InterDyn: Controllable Interactive Dynamics with Video Diffusion Models
Supplementary Material

A. Ablation study

We use binary hand masks as our control signal due
to their widespread availability via methods such as
GroundingDINO [52] and SAM2 [65]. However, other con-
trol signals—such as skeletons or meshes—might provide
richer controllability, since they encode pseudo-3D infor-
mation and fine-grained correspondences across frames.

Figure S1. Evaluated control signals. From top to bottom: binary
mask, joints in the style of OpenPose [9], and colored mesh [61].
Left: w/o object occlusions. Right: w/ object occlusions.

We evaluate the impact of our control signal on perfor-
mance using the DexYCB dataset [11]. It provides 8,000
videos of hands grasping an object, along with ground-truth
3D hand/object poses/meshes. DexYCB uses the paramet-
ric human hand model MANO [67], rendered here as (i) a
binary mask (similar to our SSV2 control signal), (ii) joints
similar to OpenPose [9], and (iii) a colormap based on [61],
see Fig. S1. Additionally, when generating hand masks for
SSV2 with SAM2, hand-held objects provide an object con-
tour in the hand mask, inadvertently providing InterDyn
with information on the trajectory and shape of the object
(a limitation we share with our baseline CosHand [70]). To
evaluate its impact, we train separate InterDyn versions on

DexYCB, where we render the control signal either with or
without the contour of hand-held objects, see Fig. S1.

We present the ablation results in Tab. S1, which indicate
that both the type of control signal and contour-leaking ef-
fect have minimal impact on image quality, spatio-temporal
dynamics, and motion fidelity. These findings softly hint
that maintaining hand consistency and driving object inter-
actions does not heavily depend on detailed control signals,
rather it does on the video generation model’s implicit un-
derstanding of interactive dynamics. This is great news,
highlighting the potential of using simple, readily available
control signals to generate high-quality video outputs.

B. State comparison

For completeness, we also compare against CosHand [70]
for the second frame of each video and compare these re-
sults with the baselines reported in [70], see Tab. S2. For
MCVD, UCG, IPix2Pix, TCG, and CosHand (the first five
rows), we adopt the results reported in [70] without retrain-
ing. Since CosHand does not provide, nor specify, an exact
validation split, these numbers are not directly comparable.
We also run CosHand on our own validation set.

Method SSIM ¢ PSNR 1 LPIPS |
MCVD [70, 75] 0.231 8.75 0.307
UCG [66, 70] 0.340 12.08 0.124
IPix2Pix [7, 70] 0.289 9.53 0.296
TCG [66, 70] 0.234 9.05 0.221
CosHand [70] 0.414 13.72 0.116
CosHand [70] (our val-set) 0.698 20.55 0.194
Ours (256 x256) 0.785 23.93 0.127
Ours (256 x384) 0.796 24.37 0.122

Table S2. State comparison on the SSV2 dataset. We compare
InterDyn with CosHand and other static baseline methods for gen-
erating a single future frame. We report results for InterDyn at two
resolutions: 256x256 (matching CosHand) and 256x384 (match-
ing SVD’s prior).

Control Occlusion SSIM 1 PSNR 1 LPIPS | FVD | Motion Fidelity 1 [93]
; 256x256 256%384 256x256 256%384 256x256 256%384 256x256 256%384 256x256 256x384
Mask X 0.829 0.847 24.08 24.75 0.123 0.121 39.94 41.99 0.666 0.670
Joints X 0.827 0.846 24.00 24.72 0.124 0.122 40.02 41.17 0.673 0.676
Mesh X 0.828 0.847 24.14 24.83 0.122 0.121 41.99 4226 0.663 0.665
Mask 0.829 0.847 24.15 24.79 0.122 0.121 37.64 41.18 0.675 0.672
Joints 0.827 0.846 24.05 24.69 0.124 0.122 44.07 41.41 0.665 0.676
Mesh 0.829 0.848 24.15 24.86 0.121 0.119 40.11 38.83 0.675 0.680

Table S1. Ablation on control signal. We train and evaluate InterDyn on DexYCB [11]. We ablate: the type of control signal (mask,
joints, and a colored mesh rendering), the presence of object occlusions in the control signal, and two image resolutions (256 x256 &

256x384).

C. Limitations

InterDyn performs best on translations relative to the cam-
era; dropping objects, moving objects toward or away from
the camera, and picking up objects. InterDyn struggles with
complex non-translational interactions (e.g. throwing one
object at another, burying an object, or poking a tower of
stacked objects). It also underperforms in scenarios where
depth is ambiguous in the input image, see Fig. S2.

We report the 20 video classes on which InterDyn
256x384 performs best and worst in terms of motion fi-
delity, alongside the number of videos for each class in the
validation set and the average motion fidelity score for that
class, see Tab. S3. We generally notice that InterDyn per-
forms less effectively on underrepresented classes within
the dataset, while at the same time, many of these underrep-
resented classes involve complex dynamics, such as spin-
ning, burying, or folding objects.

Figure S2. Limitations of InterDyn. We show challenging scenarios in which InterDyn underperforms, such as (from top to bottom):
object consistency in highly dynamic scenarios, no object in the first frame, depth ambiguity, and burying an object. Q Zoom in for details.

Label Count MF 1 (avg.) Label Count MF 7 (avg.)
Moving something down 182 0.86 Spinning something so it continues spinning 51 0.47
Pulling something from right to left 57 0.84 Poking something so that it falls over 42 0.46
Moving something up 197 0.82 Pulling something out of something 33 0.46
Pulling something from left to right 83 0.82 Folding something 187 0.46
Holding something over something 165 0.80 Poking something so it slightly moves 71 0.45
Holding something 103 0.80 Spinning something that quickly stops spinning 47 0.45
Moving something across a surface without it falling down 26 0.79 Taking something out of something 66 0.45
Pushing something from left to right 123 0.79 Unfolding something 122 0.44
Holding something in front of something 138 0.78 Putting hi thing, and hing on the table 60 0.44
Pushing something from right to left 122 0.77 Piling something up 27 0.43
Putting something on a surface 85 0.77 Something being deflected from something 10 0.41
Moving something across a surface until it falls down 28 0.77 Poking something so lightly that it doesn’t or almost doesn’t move 83 0.41
Lifting something with something on it 369 0.77 Burying something in something 4 0.41
Squeezing something 216 0.77 Showing something next to something 19 0.40
Lifting something up completely without letting it drop down 66 0.75 Pushing something so it spins 23 0.39
Throwing something in the air and letting it fall 6 0.75 Poking something so that it spins around 7 0.39
Moving something closer to something 105 0.75 Putting number of something onto something 5 0.37
Holding something next to something 135 0.75 Poking a stack of something so the stack collapses 8 0.34
Putting something that can’t roll onto a slanted surface, so it stays where it is 15 0.75 Showing something on top of something 14 0.34
Trying to bend something unbendable so nothing happens 74 0.74 Wiping something off of something 9 0.32

(a) Top 20 categories. Contains many translation dynamics with re-
spect to the camera, such as moving something up or from left to right.

(b) Bottom 20 categories. Contains very complex dynamics such as
spinning, burying, or showing an object from behind something.

Table S3. Motion fidelity for different action classes on the Something-Something-v2 dataset. The table shows the top and bottom 20
categories, together with the number of samples for that category in the validation set.

Figure S3. Additional qualitative results on SSV2. We show multiple challenging examples, such as (from top to bottom): spinning a
fidget spinner, tilting a sleek ridged object, squeezing a ball despite receiving an incomplete control signal, hand object-object interaction,
zooming in, squeezing a sponge, dropping a hairband, or hand object-object interaction despite receiving a sparse control signal.

D. Additional Results

We show additional qualitative examples in Fig. S3.

E. Pretending class

Similar to our baseline CosHand [70], we removed the “pre-
tending” class from SSV2 for training and validation, to
avoid introducing ambiguous training signals. To compare
its performance on this class to our results in Tab. I, we

run InterDyn on the “pretending” class in the validation
split (828 samples for 256x384 and 1156 for 256x256),
see Tab. S4. While the generations stay consistent in terms
of image quality, we notice that motion fidelity is lower.
Unfortunately, since FID, KID, FVD, and KVD compare
distributions and are heavily dependent on the number of
data samples, we cannot directly compare these metrics to
those reported in Tab. 1.

Method SSIM 1 PSNR 1 LPIPS | FID | KID | FVD | KVD | Motion Fidelity 1 [93]
Seer [23] 0.357 9.42 0.657 74.86 0.060 640.06 147.07 —
DynamiCrafter [89] t — — — 34.96 0.016 314.05 34.22 —
CosHand-Independent [70] 0.620 16.79 0.310 9.85 0.003 123.59 15.97 0.396
CosHand-Autoregressive [70] 0.534 14.80 0.410 24.10 0.012 139.07 11.18 0.512

Ours 256x256 0.666 18.52 0.256 14.29 0.004 49.02 -0.131 0.573

Ours 256384 0.683 18.99 0.249 17.39 0.004 64.18 -0.450 0.572

Table S4. Quantitative comparison on the “pretending” class of SSV2. We compare against Seer [23], DynamiCrafter [89] and two
video extensions of our baseline CosHand [70]. Methods denoted with T do not use SSV2 as their training dataset.

	Introduction
	Related Work
	Controllable Interactive Dynamics
	Experiments
	Implementation
	Metrics
	Probing Dynamics with Object Collision Events
	Generating Human-Object Interactions

	Conclusion
	Ablation study
	State comparison
	Limitations
	Additional Results
	Pretending class

