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A. Mathematical Formulation of DG Setups
Let X and Y be the input and target spaces, with domain D
having joint distribution PXY on X × Y . DG aims to learn
a model f : X → Y from source data that minimises error
on both source (ID) and target (OOD) test data.

Single-source domain generalisation. We assume that
there is only one source domain, Ds, where s represents
a unique source available during the training phase. There-
fore, the training set, Dtrain, is defined as follows:

Dtrain = Ds = {(xi, yi)}Mi=1 (3)

where xi, yi being the ith sample and label pairs from the
source domain and M indicating the total number of train-
ing samples. Furthermore, Ds is associated with a joint dis-
tribution P s

XY .

Multi-source domain generalisation. We consider a
training scenario with access to N distinct yet related source
domains, denoted as Ds for s ∈ {1, ..., N}. Accordingly,
the training set is defined as Dtrain:

Dtrain =

N⋃
s=1

Ds (4)

Ds = {(xs
i , y

s
i )}

Ms

i=1

here, xs
i represents the ith sample with label ysi , and Ms

denotes the total number of training samples in domain Ds.
Each source domain Ds is characterised by a joint distribu-
tion P s

XY . While the distributions across source domains
may be related, they are not equivalent, i.e., P s

XY ̸= P s′

XY

for s ̸= s′, where s, s′ ∈ {1, ..., N}.

The target domain. We define the OOD target domain(s)
as Dt, where t represents a target domain distinct from the
source domains (t ̸= s). The target domain follows a joint
distribution P t

XY that differs from all source distributions,
i.e., P t

XY ̸= P s
XY , ∀s ∈ {1, ..., N}. Accordingly, the test

set is defined as:

Dtest = {Dt|t ∈ {1, ...,K}} (5)

Dt = {(xt
i, y

t
i)}

Mt

i=1

where K denotes the total number of target domains, xt
j

is the jth sample with label ytj , and Mt signifies the total
number of test samples from the target domain Dt.

B. Detailed Benchmarking Results
In this section, we provide a detailed breakdown of the ex-
periments conducted in our paper, focusing on the individ-
ual domains. We begin by analysing the domain shift ex-
perienced by the selected object detectors, as discussed in
Section 4.3, across different climate zones using RWDS-
CZ in Section B.1 under both single- and multi-source se-
tups. Similarly, we discuss the findings related to the gener-
alisation capabilities of the object detectors across flooded
regions using RWDS-FR under the single-source setup in
Section B.2. Additionally, Section B.3 presents an exami-
nation of the impact of domain shift on the performance of
object detectors across various hurricane events in RWDS-
HE, also under both single- and multi-source setups.

The Upper Bound Experiments. To establish a baseline
for evaluating model performance under the best-case sce-
nario—where the i.i.d. assumption holds and the model
is only tested on samples from the same underlying dis-
tribution seen during training, we present the upper-bound
(UB) experimental results for RWDS-CZ, RWDS-FR, and
RWDS-HE. More specifically, these experiments represent
the oracle setup, in which an object detector is trained on the
training set from all domains, including the target domain,
and evaluated on the test set of each domain respectively.

B.1. Further Analyses of RWDS-CZ Experiments

In Section 5.1, we investigated the performance of the se-
lected SOTA object detectors on RWDS-CZ, showing that
there exist a shift in the underlying distribution of data gath-
ered from different climate zone. To gain a better intuition
on the relationship between these domains, if any, and the
influence of domain shift across the different climate zones,
we provide a fine-grained analyses of domain shift under
the single- (Section B.1.1) and multi-source setups (Section
B.1.3) along with a qualitative assessment (Section B.1.2) .

B.1.1 Single-Source DG Experiment

Table S1 presents the results of the single-source ex-
periment using mAPs over different IoU regions, namely,
mAP50, mAP75 and mAP50:95. The overall trends discussed
in Section 5.1 remain consistent across evaluations using
mAP50, mAP75, and mAP50:95.

Furthermore, Table S2 illustrates the performance of ob-
ject detectors on UB, which is underlined in the table, CZ A,
CZ B and CZ C for each of the six object detectors under the



Target

CZ A CZ B CZ C

Metric Methods mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑

mAP50

Faster R-CNN 16.7 9.3 45 11.9 15.7 13.0 17 14.2 17.4 8.6 51 11.5
Mask R-CNN 16.9 9.2 46 11.9 16.3 12.6 23 14.2 17.3 8.8 49 11.7
TOOD 17.1 9.3 46 12.0 15.4 12.5 19 13.8 17.3 9.4 46 12.2
DINO 25.2 13.8 45 17.8 19.2 16.6 14 17.8 24.3 14.0 43 17.7
Grounding DINO 27.9 17.0 39 21.1 21.5 20.1 7 20.8 28.1 16.7 41 20.9
GLIP 20.7 13.4 35 16.3 17.1 15.8 8 16.4 19.2 12.1 37 14.8

mAP75

Faster R-CNN 5.2 2.5 52 3.4 5.9 4.5 24 5.1 5.3 2.0 63 2.9
Mask R-CNN 4.9 2.3 53 3.1 5.9 4.1 31 4.8 5.7 2.0 66 2.9
TOOD 5.8 2.6 55 3.6 6.8 5.1 26 5.8 6.8 2.7 61 3.8
DINO 8.2 4.0 52 5.3 9.0 6.9 23 7.8 9.2 4.0 57 5.5
Grounding DINO 11.0 6.1 45 7.8 10.2 9.1 11 9.6 11.5 5.4 53 7.3
GLIP 8.0 5.0 38 6.1 8.0 7.4 7 7.7 7.5 4.1 46 5.3

mAP50:95

Faster R-CNN 7.2 3.9 47 5.0 7.5 6.0 20 6.7 7.7 3.4 56 4.7
Mask R-CNN 7.3 3.7 49 4.9 7.7 5.8 25 6.6 7.8 3.5 55 4.8
TOOD 7.8 4.0 49 5.2 7.8 6.1 22 6.8 8.2 4.0 52 5.3
DINO 11.0 5.6 49 7.4 9.6 8.0 17 8.7 11.0 5.6 49 7.4
Grounding DINO 12.9 7.5 42 9.5 10.8 10.0 7 10.4 13.1 7.1 46 9.2
GLIP 9.8 6.3 36 7.6 8.8 8.2 7 8.5 9.2 5.4 41 6.8

Table S1. Single-source DG analysis of SOTA detectors on RWDS-CZ where ID/OOD denotes the mAP scores over different IoUs.

single-source setup. The diagonal, indicated in bold, high-
lights their ID performance. Aligned with the observations
made in Section 5.1.1, there is always a performance drop
when testing the OOD test sets. Furthermore, the perfor-
mances on the UB is always higher than not only the OOD
but also the ID. A plausible explanation is that the models
benefits from being exposed to a more diverse data distri-
butions during training which makes them more robust in
comparison to training on a single source domain.

B.1.2 Qualitative DG Performance Comparison

In order to gain insights on the quality and behaviour of the
object detector among the different domains, we select the
highest performing object detector, Grounding DINO, and
sample the output predictions under the single-source setup.
A set of these are illustrated in Figure S1, where the diago-
nal images, highlighted in purple, indicate the performance
on the ID test samples. It is important to note that we se-
lected the samples with few number of bounding boxes for
visualisation purposes.
• CZ A: When tested on CZ A, aligned with the results

found in Table S2, one can observe that the best perform-
ing model in comparison to the ground truth is the one
trained on the ID training set. Whereas, the object detec-
tors trained on CZ B and CZ C miss detecting a building.

• CZ B: When evaluated on CZ B, in-line with the results
found in Table S2, the best performing model in compar-
ison to the ground truth is the one trained on the ID train-
ing set. Whereas, the object detectors trained on CZ B
and CZ C miss detecting a number of buildings.

• CZ C: When tested on CZ C, similar to the findings men-

Target

Methods Source CZ A CZ B CZ C

Faster R-CNN

UB 8.1 9.0 7.5
CZ A 7.2 5.3 3.5
CZ B 3.6 7.5 3.3
CZ C 4.1 6.7 7.7

Mask R-CNN

UB 7.8 9.0 7.6
CZ A 7.3 5.0 3.6
CZ B 3.6 7.7 3.4
CZ C 3.8 6.5 7.8

TOOD

UB 8.2 9.1 8.4
CZ A 7.8 5.0 4.2
CZ B 3.8 7.8 3.7
CZ C 4.1 7.1 8.2

DINO

UB 12.2 12.5 11.8
CZ A 11.0 7.5 5.9
CZ B 5.1 9.6 5.3
CZ C 6.1 8.4 11.0

Grounding DINO

UB 13.5 13.8 12.9
CZ A 12.9 8.6 7.2
CZ B 6.9 10.8 6.9
CZ C 8.1 11.4 13.1

GLIP

UB 11.1 10.7 10.1
CZ A 9.8 7.2 5.7
CZ B 5.8 8.8 5.1
CZ C 6.7 9.2 9.2

Table S2. mAP50:95 results on RWDS-CZ for the single-source
setup.

tioned in the previous points and the results presented
in Table S2, it can be observed that the best perform-
ing model in comparison to the ground truth is the one
trained on the ID training set. Whereas, the object detec-
tors trained on CZ A and CZ B miss detecting a number



Figure S1. Qualitative DG performance comparison of Grounding DINO among different climate zones, where the diagonal images
highlighted in purple indicate the performance on the ID test sample.

of buildings and have higher rates of false negatives and
false positives.

B.1.3 Multi-Source DG Experiments

Table S3 presents the results of the multi-source experiment
using mAPs over different IoU regions, namely, mAP50,
mAP75 and mAP50:95, where general trends presented in
Section 5.1 are consistently observed across evaluations
utilising mAP50, mAP75, and mAP50:95.

Moreover, Table S4 presents the performance of the six
object detectors under the multi-source setup, where an ob-
ject detector is trained on a collection of source domains
and tested on the individual ID test sets in addition to the
left out target domain’s test set. The diagonal, indicated in
bold, highlights their OOD performance.

Unlike the observations made in the single-source setup
where the model trained on the UB always had the highest

performance, it can be observed from Table S4 that this is
not always the case. For example, when trained on the col-
lection of source domains excluding CZ A, Faster R-CNN,
GLIP and Grounding DINO achieve an outstanding perfor-
mance on the ID test set of CZ C in comparison to the UB.
This suggests that eliminating CZ A from training actually
improves the ID performance of the models on CZ C. A
possible explanation to this phenomena is that the distribu-
tion of CZ A is quite different than that of CZ B and CZ C.
A similar pattern is observed for multiple other combination
of domains and methods, as shown in Table S4.

B.2. Further Analyses of RWDS-FR Experiments

In Section 5.2, we evaluated the performance of the se-
lected object detectors on RWDS-FR, highlighting the ex-
istence of distribution shifts in data originating from dif-
ferent flooded regions. To better understand the potential



Target

CZ A CZ B CZ C

Metric Methods mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑

mAP50

Faster R-CNN 17.5 11.6 34 13.9 17.0 14.6 14 15.7 17.5 10.2 42 12.9
Mask R-CNN 17.2 11.0 36 13.4 16.7 14.5 13 15.5 17.9 10.6 41 13.3
TOOD 17.9 11.3 37 13.8 16.6 14.3 14 15.3 17.5 11 37 13.5
DINO 25.9 17.2 34 20.7 22.2 18.9 15 20.4 25.8 16.6 36 20.2
Grounding DINO 28.9 19.8 31 23.5 23.9 21.7 9 22.7 27.7 21.1 24 24.0
GLIP 22.6 16.7 26 19.2 18.4 17.4 5 17.9 20.3 14.6 28 17.0

mAP75

Faster R-CNN 5.4 3.4 37 4.2 6.6 5.4 18 5.9 5.5 2.3 58 3.2
Mask R-CNN 5.2 3.2 38 3.9 6.6 5.4 18 5.9 5.8 2.6 55 3.6
TOOD 6.4 3.6 43 4.6 7.7 5.8 25 6.6 6.8 3.4 50 4.5
DINO 9.2 5.4 41 6.8 10.8 8.8 18 9.7 9.9 5.5 44 7.1
Grounding DINO 10.9 6.9 36 8.4 12.1 10.4 14 11.2 11.9 7.5 37 9.2
GLIP 8.6 6.7 22 7.5 9.2 8.3 10 8.7 8.3 5.2 37 6.4

mAP50:95

Faster R-CNN 7.7 4.9 36 6.0 8.2 7.1 13 7.6 7.7 4.1 47 5.4
Mask R-CNN 7.5 4.7 37 5.8 8.1 6.9 15 7.5 7.9 4.3 46 5.6
TOOD 8.2 5.0 39 6.2 8.7 7.0 19 7.7 8.3 4.8 42 6.1
DINO 11.6 7.2 38 8.9 11.5 9.6 16 10.4 11.8 7.0 40 8.8
Grounding DINO 13.1 8.8 33 10.5 12.5 11.0 12 11.7 13.1 9.3 29 10.9
GLIP 10.6 8.0 24 9.1 9.8 9.2 6 9.5 9.8 6.8 31 8.0

Table S3. Multi-source DG analysis of SOTA detectors on RWDS-CZ where ID/OOD denotes the mAP scores over different IoUs.

Target

Methods Source CZ A CZ B CZ C

Faster R-CNN

UB 8.1 9.0 7.5
Unseen CZ A 4.9 9.1 7.7
Unseen CZ B 7.6 7.1 7.7
Unseen CZ C 7.7 7.3 4.1

Mask R-CNN

UB 7.8 9.0 7.6
Unseen CZ A 4.7 8.8 8.0
Unseen CZ B 7.5 6.9 7.8
Unseen CZ C 7.4 7.4 4.3

TOOD

UB 8.2 9.1 8.4
Unseen CZ A 5.0 9.2 8.3
Unseen CZ B 8.3 7.0 8.3
Unseen CZ C 8.0 8.1 4.8

DINO

UB 12.2 12.5 11.8
Unseen CZ A 7.2 11.8 11.3
Unseen CZ B 12.1 9.6 12.2
Unseen CZ C 11.0 11.1 7.0

Grounding DINO

UB 13.5 13.8 12.9
Unseen CZ A 8.8 12.9 13.3
Unseen CZ B 12.8 11.0 12.8
Unseen CZ C 13.4 12.1 9.3

GLIP

UB 11.1 10.7 10.1
Unseen CZ A 8.0 10.2 10.3
Unseen CZ B 10.2 9.2 9.3
Unseen CZ C 10.9 9.4 6.8

Table S4. mAP50:95 results on RWDS-CZ for the multi-source
setup.

relationships between these domains and the effects of do-
main shifts across various flooded regions, we provide a de-
tailed analyses of the domain shift under the single-source
setup (Section B.2.1) accompanied by a qualitative assess-
ment and discussion (Section B.2.2) below.

B.2.1 Single-Source DG Experiment

As mentioned in Section 5.2, RWDS-FR inherently falls un-
der the single-source setup given that it consist of two do-
mains. Table S5 presents the results of the single-source
experiment using mAPs over different IoU regions, namely,
mAP50, mAP75 and mAP50:95. The patterns outlined in
Section 5.2 are observed across evaluations using mAP50,
mAP75 (with minor variations), and mAP50:95.

Furthermore, Table S6 showcases the breakdown of each
object detector’s performance on the ID and OOD test sets.
The bolded diagonal indicates their in-domain performance.
While the model trained on India maintains its performance,
when comparing the single-source performance versus the
UB, the model trained on the US performs slightly better
than the UB when evaluated on the ID test set. A plausible
explanation for such a behaviour is that the training set of
India is naturally difficult and its distribution is further away
in the latent space from that of the US, thus hurting the
model’s ID performance when combined during the train-
ing phase. Moreover, aligned with the observations made
in Section 5.2, the OOD performance of the model trained
on India on the US test set is notably low, highlighting the
existence of a significant domain shift between the two do-
mains.

B.2.2 Qualitative DG Performance Comparison

Figure S2 illustrates the performance on the ID and OOD
test sets of the best performing object detector, Ground-
ing DINO, where the diagonal samples highlighted in pur-
ple indicate the performance on the ID test sample. It is



Target

India US

Metric Methods mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑

mAP50

Faster R-CNN 14.7 3.8 74 6.0 56.8 4.6 92 8.5
Mask R-CNN 14.8 3.7 75 5.9 56.7 4.9 91 9.0
TOOD 17.2 5.2 70 8.0 59.2 6.0 90 10.9
DINO 24.0 8.8 63 12.9 64.6 13.4 79 22.2
Grounding DINO 23.3 12.5 46 16.3 67.7 31.3 54 42.8
GLIP 20.5 11.0 46 14.3 64.0 31.0 52 41.8

mAP75

Faster R-CNN 1.7 0.8 53 1.1 19.6 1.1 94 2.1
Mask R-CNN 1.5 0.5 67 0.8 20.2 1.3 94 2.4
TOOD 1.5 0.8 47 1.0 22.1 1.5 93 2.8
DINO 2.9 0.6 79 1.0 26.7 1.9 93 3.5
Grounding DINO 2.6 1.0 62 1.4 25.8 5.1 80 8.5
GLIP 2.9 1.1 62 1.6 25.4 6.6 74 10.5

mAP50:95

Faster R-CNN 4.5 1.3 71 2.0 25.5 1.8 93 3.4
Mask R-CNN 4.3 1.2 72 1.9 25.9 2.0 92 3.7
TOOD 5.1 1.6 69 2.4 27.6 2.4 91 4.4
DINO 7.0 2.2 69 3.3 30.8 4.3 86 7.5
Grounding DINO 6.7 3.3 51 4.4 31.3 10.8 65 16.1
GLIP 6.7 3.3 51 4.4 30.7 11.9 61 17.2

Table S5. Single-source DG analysis of SOTA detectors on RWDS-FR where ID/OOD denotes mAP scores over different IoUs.

Target

Methods Source India United States

Faster R-CNN
UB 4.5 25.2
India 4.5 1.8
United States 1.3 25.5

Mask R-CNN
UB 4.4 25.8
India 4.3 2.0
United States 1.2 25.9

TOOD
UB 5.1 27.4
India 5.1 2.4
United States 1.6 27.6

DINO
UB 7.0 30.7
India 7.0 4.3
United States 2.2 30.8

Grounding DINO
UB 6.9 31.2
India 6.7 10.8
United States 3.3 31.3

GLIP
UB 6.5 30.8
India 6.7 11.9
United States 3.3 30.7

Table S6. mAP50:95 results on RWDS-FR for the single-source
setup.

worth noting that samples with a limited number of bound-
ing boxes were deliberately chosen to facilitate visualiza-
tion and enhance clarity in explanation.

It is evident, from Table S2, that the model trained on In-
dia and tested on the ID test set misses a number of bound-
ing boxes. Similarly, the model trained on the US and tested
on the OOD test set from India, not only misses a number
of bounding boxes, but also consists of false positive de-
tections. However, when evaluated on the test set from the

US, its ID performance is closer to the ground-truth. Fur-
thermore, a drop in OOD performance of the model trained
on India is observed on when evaluated on OOD US test
set, where the model fails in detecting a number of bound-
ing boxes. These observations are aligned with the results
previously reported in Table S2.

B.3. Further Analyses of RWDS-HE Experiments

In Section 5.3, we analysed the performance of the se-
lected SOTA object detectors on RWDS-HE, emphasising
the presence of a distribution shift in data collected from
different hurricane events. To gain deeper insights into the
potential relationships between these domains and the im-
pact of domain shifts across various hurricane events, we
present fine-grained analyses of the object detectors’ per-
formance under the single- (Section B.3.1 and multi-source
(Section B.3.3) setups alongside a qualitative assessment
(Section B.3.2) below.

B.3.1 Single-Source DG Experiment

Table S7 presents the results of the single-source ex-
periment using mAPs over different IoU regions, namely,
mAP50, mAP75 and mAP50:95. The general trends pre-
sented in Section 5.3 are consistently observed, with minor
variations, across evaluations utilising mAP50, mAP75, and
mAP50:95.

Furthermore, Table S8 outlines the performance of ob-
ject detectors on UB, Hurricanes Florence, Michael, Harvey
and Matthew under the single-source setup. The bolded di-
agonal indicates their ID performance. In line with the find-
ings in Section 5.3.1, all object detectors experience perfor-



Figure S2. Qualitative DG performance comparison of Grounding DINO among different flooded regions, namely, India and the US, where
the diagonal images highlighted in purple indicate the performance on the ID test sample.

Target

Florence Michael Harvey Matthew

Metric Methods mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑

mAP50

Faster R-CNN 64.5 19.3 70 29.7 42.7 17.2 60 24.5 56.9 9.5 83 16.3 5.5 1.2 79 1.9
Mask-CRNN 63.3 18.6 71 28.7 42.9 17.7 59 25.1 57.1 9.5 83 16.2 6.7 1.2 83 2.0
TOOD 64.3 23.2 64 34.1 45.5 18.2 60 26.0 59.9 11.4 81 19.1 7.9 2.1 73 3.3
DINO 66.5 25.9 61 37.2 46.5 19.3 59 27.2 65.8 13.0 80 21.8 9.4 2.8 71 4.3
Grounding DINO 70.6 36.3 49 47.9 52.8 23.8 55 32.8 67.9 20.1 70 31.0 12.5 4.5 64 6.6
GLIP 70.4 37.2 47 48.7 50.8 24.6 52 33.1 63.3 17.5 72 27.5 11.1 4.5 59 6.4

mAP75

Faster R-CNN 33.2 6.5 80 10.9 13.8 3.6 74 5.7 19.1 2.1 89 3.8 0.3 0.1 67 0.2
Mask-CRNN 33.7 6.1 82 10.3 14.2 4.1 71 6.4 19.7 2.1 89 3.8 0.4 0.1 75 0.2
TOOD 35.8 7.8 78 12.8 17.0 4.4 74 7.0 22.3 2.7 88 4.8 1.0 0.1 87 0.2
DINO 37.4 9.6 74 15.2 16.3 4.8 71 7.4 27.3 3.0 89 5.4 0.7 0.3 62 0.4
Grounding DINO 40.4 14.5 64 21.3 19.6 5.4 72 8.5 25.2 4.7 81 7.9 1.1 0.3 70 0.5
GLIP 42.8 17.2 60 24.6 19.8 6.7 66 10.0 22.9 4.5 80 7.6 1.9 0.4 77 0.7

mAP50:95

Faster R-CNN 34.5 8.6 75 13.8 18.6 6.5 65 9.7 25.1 3.7 85 6.4 1.5 0.3 78 0.5
Mask-CRNN 34.0 8.3 76 13.3 19.1 6.9 64 10.1 25.6 3.7 86 6.4 1.7 0.4 78 0.6
TOOD 35.7 10.4 71 16.1 21.0 7.1 66 10.6 27.5 4.4 84 7.5 2.4 0.5 78 0.9
DINO 36.5 12.0 67 18.0 20.6 7.6 63 11.1 31.4 4.9 84 8.5 2.5 0.8 69 1.2
Grounding DINO 39.3 17.4 56 24.2 24.2 9.3 62 13.4 31.0 7.7 75 12.4 3.3 1.2 65 1.7
GLIP 40.8 19.0 53 25.9 23.9 10.2 57 14.3 29.2 7.0 76 11.3 3.7 1.3 64 2.0

Table S7. Single-source DG analysis of SOTA detectors on RWDS-HE where ID/OOD denotes the mAP scores over different IoUs.

mance degradation when tested on OOD test sets across all
domains.

Generally, UB outperforms the other models on the test
sets, which is an expected behaviour. However, it can
be observed that for rare cases such as when a model,
more specifically either of Faster R-CNN, Mask R-CNN or
TOOD, is trained on Florence and evaluated on the ID test
set, its performance is better than that of the UB. One possi-

ble interpretation is that the diversity provided by other dis-
tributions hurt the ID performance on Florence compared to
training on Florence exclusively.

Furthermore, the results in Table S8 clearly show that
the model trained on Hurricane Matthew exhibits the weak-
est performance on both ID and OOD test sets. A likely
explanation for this poor performance is that the underlying
dataset is challenging and may contain label noise or class



Target

Methods Source Florence Michael Harvey Matthew

Faster R-CNN

UB 33.2 19.3 25.1 1.9
Florence 34.5 8.4 5.2 0.4
Michael 8.7 18.6 4.8 0.2
Harvey 14.4 6.9 25.1 0.4
Matthew 2.8 4.3 1.1 1.5

Mask R-CNN

UB 32.8 19.3 25.5 1.7
Florence 34.1 9.2 4.7 0.4
Michael 8.1 19.1 4.8 0.3
Harvey 13.5 7.0 25.6 0.4
Matthew 3.3 4.4 1.5 1.7

TOOD

UB 34.1 19.8 27.7 2.4
Florence 35.7 9.1 5.6 0.5
Michael 11.4 21.0 6.2 0.7
Harvey 16.1 7.3 27.5 0.4
Matthew 3.7 5.0 1.3 2.4

DINO

UB 37.7 22.2 32.0 2.8
Florence 36.5 9.6 6.7 1.0
Michael 11.6 20.6 6.3 0.7
Harvey 19.5 7.8 31.4 0.6
Matthew 4.8 5.4 1.8 2.5

Grounding DINO

UB 40.4 24.7 32.2 3.0
Florence 39.3 10.5 8.1 1.1
Michael 18.2 24.2 10.2 1.4
Harvey 23.7 9.4 31.0 1.0
Matthew 10.4 7.9 4.9 3.3

GLIP

UB 41.0 24.2 31.1 3.2
Florence 40.8 10.6 7.8 0.9
Michael 17.9 23.9 9.0 1.4
Harvey 26.3 10.3 29.2 1.7
Matthew 12.8 9.6 4.3 3.7

Table S8. mAP50:95 results on RWDS-HE for the single-source
setup.

imbalance due to the limited number of instances in the raw
dataset. These factors, which are independent of domain
shift, represent an open area of research and fall outside the
scope of this paper.

B.3.2 Qualitative DG Performance Comparison

Figure S3 illustrates the performance of the best-performing
object detector, Grounding DINO, on both ID and OOD test
sets. The diagonal samples, highlighted in purple, represent
the performance on the ID test samples. Notably, samples
with a small number of bounding boxes were intentionally
selected to aid visualization and facilitate for clarity in the
explanation.

It can be observed that the ID performance across each
domain closely matches the ground truth, consistent with
the earlier findings from Table S8. However, in certain
cases, such as when analysing the ID performance of the
model trained on Hurricane Matthew, the model fails to de-
tect several bounding boxes or makes incorrect detections.

Moreover, when examining the OOD performance, the
models appear to make similar mistakes during detection.

For instance, when testing on the Florence test set, the
object detector trained on Florence performs exceptionally
well, in contrast to the detectors trained on Michael, where
the false negatives are notably higher or in even a worse
case, Matthew, where the model fails to generalise effec-
tively.

B.3.3 Multi-Source DG Experiments

Table S9 presents the results of the multi-source experiment
using mAPs over different IoU regions, namely, mAP50,
mAP75 and mAP50:95. The results across those three regions
exhibit a similar trend to the one reported in Section 5.3.

Moreover, Table S10 presents the performance of the ob-
ject detectors under the multi-source setup, where each de-
tector is trained on a combination of source domains and
tested on both the individual ID test sets and the excluded
target domain test set. The diagonal, indicated in bold, high-
lights their OOD performance.

Similar to the observations in the previous section, we
can see the domain shift experienced by the object detectors
through the performance decline between ID and OOD test
sets. Additionally, it is evident that in RWDS-HE, training
on multiple domains helps improve the generalisation of the
object detectors to OOD test sets, although this may slightly
affect the average ID performance due to this trade-off. This
is particularly noticeable when examining the OOD perfor-
mance on Florence for GLIP and Grounding DINO.



Figure S3. Qualitative DG performance comparison of Grounding DINO among different hurricane events, namely, hurricanes Florence,
Michael, Harvey and Matthew, where the diagonal images highlighted in purple indicate the performance on the ID test sample.

Target

Florence Michael Harvey Matthew

Metric Methods mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑ mAPID mAPOOD PD ↓ H ↑

IoU: 0.50

mAP50

Faster R-CNN 63.1 27.5 56 38.3 43.3 20.8 52 28.1 56.6 13.2 77 21.4 6.0 1.4 77 2.3
Mask-CRNN 63.8 28.2 56 39.1 43.9 21.0 52 28.4 57.8 14.0 76 22.5 5.8 2.1 64 3.1
TOOD 62.7 29.7 53 40.3 43.5 22.6 48 29.8 59.6 13.6 77 22.1 7.3 1.9 74 3.0
DINO 68.2 35.2 48 46.4 47.3 24.7 48 32.5 65.9 18.7 72 29.1 10.6 3.2 70 4.9
Grounding DINO 70.8 53.4 25 60.9 52.7 29.0 45 37.4 69.1 23.2 66 34.7 11.4 5.6 51 7.5
GLIP 71.0 55.8 21 62.5 51.0 25.2 51 33.7 65.6 18.4 72 28.7 10.2 3.9 62 5.6

mAP75

Faster R-CNN 31.4 9.9 68 15.1 14.5 6.4 56 8.9 18.6 3.2 83 5.5 0.5 0.1 80 0.2
Mask-CRNN 32.2 11.4 65 16.8 14.6 6.6 55 9.1 19.6 3.1 84 5.4 0.4 0.2 45 0.3
TOOD 33.3 11.6 65 17.2 15.7 6.9 56 9.6 21.7 3.1 86 5.4 0.6 0.2 68 0.3
DINO 37.1 14.6 61 21.0 17.3 7.8 55 10.8 27.5 5.1 81 8.6 1.0 0.3 71 0.5
Grounding DINO 40.4 28.3 30 33.3 19.8 9.6 51 12.9 26.9 6.3 77 10.2 1.2 0.5 58 0.7
GLIP 42.8 30.7 28 35.8 20.5 9.0 56 12.5 25.3 5.4 79 8.9 1.4 0.4 71 0.6

mAP50:95

Faster R-CNN 32.8 12.7 61 18.3 19.0 8.9 53 12.1 25.0 5.2 79 8.6 1.7 0.4 76 0.6
Mask-CRNN 33.6 13.3 60 19.1 19.3 9.1 53 12.4 25.8 5.4 79 8.9 1.6 0.7 56 1.0
TOOD 34.2 14.0 59 19.9 19.7 9.6 51 12.9 27.2 5.3 81 8.9 2.2 0.5 77 0.8
DINO 37.3 17.0 54 23.3 21.4 10.6 50 14.2 31.3 7.7 75 12.4 2.8 0.8 71 1.2
Grounding DINO 39.6 28.2 29 32.9 24.3 12.8 47 16.8 32.2 9.4 71 14.5 3.1 1.5 52 2.0
GLIP 40.8 30.7 25 35.0 24.3 11.4 53 15.5 30.9 7.8 75 12.5 3.2 1.1 66 1.6

Table S9. Multi-source DG analysis of SOTA detectors on RWDS-HE where ID/OOD denotes the mAP scores over different IoUs.



Target

Methods Source Florence Michael Harvey Matthew

Faster R-CNN

UB 33.2 19.3 25.1 1.9
Un. Florence 12.7 18.9 25.1 1.9
Un. Michael 32.4 8.9 25.0 1.5
Un. Harvey 32.9 19.0 5.2 1.7
Un. Matthew 33.1 19.2 24.8 0.4

Mask R-CNN

UB 32.8 19.3 25.5 1.7
Un. Florence 13.3 19.2 25.4 1.6
Un. Michael 33.7 9.1 25.9 1.5
Un. Harvey 33.5 19.3 5.4 1.7
Un. Matthew 33.6 19.4 26.1 0.7

TOOD

UB 34.1 19.8 27.7 2.4
Un. Florence 14.0 19.7 27.2 2.2
Un. Michael 34.3 9.6 27.2 2.2
Un. Harvey 34.6 19.6 5.3 2.1
Un. Matthew 33.6 19.9 27.2 0.5

DINO

UB 37.7 22.2 32.0 2.8
Un. Florence 17.0 21.5 31.4 2.7
Un. Michael 37.6 10.6 31.4 2.9
Un. Harvey 37.2 21.2 7.7 2.7
Un. Matthew 37.0 21.5 31.1 0.8

Grounding DINO

UB 40.4 24.7 32.2 3.0
Un. Florence 28.2 24.2 32.2 3.0
Un. Michael 38.4 12.8 32.0 2.8
Un. Harvey 40.3 24.3 9.4 3.5
Un. Matthew 40.1 24.3 32.3 1.5

GLIP

UB 41.0 24.2 31.1 3.2
Un. Florence 30.7 24.0 30.8 3.5
Un. Michael 40.1 11.4 30.7 3.1
Un. Harvey 41.3 24.5 7.8 3.1
Un. Matthew 40.9 24.3 31.3 1.1

* Un. means Unseen

Table S10. mAP50:95 results on RWDS-HE for the multi-source
setup.
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Heidi Küsters-Vandevelde, Willem Vreuls, Peter Bult, Bram
van Ginneken, Jeroen van der Laak, and Geert Litjens.
From detection of individual metastases to classification of
lymph node status at the patient level: The camelyon17 chal-
lenge. IEEE Transactions on Medical Imaging, 38(2):550–
560, 2019. 1

[5] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High
quality object detection and instance segmentation. IEEE
transactions on pattern analysis and machine intelligence,
43(5):1483–1498, 2019. 2

[6] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 2

[7] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. MMDetection: Open
mmlab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019. 5

[8] Xingyu Chen, Xuguang Lan, Fuchun Sun, and Nanning
Zheng. A boundary based out-of-distribution classifier for
generalized zero-shot learning. In European conference on
computer vision, pages 572–588. Springer, 2020. 5

[9] J. Dai, K. He, and J. Sun. Convolutional feature masking
for joint object and stuff segmentation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
3992–4000, Boston, MA, USA, 2015. IEEE. 2

[10] Jian Ding, Nan Xue, Gui-Song Xia, Xiang Bai, Wen Yang,
Michael Ying Yang, Serge Belongie, Jiebo Luo, Mihai
Datcu, Marcello Pelillo, et al. Object detection in aerial im-
ages: A large-scale benchmark and challenges. IEEE trans-
actions on pattern analysis and machine intelligence, 44(11):
7778–7796, 2021. 2

[11] Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qing-
ming Huang, and Qi Tian. Centernet: Keypoint triplets for

object detection. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 6569–6578,
2019. 2

[12] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable
object detection using deep neural networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
2155–2162, Columbus, OH, USA, 2014. IEEE. 2

[13] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R. Scott,
and Weilin Huang. TOOD: Task-aligned One-stage Object
Detection. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3490–3499, Montreal, QC,
Canada, 2021. IEEE. 2, 5

[14] Yanwei Fu, Xiaomei Wang, Hanze Dong, Yu-Gang Jiang,
Meng Wang, Xiangyang Xue, and Leonid Sigal. Vocabulary-
informed zero-shot and open-set learning. IEEE transactions
on pattern analysis and machine intelligence, 42(12):3136–
3152, 2019. 5

[15] Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang,
and David Balduzzi. Domain generalization for object recog-
nition with multi-task autoencoders. In Proceedings of the
IEEE international conference on computer vision, pages
2551–2559, 2015. 2

[16] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Columbus, OH, USA, 2014. IEEE. 2

[17] Ross B Girshick. Fast R-CNN. In International Conference
on Computer Vision, pages 1440–1448, Boston, MA, USA,
2015. IEEE. 2

[18] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. International Conference on Learning
Representations, 2021. 5

[19] Abhishek Gupta, Alagan Anpalagan, Ling Guan, and
Ahmed Shaharyar Khwaja. Deep learning for object detec-
tion and scene perception in self-driving cars: Survey, chal-
lenges, and open issues. Array, 10:100057, 2021. 1

[20] Ritwik Gupta, Richard Hosfelt, Sandra Sajeev, Nirav Patel,
Bryce Goodman, Jigar Doshi, Eric Heim, Howie Choset, and
Matthew Gaston. xBD: A Dataset for Assessing Building
Damage from Satellite Imagery, 2019. arXiv:1911.09296
[cs]. 4

[21] Jiaming Han, Jian Ding, Nan Xue, and Gui-Song Xia. Redet:
A rotation-equivariant detector for aerial object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2786–2795, Online,
2021. IEEE. 2

[22] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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