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S1. Generalization Ability
Hold-out test set generalization is essential for assessing
how well the proposed Latent Space Anomaly Schrödinger
Bridge (LASB) can handle new, unseen data, which is piv-
otal for real-world applications. This type of generalization
ensures the model can identify anomalies not just in con-
trolled settings but in practical environments where condi-
tions may vary widely from the training data. In the context
of anomaly detection, the ability to generalize effectively
means the model can accurately detect deviations without

Category 2x 4x 8x
O

bjects
Bottle 99.7/98.7/96.3 99.7/98.7/96.3 99.62/98.62/96.3
Cable 96.35/99.25/97.3 96.35/99.25/97.3 96.33/99.23/97.3

Capsule 98.2/99.3/97.3 98.2/99.3/97.3 98.2/99.3/97.35
Hazelnut 99.65/99.25/99.45 99.65/99.25/99.45 99.63/99.26/99.43
Metal Nut 99.5/98.4/97.2 99.5/98.4/97.2 99.5/98.42/97.2

Pill 99.15/98.7/96.15 99.15/98.7/96.15 99.06/98.67/96.18
Screw 96.6/97.7/97.5 96.6/97.7/97.5 96.52/97.62/97.45

Toothbrush 99.6/99.65/99.3 99.6/99.65/99.3 99.57/99.56/99.25
Transistor 99.45/99.4/99.15 99.45/99.4/99.15 99.43/99.4/99.08

Zipper 99.75/99.3/99.2 99.75/99.3/99.2 99.68/99.25/99.2

Textures

Carpet 99.25/99.15/99.4 99.25/99.15/99.4 99.26/99.21/99.37
Grid 99.55/99.5/98.95 99.55/99.5/98.95 99.53/99.45/98.93

Leather 99.65/99.55/99.2 99.65/99.55/99.2 99.58/99.48/99.2
Tile 99.25/99.65/99.35 99.25/99.65/99.35 99.23/99.58/99.33

Wood 99.55/99.6/99.25 99.55/99.6/99.25 99.48/99.55/99.23
Mean 99.01/99.14/98.33 99.01/99.14/99.83 98.98/99.11/98.32

Table S1. Detection results on MVTec-AD dataset for multi-class
anomaly detection with AUROCcls/APcls/F1maxcls metrics using
multiple samplings (2x, 4x, 8x denote the number of samplings
considered)

being misled by noise or irrelevant data variations, thereby
avoiding costly false positives or missed defects.

When applying the LASB model to a diverse dataset like
VisA, which is known for its varied anomaly presentations
and complex visual settings, the hold-out test set generaliza-
tion becomes a critical measure of the model’s utility across
different scenarios. The performance metrics across various
models in the Table. S4 reveal that the LASB model con-
sistently outperforms most other models in different cate-
gories, achieving impressive results in detecting anomalies.
Particularly notable is LASB’s superior performance in cat-
egories like pcb4, pipe fryum, and chewinggum, where it
scores remarkably high precision and recall rates. LASB’s
outstanding mean scores of 94.2% precision and 94.5% re-
call across all categories underscore its capability to gener-
alize well across different types of data and anomaly con-
ditions. The second-highest performing model, DiAD [6],
has mean precision and recall scores of 86.8% and 85.1%
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Category 2x 4x 8x

O
bjects

Bottle 99.4/89.2/62.5 99.42/89.17/62.52 99.4/89.2/62.5
Cable 96.5/65.3/58.2 96.52/65.32/58.22 96.5/65.3/58.2

Capsule 98.2/61.3/66.3 98.22/61.27/66.32 98.2/61.3/66.3
Hazelnut 99.25/88.45/86.4 99.25/88.47/86.42 99.23/88.43/86.4
Metal Nut 99.25/99.15/98.5 99.22/99.17/98.52 99.23/99.16/98.5

Pill 98.15/75.6/64.45 98.12/75.62/64.4 98.13/75.6/64.43
Screw 98.75/59.7/62.7 98.77/59.67/62.75 98.73/59.65/62.7

Toothbrush 99.2/79.65/80.25 99.22/79.67/80.22 99.2/79.63/80.21
Transistor 97.25/69.5/57.25 97.22/69.47/57.22 97.21/69.45/57.21

Zipper 99.25/78.55/79.7 99.22/78.52/79.72 99.21/78.51/79.7

Textures

Carpet 98.65/78.55/68.25 98.67/78.57/68.3 98.63/78.53/68.26
Grid 99.05/76.25/66.25 99.1/76.27/66.25 99.06/76.23/66.23

Leather 99.25/75.3/66.95 99.27/75.32/67.05 99.26/75.3/67.01
Tile 99.25/97/73.7 99.27/97.07/73.67 99.23/97.05/73.65

Wood 97.3/78.6/67.45 97.32/78.57/67.47 97.3/78.55/67.43
Mean 98.58/78.14/70.59 98.59/78.14/70.61 98.57/78.12/70.58

Table S2. Localization results on MVTec-AD dataset for multi-
class anomaly localization with AUROCseg/APseg/F1maxseg

metrics using multiple samplings (2x, 4x, 8x denote the number
of samplings considered)

respectively, which are significantly lower than LASB’s
94.2% and 94.5%. This highlights LASB’s superior detec-
tion capabilities and robustness by a margin of over 7%,
underscoring its enhanced effectiveness in anomaly detec-
tion.

Now in localization, the performance of LASB from Ta-
ble S3 distinctly highlight the LASB model’s superior ca-
pability in anomaly localization on the VisA dataset, out-
performing other models significantly. With mean scores
of 98.2% for AUROCseg , 46.4% for APseg , and 52.6%
for F1maxseg , LASB demonstrates exceptional accuracy
and reliability in identifying and localizing various types of
anomalies across different categories. The second-highest
performing model, DiAD [6], shows mean scores of 96.0%
for AUROCseg , 26.1% for APseg , and 33.0% for F1maxseg .
The substantial performance gap, especially in APseg and
F1maxseg where LASB leads by over 20%, illustrates
LASB’s enhanced precision and effectiveness. This com-
parison underlines LASB’s robustness and its advanced
ability to manage complex anomaly detection and localiza-
tion tasks with greater efficiency.

S2. Extended Results
S2.1. MvTec Results
Table S5 presents an exhaustive comparison of state-of-
the-art methods for anomaly detection and localization on
the widely-used MVTec-AD dataset. The methods are
categorized into class-based and unified (multi-class) ap-
proaches, and their performances are reported in terms of
two key metrics: Image-level AUROC (I-AUROC) and
Pixel-level AUROC (P-AUROC). Each column represents
a specific object class from the dataset, while the rows out-
line methods published in top-tier conferences, highlight-
ing the venue, model type, and performance across the

object classes. The methods vary significantly in design,
ranging from embedding-based models (e.g., SimpleNet,
PatchCore) to advanced diffusion-based frameworks (e.g.,
DiffAD, LASB). Notably, LASB, the proposed method,
achieves the highest average scores in both I-AUROC
(99.66) and P-AUROC (99.15), demonstrating state-of-the-
art performance.

The table S5 underscores the evolving nature of anomaly
detection models, transitioning from traditional embedding
and GAN-based architectures to more powerful diffusion
models. Diffusion-based methods like LASB consistently
outperform earlier approaches, particularly in challenging
classes like ”Screw” and ”Transistor,” where subtle anoma-
lies often go undetected. This highlights the robustness
of diffusion frameworks in modeling complex patterns and
their generalizability across diverse object types. The re-
sults validate LASB’s capability to outperform other dif-
fusion methods, such as TransFusion [3] and D3AD [16],
solidifying its position as a state-of-the-art solution in both
class-based and unified setups.

S2.2. VisA Results
Table S6 details the performance of various methods on the
VisA dataset, another prominent benchmark for anomaly
detection and localization. Similar to Table S5, methods are
divided into class-based and unified multi-class approaches,
with I-AUROC and P-AUROC metrics used for evalua-
tion. The dataset includes unique classes like PCB vari-
ants, macaroni shapes, and food items, providing a chal-
lenging testbed for models. LASB, the proposed method,
achieves competitive results, outperforming many state-of-
the-art techniques in both class-based (I-AUROC: 99.4, P-
AUROC: 99.3) and unified scenarios (I-AUROC: 94.2, P-
AUROC: 98.18).

The table S6 highlights LASB’s strong generalization
across diverse classes, particularly in the class-based set-
ting. Notably, LASB achieves near-perfect scores in most
PCB and macaroni categories, reflecting its robustness in
detecting subtle, class-specific anomalies. Compared to
other advanced methods like OmniAL [22] and TransFu-
sion [3], LASB demonstrates superior localization accu-
racy (P-AUROC), especially in complex multi-class setups.
This reinforces the efficacy of diffusion-based approaches
in modeling intricate object features, making LASB a lead-
ing choice for anomaly detection tasks in industrial and real-
world applications.

S3. Sampling Stability
In the field of anomaly detection using diffusion models,
achieving consistent outcomes during the sampling or in-
ference stage is notably challenging due to the inherent
stochastic nature of generative processes. This inconsis-
tency can be particularly problematic in real-world applica-



Category DRAEM [19] UniAD [18] DDPM [7] LDM [12] DiAD [6] DiffAD [21] LASB (ours)
pcb1 94.6/31.8/37.2 93.3/3.9/8.3 75.7/1.1/2.8 84.5/2.1/4.9 98.7/49.6/52.8 72.5 99.4/52.1/56.1
pcb2 92.3/10.0/18.6 93.9/4.2/9.2 76.2/0.7/1.6 89.5/2.5/6.7 95.2/7.5/16.7 69.9 98.4/33.4/48.3
pcb3 90.8/14.8/24.4 97.3/13.8/21.9 83.3/1.4/3.2 94.4/9.4/17.4 96.7/8.0/18.4 72.4 98.6/35.2/47.1
pcb4 94.4/31.0/37.5 99.4/14.7/22.9 70.1/4.3/5.8 80.4/2.2/4.2 97.0/17.6/27.2 69.2 99.2/44.3/45.2
macaroni1 95.0/19.1/24.1 97.4/3.7/9.7 87.0/4.1/10.4 81.6/0.3/1.3 94.1/10.2/16.7 73.2 97.5/39.2/45.4
macaroni2 94.6/3.9/12.4 95.2/0.9/4.3 84.7/3.0/7.1 87.2/0.3/3.9 96.8/3.1/9.3 68.8 98.7/41.7/42.3
capsules 97.1/27.3/37.7 88.7/3.3/7.4 77.1/1.1/2.1 75.5/1.1/2.7 97.3/10.2/21.0 70.2 99.7/36.2/46.1
candle 82.2/10.1/19.0 98.5/17.6/27.9 76.4/0.7/1.4 85.3/0.9/1.9 97.3/12.3/22.7 71.0 98.5/32.4/46.4
cashew 80.7/9.9/17.5 98.6/15.7/27.9 74.5/1.1/2.5 90.5/1.6/3.1 99.0/53.1/60.9 69.3 98.4/66.3/67.1
chewinggum 91.0/62.3/63.3 98.5/5.4/9.0 74.7/1.4/3.0 90.8/5.5/11.4 99.5/4.7/15.6 69.6 98.7/39.5/48.2
fryum 92.4/38.8/38.5 95.9/34.0/40.0 77.4/9.1/14.8 89.9/14.8/24.8 97.5/9.0/17.0 73.5 98.5/66.4/67.1
pipe fryum 91.1/38.1/39.6 98.9/50.2/57.7 87.0/6.9/12.9 96.4/31.0/37.2 99.4/72.7/69.9 71.2 98.8/78.6/71.8
Mean 91.3/23.5/29.5 95.9/21.0/27.0 79.7/2.2/4.5 86.6/6.0/9.9 96.0/26.1/33.0 71.2/- 98.2/46.4/52.6

Table S3. Results on VisA dataset for multi-class anomaly localization with AUROCseg/APseg/F1maxseg metrics

Category DRAEM [19] UniAD [18] DDPM [7] LDM [12] DiAD [6] DiffAD [21] LASB (ours)
pcb1 71.9/72.2/70.0 92.8/92.7/87.8 54.1/47.7/67.1 51.2/46.9/66.8 88.1/88.7/80.7 75/- 91.2/90.4/92.3
pcb2 78.4/78.2/76.2 87.8/87.7/83.1 50.8/48.5/66.7 57.0/63.4/67.5 91.4/91.4/84.7 94.6/- 95.2/92.1/94.5
pcb3 76.6/77.4/74.7 78.6/76.8/76.1 53.4/51.2/60.8 62.7/69.6/72.0 86.2/87.6/77.6 94.7/- 93.6/89.6/93.7
pcb4 97.3/97.4/95.9 98.8/98.8/97.5 56.0/49.4/66.6 54.4/47.1/66.0 99.6/99.5/97.6 97.5/- 99.1/98.8/98.2
macaroni1 69.8/68.5/70.9 79.9/79.8/72.7 50.9/55.1/68.0 56.2/49.6/64.8 85.7/85.2/78.8 87.6/- 91.5/88.6/93.3
macaroni2 59.4/60.7/68.0 71.6/71.6/69.9 54.4/51.8/67.1 56.8/52.7/66.6 62.5/57.4/69.6 88.6/- 91.8/79.7/74.6
capsules 83.4/91.1/82.1 55.6/55.6/76.9 58.9/62.7/78.2 57.7/71.4/77.3 83.9/82.9/87.6 94.4/- 89.7/82.5/97.4
candle 69.3/73.9/68.0 94.1/94.0/86.1 52.1/48.3/66.6 50.4/52.2/68.2 96.2/90.2/87.6 94.4/- 94.8/93.3/94.6
cashew 81.7/89.7/87.3 92.8/92.6/91.4 63.5/78.9/86.0 61.1/71.0/87.1 95.1/95.7/98.6 81.4/- 93.6/96.6/93.8
chewinggum 93.7/97.1/91.0 96.3/96.1/90.4 50.9/65.6/80.0 53.9/65.5/81.4 99.4/99.5/95.9 94.1/- 98.8/98.9/94.4
fryum 89.1/95.0/86.6 83.0/83.4/85.0 51.0/62.0/80.4 63.7/71.5/81.3 95.9/95.8/87.2 87.1/- 94.3/96.5/94.5
pipe fryum 82.8/91.2/83.9 94.7/94.7/93.9 56.9/74.9/80.8 56.1/75.5/80.3 92.8/91.9/93.7 92.7/- 97.7/99.4/94.4
Mean 79.1/81.9/78.9 85.5/85.5/84.4 54.5/57.9/72.3 56.7/61.4/73.1 86.8/88.3/85.1 89.79/- 94.2/92.2/94.5

Table S4. Results on VisA dataset for multi-class anomaly detection on the AUROCcls/APcls/F1maxcls metrics

Method Venue Model Method Bottle Cable Capsule Hazelnut Metal Nut Pill Screw Toothbrush Transistor Zipper Carpet Grid Leather Tile Wood Avg
Class-based

SimpleNet [9] CVPR2023 Embedding-based 100/98.0 99.9/97.6 97.7/98.9 100/97.9 100/98.8 99.0/98.6 98.2/99.3 99.7/98.5 100/97.6 99.9/98.9 99.7/98.2 99.7/98.8 100/99.2 99.8/97.0 100/94.5 99.6/98.1
PatchCore [13] CVPR2022 Embedding-based 100/98.6 99.5/98.4 98.1/98.8 100/98.7 100/98.4 99.8/98.9 98.1/99.4 100/98.7 100/96.3 99.4/98.8 98.7/98.9 99.7/98.3 100/99.3 100/99.3 99.2/95.0 99.1/98.1

DSR [20] ECCV2022 - 100/91.5 98.1/53.3 100/68 100/62.5 97.5/65.7 100/93.9 97.8/41.1 100/78.5 93.8/70.4 100/78.2 95.6/87.3 98.5/67.5 96.2/52.5 99.7/74.2 96.3/68.4 98.2/70.2
PaDiM [1] ICPR 2021 Memory Bank 98.3/94.8 96.7/88.8 98.5/93.5 98.2/92.6 97.2/85.6 95.7/92.7 98.5/94.4 98.8/93.1 97.5/84.5 98.5/95.9 99.1/96.2 97.3/94.6 99.2/97.8 94.1/86.0 94.9/91.1 97.5/92.1

CS-Flow [14] WACV2022 Normalization Flow 100/85.3 97.0/86.3 90.7/88.2 99.5/89.5 97.2/93.2 95.3/92.0 89.6/77.9 96.9/89.2 98.7/96.0 98.7/80.3 99.5/.84.7 98.2/74.6 100/85.1 97.2/77.5 98.8/67.7 97.2/84.5
CFLOW-AD [4] WACV 2022 Normalization Flow 100/98.1 89.3/95.5 94.5/98.8 100/99.0 99.5/98.2 92.4/98.3 90.8/97.9 89.7/98.5 94.3/89.7 98.4/98.0 98.6/98.6 96.2/96.8 100/99.3 99.9/96.8 99.3/92.4 96.2/97.1
OCR-GAN [8] TIP 2023 GAN 99.6/- 99.1/- 96.2/- 98.5/- 99.5/- 98.3/- 100/- 98.7/- 98.3/- 99.0/- 99.4/- 99.6/- 97.1/- 95.5/- 95.7/- 98.3/-

RD4AD [2] CVPR2022 Embedding-based 99.6/97.8 84.1/85.1 94.1/98.8 60.8/97.9 100/93.8 97.5/97.5 97.7/99.4 97.2/99 94.2/85.9 99.5/98.5 98.5/99 98/99.2 100/99.3 98.3/95.3 99.2/95.3 98.5/97.8
DRAEM [19] ICCV 2021 AutoEncoder 97.5/87.6 57.8/71.3 65.3/50.5 93.7/96.9 72.8/62.2 82.2/94.4 92/95.5 90.6/97.7 74.8/64.5 98.8/98.3 98/98.6 99.3/98.7 98.7/97.3 99.8/98 99.8/96 88.1/87.2
ADSPR [15] ICCV 2023 Diffusion 99.9/95.9 94.4/96.9 97.3/96.6 98.3/98.7 96.7/96.6 95.4/98.2 98.7/99.5 98.6/97.8 98.6/94.7 99.9/98.8 91.5/96.4 100/98.9 99.9/99.3 99.8/96.8 96.1/95.4 97.67/97.36
DiffAD [21] ICCV 2023 Diffusion 100/98.8 94.6/96.8 97.5/98.2 100/99.4 99.5/99.1 97.7/97.7 97.2/99 100/99.2 96.1/93.7 100/99 98.3/98.1 100/99.7 100/99.1 100/99.4 100/96.7 98.72/98.26
D3AD [16] CVPRW 2023 Diffusion 100/98.6 97.8/93.3 96.6/97.9 98/98.8 98.9/96.1 99.2/98.2 83.9/99 100/99 96.8/95.6 98.2/98.3 94.2/97.6 100/99.2 98.5/99.4 95.5/94.7 99.7/95.9 97.15/97.44
DDAD [11] Arxiv 2023 Diffusion 100/98.2 100/98.2 99.4/95.7 100/98.4 100/99 100/99.1 99/99.3 100/98.7 100/95.3 100/98.2 99.3/98.7 100/99.4 100/99.4 100/98.2 100/95 99.84/98.05

TransFusion [3] ECCV 2024 Diffusion 100/97.3 97.9/85.5 98.5/92.1 100/97.7 100/94.1 98.3/96.2 97.2/97 100/94.1 98.3/83.9 100/97.2 99.2/95.9 100/98 100/96.2 99.8/95 99.4/94.8 99.24/94.33
LASB (Ours) - Diffusion 100/99.5 99.2/98.5 99.4/99.1 100/99.3 99.8/99.2 99.1/99.2 98.7/99.2 99.8/99.2 99.8/98.7 100/99.4 99.7/99.4 99.9/99.3 99.9/99.6 99.8/99.5 99.9/98.2 99.66/99.15

Unified (multi-class)
HVQ-Trans [10] NeurIPS 2023 Non-Diffusion 100/98.3 99.0/98.1 95.4/98.8 100/98.8 99.9/96.3 95.8/97.1 95.6/98.9 93.6/98.6 99.7/97.9 97.9/97.5 99.9/98.7 97.0/97.0 100/98.8 99.2/92.2 97.2/92.4 98.0/97.3
MambaAD [5] NeurIPS 2024 Non-Diffusion 100/98.8 98.8/95.8 94.4/98.4 100/99.0 99.9/96.7 97.0/97.4 94.7/99.5 98.3/99.0 100/96.5 99.3/98.4 99.8/99.2 100/99.2 100/99.4 98.2/93.8 98.8/94.4 98.6/97.7
OmniAL [22] CVPR2023 Non-Diffusion 100/99.2 98.2/97.3 95.2/96.9 95.6/98.4 99.2/99.1 97.2/98.9 88.0/98.0 100/99.4 93.8/93.3 100/99.5 98.7/99.4 99.9/99.4 99.0/99.3 99.6/99.0 93.2/97.4 97.2/98.3
GLAD [17] ECCV 2024 Diffusion 98.1/98.4 97.5/97.7 98.4/98.2 97.2/96.7 98.1/97.6 97.4/96.8 94.2/97.6 98.4/97.2 97.6/95.1 95.2/96.3 98.3/97.5 97.6/98.3 98.2/98.1 97.7/97.9 98.6/97.6 97.5/97.4
UniAD [18] NeurIPS 2022 - 99.7/98.1 95.5/97.3 88.1/98.5 99.9/98.1 97/94.8 94/95 88.8/98.3 95.8/98.4 99.7/97.9 94.9/96.8 99.7/98.5 97/96.5 100/98.8 99.3/91.8 98.5/93.2 96.52/96.8
DIAD [6] AAAI 2024 Diffusion 99.7/98.4 94.8/96.8 89/97.1 99.5/98.3 99.1/97.3 95.7/95.7 90.7/97.9 99.7/99 99.8/95.1 95.1/96.2 99.4/98.6 98.5/96.6 99.8/98.8 96.8/92.4 99.7/93.3 97.15/96.76

LASB (Ours) - Diffusion 99.8/99.5 96.5/96.6 98.3/98.3 99.8/99.3 99.7/99.2 99.1/98.1 96.7/98.9 99.8/99.3 99.6/97.3 99.9/99.3 99.3/98.8 99.7/99.2 99.8/99.3 99.4/99.4 99.8/97.4 99.14/98.66

Table S5. MVTec-AD dataset results for class-based and unified Anomaly Detection/Localization (I-AUROC / P-AUROC).

tions where reliable and stable detection is critical. There-
fore, assessing the stability of model outputs across multiple
inferences is essential. Our approach involves training the
model once and then conducting multiple sampling or in-
ference tests to evaluate if the outcomes remain consistent
over time.

Our findings, as detailed in Table S1, S2, reveal that the
LASB model exhibits strong stability across all evaluation
metrics, showing negligible variance across numerous in-
ferences. This consistency is attributed to the model’s ca-
pability to maintain structural integrity and effectively tran-
sition from anomalous to normal latent spaces. The LASB
model is designed to reconstruct a normal image regard-

less of the underlying anomalies, compelling it to disregard
anomalous features during reconstruction. This process not
only ensures that anomalies of various patterns, sizes, and
orientations are effectively handled but also enhances the
overall reliability of the model. Consequently, LASB’s per-
formance surpasses existing SOTA methods, establishing it
as a robust solution for practical deployment in anomaly de-
tection scenarios.

S4. Hyperparameters for Our LASB Model
The proposed LASB model employs a set of hyperparam-
eters specifically configured to optimize its performance in
anomaly detection tasks. One of the foundational settings



Method Venue Model Method pcb1 pcb2 pcb3 pcb4 macaroni1 macaroni2 capsules candle cashew chewinggum fryum pipe fryum Avg
Class-based

SimpleNet [9] CVPR2023 Embedding 99.2/99.8 99.2/98.8 98.6/99.2 98.9/98.6 97.6/99.6 83.4/96.4 89.5/99.2 96.9/98.6 94.8/99.0 100/98.5 96.6/94.5 99.2/99.3 96.2/98.5
PatchCore [13] CVPR2022 Embedding 96.0/99.8 95.1/98.4 93.0/98.9 99.5/98.3 90.1/98.5 63.4/93.5 68.8/96.5 98.7/99.2 97.7/99.2 99.1/98.9 91.6/95.9 99.0/99.3 91.0/98.1

DSR [20] ECCV2022 - - - - - - - - - - - - - -
PaDiM [1] ICPR2021 Memory Bank 94.7/91.3 88.5/88.7 91.0/84.9 97.5/81.6 87.0/92.1 70.5/75.4 70.7/76.9 91.6/95.7 93.0/87.9 98.8/83.5 88.6/80.2 97.0/92.5 89.1/85.9

CS-Flow [14] WACV2022 Normalization Flow - - - - - - - - - - - - -
CFLOW-AD[4] WACV2022 Normalization Flow - - - - - - - - - - - - -
OCR-GAN [8] TIP2023 GAN 96.1/- 98.3/- 98.1/- 99.7/- 97.2/- 95.1/- 98.8/- 98.9/- 97.4/- 99.4/- 96.3/- 99.7/- 97.9/-

RD4AD [2] CVPR2022 Embedding-based 97.2/98.3 96.5/99.3 9 99.4/98.2 98.7/99.3 91.4/99.1 91.8/99.4 96.2/98.9 98.7/94.4 99.3/97.6 96.9/96.4 99.6/99.1 96.9/98.3 96.7/99.6
DRAEM [19] ICCV2021 Augmentation 71.9/94.6 78.4/92.3 76.6/90.8 97.3/94.4 69.8/95.0 59.4/94.6 83.4/97.1 69.3/82.2 81.7/80.7 93.7/91.0 89.1/92.4 82.8/91.1 79.1/91.3
ADSPR [15] ICCV2023 Diffusion - - - - - - - - - - - - -
DiffAD [21] ICCV2023 Diffusion 75.0/72.5 94.6/69.9 94.7/72.4 97.7/69.2 87.6/73.2 90.7/68.8 87.6/70.2 94.4/71.3 81.4/72.4 94.0/69.6 87.1/73.5 92.7/71.2 89.79/71.18
D3AD [16] CVPR2024 Diffusion 92.5/98.3 98.3/94.0 97.4/94.2 99.8/86.4 94.3/99.3 92.5/98.3 88.5/95.7 95.6/92.7 94.2/89.4 99.7/94.1 96.5/91.7 96.9/97.2 95.51/94.27
DDAD [11] ArXiv2023 Diffusion 100/93.4 99.7/97.4 97.2/96.3 100/98.5 99.2/98.7 99.2/98.2 100/99.5 99.9/98.7 94.5/97.4 98.1/96.5 99.0/96.9 100/99.5 98.9/97.58

TransFusion [3] ECCV2024 Diffusion 98.9/92.4 99.7/85.1 99.2/92.0 99.6/89.4 99.4/94.0 96.5/95.6 99.6/97.3 98.3/88.6 93.7/82.8 99.6/83.2 98.3/77.8 99.6/87.9 98.53/88.84
GLASS ECCV2024 Diffusion 98.7/99.4 98.4/98.3 99.5/99.3 99.1/98.6 100/99.8 96.2/99.7 96.8/99.3 99.3/99.2 98.9/98.9 100/99.4 99.0/94.8 100/99.1 98.82/98.81

LASB (Ours) - Diffusion 98.4/99.3 98.2/98.8 98.6/98.9 99.4/99.3 96.8/98.4 97.2/99.4 98.7/99.1 99.2/99.3 98.4/99.2 99.8/98.9 98.2/98.9 99.4/99.3 98.52/99.06
Unified (multi-class)

HVQ-Trans [10] NeurIPS 2023 Non-Diffusion 96.7/99.4 93.4/98.0 92.0/98.3 99.5/97.7 93.1/99.4 86.2/98.5 77.1/99.0 96.8/99.2 94.9/99.2 99.4/98.8 90.4/97.7 98.5/99.4 93.2/98.7
MambaAD [5] NeurIPS 2024 Non-Diffusion 95.4/99.8 94.2/98.9 93.7/99.1 99.9/98.6 91.6/99.5 81.6/99.5 91.8/99.1 96.8/99.0 94.5/94.3 97.7/98.1 95.2/96.9 98.7/99.1 94.3/98.5
OmniAL [22] CVPR2023 Non-Diffusion 96.6/98.7 99.4/83.2 96.9/98.4 97.4/98.5 96.9/98.9 89.9/99.1 87.9/98.6 85.1/90.5 97.1/98.9 94.9/98.7 97.0/89.3 91.4/99.1 94.2/96.0
GLAD [17] ECCV 2024 Diffusion 92.6/98.3 91.8/97.8 92.3/98.9 91.7/98.8 92.5/98.6 92.2/97.4 89.8/98.6 90.6/93.6 92.8/96.8 91.6/98.4 92.3/97.6 91.4/98.8 91.8/97.8
UniAD [18] NeurIPS 2022 Transformer 92.8/93.3 87.8/93.9 78.6/97.3 98.8/94.9 79.9/97.4 71.6/95.2 55.6/88.7 94.1/98.5 92.8/98.6 96.3/98.5 83/95.9 94.7/98.9 85.5/95.925
DIAD [6] AAAI 2024 Diffusion 88.1/98.7 91.4/95.2 86.2/96.7 99.6/97 85.7/94.1 62.5/93.6 58.2/97.3 92.8/97.3 91.5/90.9 99.1/94.7 89.8/97.6 96.2/99.4 86.75/96.04

LASB (Ours) - Diffusion 91.2/99.4 95.2/98.7 93.6/98.6 99.1/99.2 91.5/97.5 91.8/98.7 89.7/97.9 94.8/98.5 93.6/94.6 98.8/97.8 93.4/98.5 97.7/98.8 94.2/98.18

Table S6. VisA dataset dataset for class-based and multi-class Anomaly Detection / Localization (I-AUROC / P-AUROC).

is the shape of the latent space vector, z, which is defined
as 64 × 64 × 3. This configuration supports the model’s
ability to encode detailed features and textures at a manage-
able resolution, suitable for capturing nuances in data. The
model operates over a diffusion process with 1000 steps,
denoted as T , which is indicative of a gradual and detailed
transformation process, ensuring that the model effectively
captures the data distribution.

Another crucial aspect of the LASB model is its sam-
pling strategy during the denoising diffusion probabilistic
modeling phase. It uses 100 DDPM sampling steps [20], a
considerably lower number than the diffusion steps, which
balances computational efficiency with the quality of sam-
ple generation. The variance schedule for the diffusion pro-
cess is tightly controlled within a range of [0.1, 0.3] for β,
which regulates the noise level added during the diffusion
steps, optimizing the balance between detail preservation
and noise introduction.

Parameters Name
Model Name

Latent Denoising Autoencoder

z shape 64× 64× 3 -
Diffusion steps T 1000 -
DDPM sampling steps T 100 -
β [min, max] [0.1, 0.3] -

Model input shape 64× 64× 3 256× 256× 3
Embed dim - 3
Channels 224 128
Num res blocks 2 2
Channel Multiplier 1,4,8 1,2,4
Attention resolutions 32,16,8 -
Num Heads 8 -

Batch Size 8 4
Iterations 500000 50000
Learning Rate 5e-5 4.5e-06

Table S7. Hyperparameters for our LASB model

In terms of architecture, the model inputs are images of
size 64 × 64 × 3, aligning with the latent vector’s dimen-
sions to maintain consistency in processing scales. The ar-
chitecture details include 320 channels across the network
with 2 residual blocks, indicating a relatively deep network
capable of complex feature extraction. The channel multi-
plier is set at progressive stages of 1, 4, and 8, which in-
creases the network’s capacity as it goes deeper, allowing
for a more refined feature hierarchy. Attention mechanisms
are employed at resolutions 32, 16, and 8, which focus the
model’s capacity on important features at different scales,
essential for effective anomaly detection in varied contexts.
The model is equipped with 8 heads in its multi-head at-
tention layers, facilitating parallel attention across different
representation subspaces, enhancing its ability to capture di-
verse patterns and anomalies.

S5. LASB Robustness to Transformations
As proposed approach translates anomalies into clean im-
ages, allowing LASB to unlearn anomalies while preserv-
ing structural details unlike diffusion models that rely on
Gaussian noise and often degrade fine features. To demon-
strate LASB robustness, we applied transformation based
corruptions, including lighting variations (random bright-
ness/contrast), pose variations (random flip/rotation), and
unaltered conditions.

Class-Based
Dataset Lighting Variation Pose Variation W/o Variations
MVTec-AD 97.36 / 97.89 97.15 / 97.55 99.66 / 99.15

VisA 96.84 / 97.21 96.42 / 97.18 98.52 / 99.06
Multi-Class Based

Dataset Lighting Variation Pose Variation W/o Variations
MVTec-AD 97.22 / 97.42 96.92 / 97.14 99.14 / 98.66
VisA 92.82 / 96.52 92.42 / 96.24 94.2 / 98.18

Table S8. Robustness to various transformations



Figure S1. Visual representation of test samples from the MVTec dataset for anomaly localization, depicted through heatmaps for various
models for different categories.



As evidenced by the results in Table S8, LASB maintains
high detection accuracy even under significant image trans-
formations. The minimal performance degradation across
different corruption types highlights LASB model excep-
tional generalization capabilities and practical applicability
in real-world scenarios where lighting and pose variations
are common. This resilience to transformations is partic-
ularly valuable in industrial inspection settings where envi-
ronmental conditions cannot always be perfectly controlled.

S6. Visualizations

The LASB model distinguishes itself through its unified ap-
proach to anomaly detection, capable of reconstructing nor-
mal images across various classes without discrimination.
This characteristic is pivotal as it ensures that the model
is not biased towards any specific type of normalcy but is
robust in identifying deviations from a completely unseen
samples across diverse datasets. Such a unified nature is
crucial in practical scenarios where anomalies can vastly
differ in appearance and context, requiring a versatile sys-
tem that maintains high performance without the need for
class-specific tuning. To further justify the performance we
illustrate the effectiveness of the LASB model in highlight-
ing anomalous regions by employing heat-map visualiza-
tions in Figure S1. These visualizations are instrumental
in providing intuitive, visual feedback about the regions the
model identifies as anomalous. By overlaying heat-maps
on the original images, one can visually assess the preci-
sion with which the model detects and localizes irregulari-
ties. This method not only confirms the model’s capability
to discern subtle and overt anomalies but also helps in ver-
ifying the performance of its localization in a transparent
manner. Furthermore, the use of heat-map visualizations
aids in refining the model by providing direct insights into
its operational dynamics to understand the model’s sensitiv-
ity and specificity across different conditions and settings.

S7. Limitations

While the LASB model demonstrates state-of-the-art per-
formance in anomaly detection and localization tasks, it
persists some limitations which we leave to future work.
Firstly, the method relies on a fine-tuned VQ-VAE model
for latent space compression, which may introduce domain-
specific biases if the encoder-decoder architecture is not ad-
equately trained for diverse datasets and samples. Secondly,
the LASB’s design is optimized for high-resolution datasets
like MVTec-AD and VisA, and its performance on low-
resolution, noisy, or highly imbalanced datasets remains
less explored. Additionally, while the model significantly
reduces computational overhead compared to pixel-space
counterparts, the inference process still demands substantial
resources when scaled to ultra-large datasets or real-time

streaming scenarios. Finally, although LASB is designed to
operate in a unified framework, handling edge cases involv-
ing extreme variations in anomaly size, shape, or appear-
ance may require further refinement in the structural recon-
struction capabilities of the latent space diffusion process
and need much challenging datasets to solve.

S8. Broader Impact

The LASB model has the potential to make a significant im-
pact across a range of critical domains, from industrial qual-
ity control to medical diagnostics and beyond. In industrial
settings, LASB can improve production efficiency by reli-
ably detecting minute anomalies in high-resolution images,
ensuring stringent quality standards while reducing human
inspection costs. In healthcare, LASB’s ability to generalize
across diverse anomaly types could lead to breakthroughs
in detecting rare or subtle pathological conditions, thereby
assisting medical professionals in timely and accurate diag-
noses. Furthermore, the model’s inherent scalability and
computational efficiency align with global efforts toward
more sustainable AI, enabling its application in resource-
constrained environments. However, as with any AI model,
ethical considerations such as unintended biases, the poten-
tial for misuse in surveillance applications, and the need for
transparency in critical decision-making systems must be
actively addressed to ensure equitable and responsible de-
ployment.
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