Substituting δLr

from Equation 1:

Ψ(X) = Eδw∼N (0,I)

[
(
1

2
δw⊤Xδw − 1

2
δw⊤Hrδw)

2

]
(2)

= Eδw∼N (0,I)

[
(
1

2
δw⊤(X−Hr)δw)

2

]
(3)

= Eδw∼N (0,I)

[
(
1

2
δw⊤Mδw)2

]
(4)

where, we define M = (X−Hr). We will now prove the following:

Eδw∼N (0,I)

[
(
1

2
δw⊤Mδw)2

]
=

1

2
trace(M2) +

1

4
trace(M)2 (5)

Proof of Expectation
We aim to prove the following equation:

Eδw∼N (0,I)

[(
1

2
δw⊤Mδw

)2
]
=

1

2
trace(M2) +

1

4
trace(M)2, (6)

where δw ∼ N (0, I) is a Gaussian random vector with zero mean and identity covariance, and M is a symmetric matrix.

Step 1: Reformulation of the Expectation
Let X = δw⊤Mδw. Then, the left-hand side can be expressed as:

E

[(
1

2
δw⊤Mδw

)2
]
=

1

4
E[X2], (7)

where X2 = (δw⊤Mδw)2. Substituting X = δw⊤Mδw, we expand X2:

X2 = (δw⊤Mδw)2 =
∑
i,j

∑
k,l

MijMklδwiδwjδwkδwl, (8)

where Mij denotes the (i, j)-th entry of M, and δwi is the i-th component of δw.

Step 2: Expectation of δwiδwjδwkδwl

Since δw ∼ N (0, I), the components δwi are independent Gaussian random variables with mean 0 and variance 1. The
expectation E[δwiδwjδwkδwl] depends on the indices i, j, k, l. Using properties of Gaussian random variables, we have:

E[δwiδwjδwkδwl] =



1, if i = j, k = l, i ̸= k,

1, if i = k, j = l, i ̸= j,

1, if i = l, j = k, i ̸= j,

1, if i = j = k = l,

0, otherwise.

(9)

This result follows from the Wick formula for moments of Gaussian random variables.

Step 3: Substituting into the Expectation
Return to the expectation of X2:

E[X2] =
∑
i,j

∑
k,l

MijMklE[δwiδwjδwkδwl]. (10)

Using the cases derived above, the non-zero contributions arise in the following scenarios:
• Case 1: i = j, k = l, i ̸= k: The contribution is:∑

i ̸=k

MiiMkk = trace(M)2. (11)

• Case 2: i = k, j = l, i ̸= j: The contribution is: ∑
i,j

M2
ij = trace(M2). (12)

• Case 3: i = l, j = k, i ̸= j: This is identical to the second case, contributing:

trace(M2). (13)

• Case 4: i = j = k = l: The contribution is: ∑
i

M2
ii = trace(M2). (14)

Combining these terms, the total expectation is:

E[X2] = 2trace(M2) + trace(M)2. (15)

Step 4: Final Simplification
Substituting back into the original equation:

E

[(
1

2
δw⊤Mδw

)2
]
=

1

4
E[X2] =

1

4

(
2trace(M2) + trace(M)2

)
. (16)

Simplify to obtain:

E

[(
1

2
δw⊤Mδw

)2
]
=

1

2
trace(M2) +

1

4
trace(M)2. (17)

So, clearly the minimizer of Ψ(X) is at M = 0 or X = Hr.
However it is the ideal case, where we do not approximate δLr. In our algorithm, we are minimizing and approximate

objective Ψ̃(X). Also from the definition we can say f̃i(X) = fi(X) + (δLr(wi) − δLf (wi)). Since we assume that
|δLr(wi)− δLf (wi)| ≤ ϵ ∀i, we can derive the following inequality:

(fi(X)− ϵ) ≤ f̃i(X) ≤ (fi(X) + ϵ) (18)

=⇒ 1

m

m∑
i=1

(fi(X)− ϵ))
2 ≤ Ψ̃(X) ≤ 1

m

m∑
i=1

(fi(X) + ϵ))
2 (19)

Now we know:

1

m

m∑
i=1

(fi(X) + ϵ))
2
= Eδw∼N (0,I)

[
(
1

2
δw⊤Mδw + ϵ)2

]
(20)

= Eδw∼N (0,I)

[
(
1

2
δw⊤Mδw)2

]
+ 2ϵEδw∼N (0,I)

[
(
1

2
δw⊤Mδw)

]
+ ϵ2 (21)

≤ 1

2
trace(M2) +

1

4
trace(M)2 +

1

2
trace(2ϵM) (22)

=
1

2
trace(M2 + 2ϵM) +

1

4
trace(M)2 (23)

Similarly expanding the lower bound also, we get the following inequality:

1

2
trace(M2 − 2ϵM) +

1

4
trace(M)2 ≤ Ψ̃(X) ≤ 1

2
trace(M2 + 2ϵM) +

1

4
trace(M)2 (24)

(25)

By seperately taking derivatives of the upper and lower bounds above, if we set it to 0, we get the following bound on the
minimizer M.

− 2ϵ

(2 + d)
Id ≤ M ≤ 2ϵ

(2 + d)
Id (26)

where, Id ∈ Rd×d is the identity matrix.

Details:

The objective function is defined as:

f(M) =
1

2
Tr(M2 + 2ϵM) +

1

4
(Tr(M))2, (27)

where M is a d× d matrix, and ϵ is a scalar parameter. To find the optimal M, we compute the gradient of f(M) with respect
to M and solve ∇Mf(M) = 0.

The gradient of each term in f(M) is as follows:

• The gradient of 1
2Tr(M

2) is:

∇M

(
1

2
Tr(M2)

)
= M. (28)

• The gradient of ϵTr(M) is:
∇M (ϵTr(M)) = ϵId, (29)

where Id is the d× d identity matrix.

• The gradient of 1
4 (Tr(M))2 is:

∇M

(
1

4
(Tr(M))2

)
=

1

2
Tr(M)Id. (30)

Combining these terms, the total gradient is:

∇Mf(M) = M+ ϵId +
1

2
Tr(M)Id. (31)

Setting ∇Mf(M) = 0, we have:

M+ ϵId +
1

2
Tr(M)Id = 0. (32)

Rearranging, this becomes:

M = −ϵId −
1

2
Tr(M)Id. (33)

Let Tr(M) = τ . Substituting τ into the equation, we get:

M = −ϵId −
1

2
τ Id. (34)

Taking the trace on both sides:

τ = Tr(M) = Tr

(
−ϵId −

1

2
τ Id

)
. (35)

Since Tr(Id) = d for a d× d matrix:

τ = −ϵd− 1

2
τd. (36)

Rearranging to isolate τ :

τ

(
1 +

d

2

)
= −ϵd. (37)

Solving for τ :

τ =
−ϵd

1 + d
2

=
−2ϵd

2 + d
. (38)

Substituting τ Back into M Substitute τ = −2ϵd
2+d into M = −ϵId − 1

2τ Id:

M = −ϵId −
1

2

(
−2ϵd

2 + d

)
Id. (39)

Simplify:

M = −ϵId +
ϵd

2 + d
Id. (40)

Combine terms:

M =

(
−ϵ+

ϵd

2 + d

)
Id. (41)

Simplify further:

M = −ϵ

(
1− d

2 + d

)
Id = −ϵ

(
2

2 + d

)
Id. (42)

The optimal M is:

M = − 2ϵ

2 + d
Id, (43)

where d is the dimension of the matrix M.
This inequality implies that the if the solution of optimization ?? is Ĥr, then

Hr −
2ϵ

(2 + d)
Id ⪯ Ĥr ⪯ Hr +

2ϵ

(2 + d)
Id (44)

As a result we can conclude:

∥Ĥr − Hr∥ = ∥∆Hr∥F ≤ 2ϵ∥Id∥F
(2 + d)

(45)

Since ∥Id∥F =
√
d, we conclude the proof.

2. Additional Experiments

We conducted experiments on the CIFAR-10, CIFAR-100, StanfordDogs, and Caltech-256 datasets using our proposed
method for both linear classifier and mixed linear network cases. For all experiments, 500 perturbations were applied. The
“Performance Gap” row represents the difference in performance between the methods Unlearned (+) and Unlearned (-).
Unlearned (+) refers to unlearning using the remaining data samples, while Unlearned (-), our proposed method, performs
unlearning without relying on the remaining data samples.

2.1. Linear Classifier Experiments

For the linear classifier experiments, a ResNet-18 model, pretrained on the ImageNet dataset and excluding the penultimate
layer, was used to generate activations for our linear classifier. 10% of the data was selected to be forgotten. As shown in
Tab. 1, the Unlearned (-) method achieves unlearning performance that is significantly close to the Unlearned (+) method.
This result demonstrates that our method can perform well even without access to the remaining dataset, provided that the
theoretical assumptions hold.

Method Test Data Remaining Data Forget Data MIA

CIFAR-10

Retrained 72% 74% 72% 50%

Unlearned (+) 70.3% 72.4% 70.2% 50.2%

Unlearned (-) 70% 71% 68% 51.5%

Performance Gap 0.3% 1.4% 1.8% 1.3%

CIFAR-100

Retrained 56.0% 61.4% 56.2% 50.4%

Unlearned (+) 49.8% 59.7% 48.7% 51.4%

Unlearned (-) 51.6% 59.6% 49.2% 51.8%

Performance Gap 1.8% 0.1% 0.5% 0.4%

StanfordDogs

Retrained 59.3% 67.8% 60.2% 50.2%

Unlearned (+) 54.6% 65.1% 53.5% 51.7%

Unlearned (-) 55.0% 68.3% 54.5% 50.9%

Performance Gap 0.4% 3.2% 1.0% 1.2%

Caltech-256

Retrained 54.4% 61.1% 54.8% 50%

Unlearned (+) 47.6% 57.3% 45.0% 51.3%

Unlearned (-) 49.4% 57.9% 48.4% 50.6%

Performance Gap 1.8% 0.6% 3.4% 0.7%

Table 1. Linear classifier experiments on CIFAR-10, CIFAR-100, StanfordDogs, and Caltech-256 datasets. A ResNet-18 model, pretrained
on ImageNet and excluding the penultimate layer, was used to generate activations for the linear classifier. 10% of the data was selected for
unlearning. The ”Performance Gap” row indicates the difference between the methods Unlearned (+) and Unlearned (-), where Unlearned
(+) utilizes the remaining data samples, and Unlearned (-) (our proposed method) operates without access to the remaining data samples.

2.2. Mixed-Linear Network Experiments

For the mixed linear network experiments, a ResNet-18 model pretrained on the ImageNet dataset was used as the base model.
The last few layers were linearized for training on the datasets. 15% of the data was selected for unlearning. Unlearned (+)
refers to the unlearning process that utilizes the remaining data samples, while Unlearned (-) (our proposed method) performs
unlearning without access to the remaining data samples. As shown in Tab. 2, the Unlearned (-) and Unlearned (+) methods
exhibit very similar performance. This result demonstrates that our method (Unlearned (-)) can achieve significantly strong

results even without access to the remaining samples for the mixed linear network case as well.

Method Test Data Remaining Data Forget Data MIA

CIFAR-10

Retrained 86.3% 93.6% 87.7% 50.2%

Unlearned (+) 85.6% 91.9% 85.5% 50.0%

Unlearned (-) 84.5% 93.5% 86.7% 51.2%

Performance Gap 1.1% 1.6% 1.2% 1.2%

CIFAR-100

Retrained 63.1% 68.9% 63.3% 50.2%

Unlearned (+) 61.9% 67.9% 62.2% 50.7%

Unlearned (-) 61.4% 70.1% 62.2% 51.7%

Performance Gap 0.5% 2.2% 0.0% 1.0%

StanfordDogs

Retrained 73.6% 76.8% 72.1% 50.6%

Unlearned (+) 69.0% 76.1% 70.8% 50.2%

Unlearned (-) 70.1% 77.6% 71.2% 51.3%

Performance Gap 1.1% 1.5% 0.6% 1.1%

Caltech-256

Retrained 60.3% 66.9% 60.5% 50.0%

Unlearned (+) 61.3% 65.6% 61.8% 49.8%

Unlearned (-) 58.4% 66.2% 60.7% 51.0%

Performance Gap 2.9% 1.6% 1.1% 1.2%

Table 2. Mixed linear network experiments on CIFAR-10, CIFAR-100, StanfordDogs, and Caltech-256 datasets. A ResNet-18 model,
pretrained on the ImageNet dataset, was used as the base model. The last few layers were linearized for training with the datasets. 15%
of the data was selected for unlearning. The ”Performance Gap” row indicates the difference between the methods Unlearned (+) and
Unlearned (-). Unlearned (+) performs unlearning using the remaining data samples, while Unlearned (-), our proposed method, achieves
competitive results even without access to the remaining data samples.

	Proof for Lemma 1 in more details
	Additional Experiments
	Linear Classifier Experiments
	Mixed-Linear Network Experiments

