
A. Implementation Details

Training. We set the number of perturbations K in MoP
to four. When calculating MLP loss in Eq. 5, we use in-
termediate features from [“down 1”, “down 2”, “down 3”,
“mid 0”] layers in SD VAE, and set ω to 3.5 → 10→5. We
train FastProtect on a single A100 80GB GPU in an end-
to-end manner except the assignment function A. We use
a batch size of 16, using the Adam optimizer [22] for 40k
steps with learning rate of 0.0002, and betas of (0.5, 0.99).
When training, the required VRAM and compute time are
around 50GB and 12 hours, respectively. Note that since
we update the perturbations with Adam instead of the di-
rect optimization through PGD, we remove the minus sign
in the training loss (Eq. 5) as: LT (x) = ||z ↑ zy||22 +
ω

L

∑
L

l=1 ||F
l
↑ F

l

y
||
2
2. We utilize three patterned target im-

ages, each representing low, mid, and high pattern repeti-
tion, as illustrated in Figure 8. To implement adaptive tar-
geted protection, for each protection strength (budget) ε, we
obtain three MoP models (low, mid, and high), each corre-
sponding to one of the target images. The training algo-
rithm is detailed in Algorithm 1; note that for simplicity, it
is demonstrated with a batch size of one, but increasing the
batch size is straightforward.

Inference. When an input image with resolution other than
5122-px is given, we perform bilinear interpolation to the
perturbations (ϑg,!) to match the resolution with the input
image’s. However, the SD VAE encoder receives down-
sampled image to a fixed 5122-px to prevent a significant
increase in computational load during VAE encoding. Al-
though relative low-resolution is given to VAE, empirically,
this shows robust performance to some extent. For adaptive
targeted protection, we pre-compute and cache the average
entropy of the target images. When an input image is given,
we calculate its entropy and select the nearest target image
based on the cached values. Hence, adaptive targeted pro-
tection incurs minimal overhead since FastProtect already
obtains z in the MoP assignment stage. For the adaptive
protection strength, we provide the surrogate protected im-
age to LPIPS with its original resolution, since the LPIPS
network (AlexNet) is significantly smaller than the VAE en-
coder thus it consumes negligible computational overhead.

When obtaining the final perceptual map in Eq. 7, we
first apply min-max normalization to the spatial distance
map calculated by LPIPS and then subtract it from one to
reverse it. Subsequently, we adjust scale of the perceptual
map with scale function S(·). With a given perceptual map
M, which has resolution of H→W , we first initialize scaled
perceptual map M↑ as one, i.e., M↑ = 1H↓W . Then, we
calculate the final perceptual map as follows:

M↑[M < qi] =

{
ϖ
i
→ ϱ if i < c

ϖ
i if i ↓ c

, (8)

Low repetition Mid repetition High repetition

Figure 8. Examples of target images used by FastProtect. In our
target image analysis (Figure 3), we used both low and high repe-
tition target images.

where qi = decile(M, i). The function decile(M, i) com-
putes the i-th decile value of M (from the highest value).
This scaling function is designed to perform stepwise scal-
ing to the perceptual map. For each region corresponding
to a specific decile, we downscale by a factor of ϖ. Without
this scaling, many regions would take very small perturba-
tions, significantly reducing the overall protection efficacy.
For the areas up to the c-th decile, we additionally multi-
ply by ϱ to increase the perturbation intensity in the least
noticeable regions. This compensates for the overall per-
turbation magnitude lost in more noticeable regions. In our
work, we use (ϱ,ϖ, c) = (1.3, 0.91, 3). The inference algo-
rithm is detailed in Algorithm 2.

B. Related Work

Our protection method involves injecting adversarial pertur-
bations into input images, a method extensively studied in
the adversarial attack domain. In this section, we discuss
two areas closely related to our motivation.
Universal Adversarial Perturbation (UAP). Moosavi-
Dezfooli et al. [36] demonstrated that a single perturbation
could be used to attack various images, in contrast to the
traditional image-specific perturbations. This approach is
significantly more efficient in terms of computation time
compared to per-instance adversarial attacks because it does
not require iterative optimization for each individual image.
Subsequently, Hayes and Danezis [14] presented a method
for generating UAPs using generative models, showing im-
proved efficiency and effectiveness over previous methods.
Similarly, Mopuri et al. [38] utilized generative networks to
create adversarial examples. In addition, there have been
various attempts to find UAPs tailored to the image recog-
nition tasks [5, 29, 37, 39]. However, these methods are
not aligned with and cannot be adapted to the image pro-
tection task. Instead, in our study, we designed MoP with
a focus on creating a protection framework that is both fast
and maintains high performance. Our approach is special-
ized for image protection, differing from the general UAP-
related methodologies introduced in adversarial attack field.
Invisible Adversarial Perturbation. Achieving high in-

Algorithm 1: Training stage of FastProtect (Single-batch example)
Input: Training dataset XD, target images {yl

,ym
,yh

}, # protection perturbations K, # VAE encoder layers L,
Perturbation budget (strength) ε, Training steps N

Output: Assignment function A, mixture-of-perturbation {ϑg,!}

/* Compute assignment function prior to train MoP */
A ↔ K-means++(E(XD), K)

/* MoP training */
Initialize {ϑg, !} ↔ 0
zl
y
, F

l

y
↔ E(yl

, L); zm
y
, F

m

y
↔ E(ym

, L); zh
y
, F

h

y
↔ E(yh

, L) // Prepare target images
for n ↔ 1 to N do

x ↔ sample-batch(XD); z ↔ E(x)
k ↔ A(z); t ↔ argmin

i↔{l,m,h} ||H(z)↑H(zi
y
)||1 // Refer to Eq. 4 and 6

x ↔ x+ ϑ
t

g
+!t

k

z, F ↔ E(x, L)

LT = ||z↑ zt
y
||
2
2 +

ω

L

∑
L

l=1 ||F
t,l

↑ F
t,l

y
||
2
2 // Multi-layer protection loss (Eq. 5)

{ϑ
t

g
, !t

k
} ↔ Adam(↗{εtg,!t

k}LT)

{ϑ
t

g
, !t

k
} ↔ Clamp({ϑt

g
, !t

k
}, ↑

ϑ

2 ,
ϑ

2)
end

Algorithm 2: Inference stage of FastProtect
Input: Image x
Output: Protected image x̂
H, W ↔ size(x)
z ↔ E(resize(x; (512, 512)))

/* MoP with adaptive targeted protection */
k ↔ A(z)
t ↔ argmin

i↔{l,m,h} ||H(z)↑H(zi
y
)||1 // Utilize pre-computed target entropy

ϑ ↔ resize(ϑt
g
+!t

k
; (H,W)) // Match MoP’s resolution to input image

/* Adaptive protection strength */
M ↔ LPIPS(x, x+ ϑ) // Use surrogate protected image
M↑

↔ S(1↑M) // Refer to Eq. 8
x̂ = x+M↑

↘ ϑ

Table 6. Quantitative report on the effect of adaptive targeted pro-
tection shown in Figure 7a.

Target Image Inference Domains
Object Face Painting Cartoon

Low rep. 200.1 327.7 347.5 237.3

Mid rep. 207.2 297.9 349.3 234.6
High rep. 208.3 270.7 348.5 211.8

Adaptive target 208.5 320.2 349.4 235.4

visibility in adversarial attacks has garnered significant re-
search interest. Several methods focus on restricting the re-
gions of perturbations. Some approaches use the L0 norm to
generate sparse perturbations [7, 35], while others confine
perturbations to small, salient areas to reduce visual distor-

tions [8]. Various studies have targeted specific elements
such as low-frequency components [13, 32] and have uti-
lized advanced constraints like color components [47, 59]
or quality assessments [53]. Additionally, Luo et al. [31]
explored techniques for creating invisible and robust adver-
sarial examples based on the human visual system. More
recently, Laidlaw et al. [25] investigated perceptual adver-
sarial robustness and adopted LPIPS [58] in adversarial per-
turbation optimization.

Although invisibility has been highly emphasized in ad-
versarial attacks, it is less explored in the image protection
task. Many methods enhance invisibility implicitly by min-
imizing the budget used, but this often leads to a trade-
off with protection efficacy, resulting in decreased perfor-

Table 7. Quantitative comparison when fix the perturbation strength (ω) to eight for all the protection frameworks.

Method (ε = 8) Latency Object Face Painting Cartoon
CPU / GPU Invisibility: DISTS (≃) / Efficacy: FID (⇐)

AdvDM [28] 1210s / 35s 0.129 / 199.5 0.152 / 303.7 0.117 / 346.8 0.194 / 196.5
PhotoGuard [46] 370s / 7s 0.184 / 211.9 0.258 / 371.1 0.165 / 377.4 0.221 / 227.6

Anti-DB [51] 7278s / 225s 0.164 / 197.4 0.193 / 317.4 0.143 / 343.9 0.231 / 184.6
Mist [27] 1440s / 40s 0.185 / 217.2 0.259 / 365.8 0.166 / 386.2 0.223 / 223.7
Impasto [1] 830s / 19s 0.131 / 188.9 0.198 / 298.4 0.123 / 352.4 0.179 / 201.1
SDST [56] 1410s / 24s 0.170 / 198.0 0.244 / 302.1 0.152 / 354.1 0.199 / 196.7
FastProtect 2.9s / 0.04s 0.097 / 200.4 0.149 / 308.9 0.048 / 348.0 0.186 / 220.3

mance. Ahn et al. [1] constrain perturbations based on the
human visual system using various modules during the op-
timization process. While effective, they require many ad-
hoc components. In contrast, FastProtect uses LPIPS to cre-
ate perceptual maps and apply masking, which is a simpler
and more streamlined approach. This differs from Zhang
et al. [58], who use LPIPS in the optimization process.

C. Experimental Setups

Datasets. We utilize the Object, Face, Painting, and Car-

toon domains in both the training and benchmark datasets.
When constructing the training dataset, we randomly sam-
ple 20k images from ImageNet [9] for the Object domain,
resizing all images to 5122. No augmentation is applied.
For the Face domain, we use 20k images randomly sam-
pled from the FFHQ dataset [19]. The images, originally
10242 and face-aligned [20], are all downscaled to 5122,
without further augmentations. The Painting dataset is cre-
ated by randomly sampling 20k images from the WikiArt
dataset [45], resizing them to 5122. We filter out images
with resolutions outside the range of 512 to 2048-px. For
the Cartoon dataset, we use Webtoon artworks published
on NAVER Webtoon, sampling 20k images only the works
with permission from the original creators for research pur-
poses. Similar to the Painting dataset, we apply resolution
filtering and resize the images to 5122.

To make the benchmark dataset, we select 20 objects
from the personalization subject dataset proposed by Ruiz
et al. [44] for the Object domain. Each object consists of 5-6
images. When we conduct the main comparison (Table 2),
we use images resized to 5122, and for the arbitrary image
analysis (Table 4), we apply protection to the original res-
olution images. For the Face domain, we followe Van Le
et al. [51] and randomly sample 20 identities from VG-
GFace2 [4], each identity consisting of 12 images resized to
5122. The Painting dataset is compiled by randomly sam-
pling (but not overlap to the training dataset) 20 artists from
the WikiArt dataset, each artist represented by 10 artworks,
all resized to 5122. For the Cartoon domain, we randomly
sample 20 Webtoon works (but also no overlap to the train-
ing dataset) from the Webtoon dataset. In this dataset, we

only use facial images of major cartoon characters by crop-
ping and aligning all the images. This reflects the common
practice in cartoons and illustrations where characters are
the main focus to both readers and artists. In the main com-
parison we use 5122 images, while the arbitrary analysis
maintains the original resolution.

The cartoon images used in the benchmark dataset are
also permitted by the artists for research only purpose. The
list of cartoon works featured in this paper is as follows:
<Yumi’s Cells>, <Maru is a Puppy>, <Free Draw>,
<The Shape of Nightmare>, <See You in My 19th Life>,
<Lookism>, and <Love Revolution>.

Baselines. FastProtect is compared with existing diffusion-
based mimicry protection frameworks: AdvDM [28], Pho-
toGuard [46], Anti-DreamBooth (Anti-DB) [51], Mist [27],
Impasto [1], and SDST [56]. We follow the official settings
for all the baselines by using their official codes. However,
for PhotoGuard, we use the target image of Mist [27] by
following the protocols of Xue et al. [56] while we use the
Impasto’s target image for the Impasto.

Evaluation. For the primary evaluation assessment, we use
DISTS [10] to measure the invisibility of the protected im-
age and FID [15] to evaluate the protection efficacy of the
personalized diffusion methods. In addition, in here, we
also compare the protection frameworks using other met-
rics: To evaluate invisibility, we include LPIPSVGG [58] and
AHIQ [26]. Note that LPIPSVGG measures the perceptual
distance in the VGG feature space, which is different from
the feature space used in our perceptual map creation mod-
ule (i.e. AlexNet). For evaluating protection efficacy, we
use TOPIQ-NR [6] and QAlign [54].

When preparing mimicry outputs, we personalize the
diffusion models using the protected image with LoRA [17]
by default, employing default settings for all the personal-
ization methods. To generate outputs, we use different in-
ference prompts than those used during training to simulate
black-box caption scenarios [51]. For example, we train
the diffusion models with LoRA using captions of “A paint-
ing in <sks> style” prompt and perform inference with “A
painting of a house in <sks> style”.

Table 8. Additional quantitative comparison on the Subject domain.

Domain: Subject Invisibility Protection Efficacy
DISTS (≃) LPIPSVGG (≃) AHIQ (⇐) FID (⇐) TOPIQ-NR (≃) QAlign (≃)

AdvDM [28] 0.197 0.362 0.540 220.0 0.458 2.139

PhotoGuard [46] 0.203 0.347 0.575 223.0 0.506 2.396
Mist [27] 0.185 0.322 0.578 217.2 0.523 2.328
SDST [56] 0.242 0.402 0.575 219.2 0.542 2.442
Anti-DB [51] 0.239 0.413 0.510 214.4 0.439 2.148
Impasto [1] 0.201 0.378 0.588 213.8 0.473 2.183
FastProtect 0.155 0.258 0.583 223.0 0.507 2.364

Table 9. Additional quantitative comparison on the Face domain.

Domain: Face Invisibility Protection Efficacy
DISTS (≃) LPIPSVGG (≃) AHIQ (⇐) FID (⇐) TOPIQ-NR (≃) QAlign (≃)

AdvDM [28] 0.173 0.338 0.528 303.8 0.466 2.493
PhotoGuard [46] 0.189 0.357 0.557 308.7 0.630 3.113
Mist [27] 0.154 0.310 0.560 307.5 0.667 3.131
SDST [56] 0.244 0.431 0.561 302.1 0.629 3.019
Anti-DB [51] 0.162 0.309 0.543 301.4 0.484 2.411

Impasto [1] 0.198 0.388 0.562 298.4 0.565 2.939
FastProtect 0.149 0.280 0.566 308.9 0.558 2.851

D. Discussions

Arbitrary Resolution. As shown in Table 4, FastProtect
can effectively handle arbitrary resolution images simply
by resizing the MoP to match the resolution of an input
image. In contrast, the baseline method, PhotoGuard [46],
suffers a much greater performance drop compared to ours.
There are two main factors that can impact protection per-
formance for arbitrary resolution scenarios. The first factor
is the need to adjust the size of the perturbation to match the
size of the image when injecting the perturbation. In theory,
iterative optimization methods do not face this issue. How-
ever, in practice, due to the VRAM constraint of GPUs, im-
ages beyond (typically 10242-px in a A100) a certain size
must be split and protected in segments. On the other hand,
our model does not have memory issues, but since the pre-
trained MoP is fixed as 5122-px, it requires resizing to fit
an input image. The second factor is the necessity to down-
size the protected image due to resolution requirements that
each diffusion models has (e.g., 5122 for SD v1, 7682 for
SD v2, or 10242 for SD-XL).

Our method appears to be affected by the information
loss due to the two resize operations (one when applying
MoP and the other during personalization). Of course, we
observed that all protection frameworks suffer some degree
of protection efficacy reduction during personalization, and
our model is no exception (e.g., FID: 220.3 to 204.0). Such
a reduction is due to the fine perturbations being lost during
the downsize process (to match the resolution that of the dif-
fusion models require). In contrast, although PhotoGuard

performs optimization in a full-resolution, its robustness in
this aspect seems limited. We suspect that the severe degra-
dation occurs since the need to split the high-resolution im-
ages and more importantly the tendency of PhotoGuard to
create very fine perturbations specific to each image make
it particularly vulnerable to downsizing. On the other hand,
since our model learns perturbations that work well on av-
erage across the training data, the perturbations tend to be
more coarse. However, creating a more practically robust
model requires further investigation and future work to fully
reveal these aspects.

Assignment Function. In FastProtect, the assignment
function A groups images as shown in Figure 6c. We ob-
served that each perturbation has characteristic groupings
of images. For example, the first perturbation (top left
in Figure 6c) predominantly groups images of faces, por-
traits, or close-up shots of objects, with a notably dark back-
ground. The second perturbation (top right) includes im-
ages with moderate scene complexity or texture. The third
perturbation (bottom left) selects the simplest images in the
dataset, particularly cartoons or images with simple objects
and minimal backgrounds in the Subject domain. Finally,
the fourth perturbation (bottom right) groups the most com-
plex textured images. For instance, in the subject domain,
images with detailed textures like grassy backgrounds are
mostly selected here, and in the face, cartoon, and painting
domains, images with complex and detailed backgrounds or
scenes are also grouped in this category.

Adaptive Targeted Protection. Table 6 shows a quantita-

tive report of Figure 7a. Similarly, the performance in each
test domain varies according to the pattern repetition of the
target image. For example, high repetition target images
perform well in the Object domain but poorly in the Face
and Cartoon domains. This is because the Object domain
mostly contains images with dense textures and complex
scenes, which match well with the frequency of high repeti-
tion target images. Conversely, the Cartoon domain, which
typically has very flat textures, does not benefit from high
repetition target images. For the Face domain, even though
it is similar to the Object domain in being natural photos,
the backgrounds are blurred or monochromatic, and the tex-
tures of faces are frequently flat, differing significantly from
objects. For the low repetition target images, the opposite
trend is observed. Performance decreases in the Object do-
main but improves in the Face and Cartoon. In the Paint-
ing domain, performance remains consistent across all tar-
get images. This is because the artworks in the Painting
domain exhibit a wide variety of textures and complexities,
leading to an average performance across different target
images. For instance, the Painting domain dataset includes
diverse images ranging from Van Gogh-style oil paintings
to black and white sketch drawings.
Comparison at the Same Protection Strength. In the
main paper, we compare FastProtect with other protec-
tion frameworks by adjusting the protection strength (ε) to
match the protection level across methods for a fairer com-
parison (Table 2). The reason for this evaluation setup is
that we observed different protection losses produce vary-
ing protection-invisibility trade-offs. Therefore, protection
efficacy alone cannot be used to judge the superiority of
a model. In Figure 10, we report the results by varying
the protection strength and analyzing protection efficacy
vs. invisibility. However, such benchmark requires signifi-
cant computational resources, thus we adjust the protection
strength to align the trade-off line for comparison.

Still, one might wonder about the performance when the
protection strength is fixed for all methods. To answer this
possible inquiry, we conduct a comparison with all protec-
tion frameworks by fixing the protection strength ε at 8, as
shown in Table 7. In most cases, FastProtect demonstrates
outstanding results in terms of invisibility while achiev-
ing moderate protection efficacy. This balance suggests
that FastProtect performs exceptionally well when consid-
ering the protection-invisibility trade-off. In the Cartoon
domain, Impasto [1] shows better results in invisibility, but
our method significantly outperforms Impasto in efficacy,
which indicates a favorable trade-off trend.
Limitation & Future Directions. As discussed in Sec-
tion 5, all protection solutions, including our model, still
need improvements in terms of invisibility. However, as an-
alyzed by Ahn et al. [1], to prevent mimicry, perturbations
must be applied broadly across the image. This character-

istic makes it very challenging to achieve a high level of
invisibility beyond a certain point.

Moreover, a common phenomenon across all models is
that, even when the same budget of perturbation is applied
to all images, the degree of protection varies from image
to image. Interestingly, if a specific model fails to protect
a certain image, other models also tend to struggle with it.
This issue likely stems from the fact that all frameworks
rely on texture or semantic losses (or both), thus they all
share the same vulnerability. A potential solution to this
problem is to measure how difficult an image is to protect
in advance and dynamically adjust the budget accordingly.
However, practically, it is challenging to determine the dif-
ficulty of protection before the personalization. Therefore,
predicting the protectability of input images and adjusting
the intensity of perturbations adaptively is a worth a try re-
search direction. The another advantage of this approach is
that easy-to-protect images can be given lower perturbation
strength, naturally enhancing invisibility.

E. Additional Results

Figure 11 and 12 show additional qualitative comparisons
of existing protection frameworks. In Table 8, 9, 10, and
11, we evaluate the protection frameworks using the addi-
tional metrics. In these comparisons, our model demon-
strates better invisibility while showing average protection
efficacy; similar protection performance with the texture
loss model group. Notably, models that primarily utilize
texture loss (e.g., PhotoGuard, Mist, SDST, Impasto, and
ours; although Mist and SDST utilize both losses, we ob-
served that texture loss has a much higher influence) tend to
exhibit relatively high invisibility. Conversely, AdvDM and
Anti-DreamBooth, which use semantic loss, show higher
protection efficacy in most of the protection efficacy mea-
sures. This phenomenon highlights that the different losses
exhibit varying trends. Understanding why these losses per-
form differently across metrics will be crucial for future ad-
vancements in protection loss design.

In Figure 9, we compare the latency versus input im-
age resolution on both CPU and GPU. On the CPU (Ap-
ple silicon), FastProtect completes the protection in only
4 seconds, while all other methods require significantly
more time; 15 minutes for PhotoGuard [46] and 10 hours
for Anti-DreamBooth [51]. We also include the protection
efficacy versus invisibility trade-off comparison for both
the Object and Cartoon domains in Figure 10. FastProtect
demonstrates an improved trade-off curve in both domains.

Table 10. Additional quantitative comparison on the Painting domain.

Domain: Painting Invisibility Protection Efficacy
DISTS (≃) LPIPSVGG (≃) AHIQ (⇐) FID (⇐) TOPIQ-NR (≃) QAlign (≃)

AdvDM [28] 0.153 0.267 0.572 357.6 0.438 2.889
PhotoGuard [46] 0.107 0.189 0.579 350.9 0.613 3.228
Mist [27] 0.129 0.219 0.579 357.0 0.615 3.218
SDST [56] 0.152 0.258 0.583 354.1 0.637 3.288
Anti-DB [51] 0.114 0.184 0.579 347.7 0.452 2.860

Impasto [1] 0.123 0.221 0.579 352.4 0.564 3.141
FastProtect 0.110 0.180 0.577 356.1 0.506 2.987

Table 11. Additional quantitative comparison on the Cartoon domain.

Domain: Cartoon Invisibility Protection Efficacy
DISTS (≃) LPIPSVGG (≃) AHIQ (⇐) FID (⇐) TOPIQ-NR (≃) QAlign (≃)

AdvDM [28] 0.271 0.440 0.445 212.5 0.579 2.247
PhotoGuard [46] 0.209 0.348 0.587 219.1 0.683 2.618
Mist [27] 0.223 0.365 0.585 223.7 0.681 2.645
SDST [56] 0.237 0.398 0.589 222.7 0.712 2.755
Anti-DB [51] 0.294 0.468 0.445 225.4 0.429 2.166

Impasto [1] 0.207 0.376 0.602 215.5 0.590 2.294
FastProtect 0.186 0.301 0.585 220.3 0.656 2.530

(a) On CPU (Apple M1 Max) (b) On GPU (NVIDIA A100)

Figure 9. Inference latency (log-scaled) vs. image size on both CPU and GPU environments.

(a) Object domain (b) Cartoon domain

Figure 10. Protection efficacy vs. invisibility comparison on the Object and Cartoon domains.

Figure 11. Additional qualitative comparison. For each example, (top) protected image and (bottom) mimicry image generated by LoRA.

Figure 12. Additional qualitative comparison. For each example, (top) protected image and (bottom) mimicry image generated by LoRA.

	Introduction
	Background
	Method
	Perturbation Pre-Training
	Adaptive Inference

	Experiment
	Model Comparison
	Model Analysis

	Conclusion
	Implementation Details
	Related Work
	Experimental Setups
	Discussions
	Additional Results

