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Prompt: “Can you describe the main features visible in this histopathology image?”

(5x): The image primarily showcases the spleen, with a particular focus on the white pulp. The white pulp is a key
component of the spleen's structure and is located towards the left and extending to the middle region of the
image. (10x): The image primarily showcases a section of a lymph node, with a focus on the medullary region. The
medulla is characterized by the presence of medullary cords and sinuses. The cords are densely populated with
lymphocytes, which are a type of white blood cell. These lymphocytes are seen in two distinct areas, one towards
the right middle and the other spanning from the left middle to the lower right region of the image. (20x): The
image primarily showcases a section of a lymph node, with a focus on the medullary sinuses. These sinuses are
lined by a simple squamous epithelium, which is a single layer of flat cells. This feature is prominently visible in
the central to the right middle region of the image. (40x): The image primarily showcases a section of bone
marrow, which is located towards the right side and slightly towards the upper part of the image. Within this
bone marrow, you can observe developing granulocytes, which are a type of white blood cell. These granulocytes
are characterized by their granules, which are visible in the image.

Quilt-LLaVA

Figure 1. Example of multi-resolution analysis of a histology image extracted from input WSI (a) using the Quilt-LLaVA [59]. Exemplar
histology patches (b)-(e) are shown at different magnifications, demonstrating how higher magnification (5× to 40×) shifts focus from
contextual to detailed information. Textual descriptions generated by Quilt-LLaVA vary, reflecting the change in textual details observed
at each magnification level from 5× to 40×.
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(a) Performance comparison of MI-Zero [52] & MR-PLIP (b) Performance comparison of QuiltNet [37] & MR-PLIP

(c) Performance comparison of BiomedCLIP [73] & MR-PLIP (d) Performance comparison of PLIP [35] & MR-PLIP
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Figure 2. Zero-shot tile-based classification performance in terms of accuracy of SOTA VL models including (a) MI-Zero [52], (b) QuiltNet
[37], (c) BiomedCLIP [73], and (d) PLIP [35] on testing splits of seven independent datasets. Both models are pre-trained on the TCGA
dataset using patches from 20k WSIs. In each experiment, the pre-trained vision-language encoders are fine-tuned on a fixed magnification
level 5×, 10×, 20×, or 40×. Performance variations across different magnification levels show the need for a multi-resolution VL model
in computational pathology for improved generalization capabilities.

1. MR-PLIP Model: More Insights

In clinical diagnostics, expert pathologists often analyze the
WSI to predict the outcomes of diseases by inspecting it
from multiple resolution levels. The multi-resolution anal-

ysis of the WSIs assists expert pathologists to better analyze
the tumor micro-environment by looking at the surrounding
tissue/cellular structures [1, 11, 18, 25, 34, 74]. For exam-
ple, pathologists look at the global architectural composi-
tion of the tissue sample and analyze the context of each tis-



sue component, including cancer, to identify the presence of
both healthy and cancerous tissues. Additionally, they zoom
in into each region of interest, where the tissue is examined
at a high resolution, to obtain the details of the cancer cells,
and characterize the tumor based on its local cellular com-
position. Another example where pathologists take advan-
tage of both context and details is the spatial distribution of
immune cells, which may be detected in the presence of in-
flammation inside the tumor or the stromal compartment of
the cancer regions, as well as in specific clustered groups
called tertiary lymphoid structures, which may develop in
response to cancer as shown in Figs. 1.

The above multi-scale analysis is crucial, as it involves
the integration of both overarching (i.e., viewing the WSI at
the lowest level of magnification) and detailed (i.e., viewing
the WSI at the highest level of magnification) viewpoints
[14, 21, 22, 33]. Such a thorough approach enables patholo-
gists to accurately distinguish between various types of can-
cer, such as differentiating invasive ductal carcinoma from
invasive lobular carcinoma, as well as identifying tumor-
infiltrating lymphocytes [6, 14].

Most contemporary VLMs in histopathology primarily
use histology images extracted from WSI of a single resolu-
tion, which might restrict their capability to adequately con-
vey the essential broad and detailed perspectives for optimal
analysis [35, 51, 52]. An illustration of this, as shown in
Figs. 1, is provided by the SOTA VLM, Quilt-LLaVA [59],
which demonstrates how, with increasing magnification lev-
els, the amount of textual descriptions derived from the in-
put histology patch decreases. This decline is attributed to
the loss of contextual information at higher magnifications.
Additionally, pivotal cues, such as those indicating invasive
lymph node, may only be visible at specific magnifications,
highlighting the Quilt-LLaVA model’s considerable depen-
dency on certain magnification levels for generating accu-
rate textual descriptions, a limitation that might be seen as
a drawback.

To explore the multi-resolution generalization abilities
of the SOTA methods, we fine-tuned SOTA CPath mod-
els, including PLIP [35], BiomedCLIP [73], MI-Zero [52],
and QuiltNet [37], across magnification levels of 5×, 10×,
20×, and 40×, using 20,000 WSIs (comprising 34 million
patches) from the TCGA dataset [71]. These models are as-
sessed through zero-shot settings across seven benchmark
datasets for tile-based classification, as depicted in Fig. 2.
Excluding our top-scoring mode MR-PLIP, Fig. 2 shows
that 20× is virtually the best, coming first in 13 out of 14
trials. The 10× consistently ranks either first or second in
8 out of 14 trials, while the extreme magnifications of 5×
and 40× typically land in the last or third position in 10 out
of 14 trials. These statistics highlight that the magnifica-
tions 20× and 10×, striking a balance between detail and
context, achieve optimal performance. Our intuition is that
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Figure 3. Parent-child relationships in the visual bag (Bv
i,j). Our

loss (LMRTV A) is minimized while preserving the parent-child
relationships.

integrating the 5× and 40× alongside the 20× and 10× in
VL models will further leverage the complementary of the
four magnification levels. We suggest, therefore, that syn-
chronizing visual-textual concepts across multiple resolu-
tions enhances their efficacy for diverse CPath applications
and their overall generalization.

2. Parent-Child Hierarchy

To clarify the approach used to preserve the hierarchical
structure in our curated histopathology dataset, particu-
larly when aligning text-guided visual features across dif-
ferent resolution levels as outlined in Eq. (3) of the main
manuscript, we focus on maintaining the integrity of the
parent-child relationship, as depicted in Fig 3. Specifically,
the alignment of text-guided visual features is strictly be-
tween parents and their direct offspring. Within the vi-
sual bag Bv

i,j , patches lacking a parent-child linkage do not
share visual content, rendering their alignment irrelevant.
In our MR-PLIP model, alignment is confined to parents
with their immediate children and vice versa, enabling the
model to assimilate contextual and intricate details across
different resolution levels. Alignments between grandpar-
ents or grandchildren are omitted to avoid confusion from
minimally overlapping content.

3. Multi-modal Encoder for Text-guided Visual
Representation

Our multi-modal encoder’s architecture incorporates ele-
ments from the frameworks presented in [45, 48, 72], which
originally were not applied to Computational Pathology
(CPath). Here, we explicitly adapt and merge their method-
ologies for the first time to suit the specific needs of the
CPath domain, as demonstrated in Fig. 4, showing the en-
coder’s architecture. This model incorporates the identi-
cal unimodal encoders for text (using the QuiltNet model)
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Figure 4. The architecture of our multi-modal encoder for esti-
mating text-guided visual feature representation (see Sec. 3.4 in
the main manuscript).

and images (using the UNI model), as outlined in the main
manuscript, along with a multi-modal encoder for integrat-
ing text-guided visual features and a text decoder for gen-
erating text. In particular, the vision encoder processes a
multi-resolution histology patch, pri,j , converting it into a
visual representation, vr(i, j). Similarly, the text encoder
converts the corresponding textual descriptions, tri,j , of pri,j
into textual features, wr

i,j . To effectively merge multi-modal
data while retaining the integrity of single-mode informa-
tion, we initially combine the image and text features de-
rived from the unimodal encoders as per references [45, 48].
To achieve this, the Image-Text Contrastive (ITC) loss is
employed to synchronize the unimodal outputs from both
the visual and text encoders. Subsequently, a cross-modal
network with skip connections is utilized to merge the vi-
sual and textual data efficiently, applying the Image-Text
Matching (ITM) and Masked Language Modeling (MLM)
losses [24, 48] for effective fusion. The decoder, informed
by the integrated image and prefix sub-sequence representa-
tion, is trained using the Prefix Language Modeling (PLM)
loss to complete the caption generation [13].

4. Pre-Training Baseline Objectives

During the pre-training process, we perform four pre-
training tasks: Image-Text Contrastive Learning (LITC),
Image-Text Matching (LITM ), Masked Language Mod-
eling (LMLM ), and Prefix Language Modeling (LPLM ).
First, the ITC task is employed to align the unimodal rep-
resentations of images and texts. Then, the ITM and MLM
tasks are used for learning the multi-modal representation.
Based on the image-language representations produced by
the multi-modal encoder, the decoder is then trained with
PLM loss to perform text-completion tasks.

4.1. Image-Text Contrast (ITC):
In line with [46, 48], this task is used to align the uni-
modal encoders. Specifically, we calculate the softmax-
normalized similarities between image-to-text and text-
to-image, incorporating memory queues as described in
MoCo [20] to expand the pool of negative samples during
the learning process. For each patch pri,j , we use its visual
feature vector vri,j along with its corresponding ko positive
words to generate the textual feature representation wr

i,j .
Through the application of two projector networks [48],
these visual and textual features are then transformed into
vr

′

i,j and wr′

i,j respectively.
Formally, the Image-Text Contrastive (ITC) loss is then

calculated as:

Li2t = − 1

M

M∑
m=1

log
exp(s(vr

′
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r′

i,j)/τ)∑M
m=1 exp(s(v
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, (2)

LITC =
1

2
(Li2t + Lt2i), (3)

where vr
′

i,m contain both the positive and the negative vi-
sual samples for text representation wr

i,j and wr′

i,m are the
positive and negative text samples for visual feature vri,j .

4.2. Image-Text Matching (ITM):
This task aims to predict whether an image and a text
are paired or not based on the multi-modal representation
[45, 48]. In this loss, we maximize the log-likelihood of
predicting a positive and negative pair, given the visual and
textual descriptions vr

′

i,j and wr′

i,j .

Litm = −E(vr′
i,j ,w

r′
i,j)

log p(y|vr
′

i,j , w
r′

i,j) (4)

where y ∈ {+,−} is the predicted label during the con-
trastive learning.

4.3. Masked Language Modeling (MLM):
In this task, tokens wr′

i,j,b are masked, and the model is
tasked with predicting these masked tokens by leverag-
ing the multi-modal representation [24]. The loss for
this masked language modeling is defined as per refer-
ences [24, 45, 48]:

Lmlm = −E(vr′ i,j,wr′
i,j,b)

log p(wr′

i,j,b|vr
′

i,j , w
r′

i,j,/b) (5)

where wr′

i,j,/b are the non-masked key words.



4.4. Prefix Language Modeling (PLM):
This pretext task requires the model to complete the trun-
cated texts based on the given image and prefix sequence of
truncated texts [45, 48, 49]. The model can be trained by
maximizing the likelihood of the truncated text in an auto-
regressive manner. Formally, the prefix language modeling
loss is calculated as [45, 49]:

Lplm = −E(vr′
i,jwb)

(
L∑

l=lp

log p
(
wr′

i,j,l)|wr′

i,j,[lp,l]
,

wr′

i,j,<lp , v
r′

(i,j)

))
,

(6)

where L denotes the total number of words and lp is the
length of a pre-fix sequence of keywords that is randomly
selected.

5. Additional Training and Implementation
Details

The TCGA dataset is renowned for being one of the largest
publicly available histopathology collections, covering a
broad spectrum of cancer morphologies and subtypes across
key organs [71]. We included WSIs from 21 major primary
cancer sites in TCGA, covering the adrenal gland, bile duct,
bladder, bone marrow, breast, testis, pleura, cervix, eye,
head and neck, stomach, uterus, thyroid, pancreas, esoph-
agus, ovary, liver, endometrium, thymus, skin, and larynx.
Testing was conducted on novel organs and cancer sub-
types—including colorectal, kidney, prostate, and brain—as
well as seen types such as breast, lung, bone, skin, and
NSCLC, without any overlap with the training data. Re-
sults on both seen and unseen cases demonstrated superior
performance compared to SOTA methods.

For the customization of the MR-PLIP algorithm to this
dataset, we refined it through the creation of 34 million
multi-resolution histology patches, each measuring 512 ×
512 pixels. Initially, we applied the Otsu method [54] for
WSI thresholding, then proceeded to extract patches at des-
ignated magnification levels (as detailed in Sections 3.1 and
3.2 in the main manuscript). These patches were chosen
based on a criterion ensuring at least 70% tissue coverage
to highlight pertinent histological details.

Our pre-training methodology integrated various archi-
tectures, including both domain-specific and general mod-
els. The fine-tuning process for our MR-PLIP model in-
volved initializing it with diverse sets of weights for im-
age and text encoders. An ablation study was conducted to
evaluate the MR-PLIP model’s performance across differ-
ent setups (refer to Table 4). We initialized the domain-
specific vision encoder with UNI (ViT-L/16), pre-trained

on histopathology data [19], and the domain-specific text
encoder with the first six layers of the QuiltNet model
[37], a GPT-2 adaptation with a context length of 77 (GPT-
2/77) [37]. The multi-modal encoder was similarly ini-
tialized using the latter six layers of the pre-trained Quilt-
Net model (GPT-2/77). The MR-PLIP model was pre-
trained over 50 epochs, with batch sizes set to 32 across
six NVIDIA A100 GPUs. The AdamW optimizer [3] was
used for optimization, featuring a weight decay of 0.02 and
beta values of (0.9, 0.98). The learning rate experienced an
initial ramp-up to 5e-5 across the first 1000 iterations, sub-
sequently following a cosine decay pattern. Through empir-
ical testing during pre-training, we established the optimal
number of positive keywords (ko) at 9, and set the Masked
Language Modeling (MLM) mask ratio to 15% [48].

During the fine-tuning phase of our MR-PLIP model, we
used various combinations of image and text encoders to
enhance its performance, detailed as follows:

1. In alignment with SOTA methods [35, 37, 52, 73], we
fine-tuned the baseline CLIP model [57] using a ViT-
B/16-224 [26] as the image encoder and GPT-2/77 [56]
as the text encoder.

2. Recognizing the baseline CLIP’s training on out-of-
domain paired data, we also fine-tuned the MR-PLIP
model with a pathology domain-specific pre-trained
PLIP [35] , using PLIP-ViT-B/32-224 as the image en-
coder and GPT-2/347 as the text encoder.

3. Following the approach of MI-zero and Biomed-
CLIP [73], we fine-tuned the MR-PLIP model using
BioClinicalBert/512 [5] and PubMedBERT/256 [31] as
text encoders, alongside CTransPath/224 [68] as the im-
age encoder. BioClinicalBert and PubMedBERT, both
non-pathology text encoders, are trained on biomed-
ical and clinical corpora, such as PubMed abstracts
and MIMIC [40]. CTransPath is trained through self-
supervised learning on 15.5 million unlabeled histology
patches, with both encoders using ViT-B/16.

4. MR-PLIP was also fine-tuned using BioClinicalBert/512
as the text encoder and PLIP-ViT-B/32-224 as the in-
domain image encoder.

5. Furthermore, we fine-tuned MR-PLIP using
CTransPath/224 as the in-domain image encoder
and PLIP-GPT/347 as the in-domain text encoder.

6. Additionally, we fine-tuned MR-PLIP using ViT-B/16
as the in-domain image encoder from the QuiltNet and
GPT-2/77 as the in-domain text encoder of the QuiltNet
model [37].

These experiments were conducted using inference time
prompts similar to [51] for a fair comparison. Throughout
this paper, our reported experiments predominantly used the
UNI (ViT-L/16) [19] as the image encoder and GPT-2/77 as
the text encoder from the QuiltNet model [37]. Please see
Table 4 for comparison.



6. Evaluation Metrics
For evaluating performance across different CPath
tasks [35, 51], we use a variety of metrics. These in-
clude the weighted average F1 score, balanced accuracy,
dice score, precision, recall, multi-class Panoptic Qual-
ity (mPQ), Recall@1 (R@1), Recall@50 (R@50), and
Recall@200 (R@200). Consistent with prior VLMs studies
in CPath, the weighted average F1 score and balanced
accuracy are applied to gauge performance in tile-level and
WSI-level classification tasks. For segmentation tasks, we
measure using dice score, precision, and recall. The mPQ
metric is specifically used for nuclei instance segmentation
tasks, while R@1, R@50, and R@200 metrics are dedicated
to evaluating the efficacy of cross-modal retrieval tasks.

7. Downstream Histopathology Datasets
We performed five different computational pathology
(CPath) tasks, including tile-level classification, WSI-level
classification, cross-modal retrieval, WSI segmentation,
and nuclei segmentation. To evaluate our MR-PLIP model
on these tasks, we used 26 independent datasets. For fair
comparisons with SOTA methods [35, 37, 41, 52], we em-
ployed the official testing splits of the datasets for zero-shot
evaluation. For linear probing and fine-tuning experiments,
we employed the official training and testing splits of each
dataset. The details of each dataset are outlined below:

7.1. Tile-level Classification Datasets
We used 15 independent datasets, consisting of a wide range
of tissue images from various resolution levels across dif-
ferent cancer types and tissues. These datasets include
Databiox [14], which focuses on invasive ductal carci-
noma from 124 patients, BACH [36] for breast cancer
analysis from 500 WSIs, PatchCamelyon [66] for identi-
fying normal and metastatic tumor tissues from 400 WSIs,
WILDS-CAM17 [9, 43] for classifying breast metastasis,
UniToPatho [10] for colorectal polyp classification, and
Osteo [7] for osteosarcoma from 40 WSIs. Addition-
ally, SkinCancer dataset [44] provides 36,890 skin tissue
patches for identifying various skin conditions, MHIST[70]
for colorectal polyps analysis, RenalCell [16] for study-
ing clear-cell renal cell carcinoma, and several others fo-
cusing on specific cancers like lung and colon cancer, as
well as datasets like DigestPath [23] for colonoscopy anal-
ysis, SICAP [62] for prostate cancer Gleason pattern classi-
fication, and WSSS4LUAD [32] for lung adenocarcinoma.
These datasets, with their specific focuses, resolutions, and
classifications, provide a comprehensive resource for vali-
dating and fine-tuning the MR-PLIP model’s capability in
accurately classifying a wide array of histopathological im-
ages, demonstrating its adaptability and precision across
different domains within pathology.

• Databiox (3 Classes): is an invasive ductal carcinoma
dataset collected from pathological biopsy samples of
124 patients. This dataset comprises 922 samples, cor-
responding to 2100× 1574 and 1276× 956 pixels. Each
sample is captured at four different levels of magnifica-
tion, including 4×, 10×, 20×, and 40×. The samples
are annotated into Grade I (well-differentiated), Grade II
(moderately differentiated), and Grade III (poorly differ-
entiated).

• BACH (4 Classes): is a breast cancer dataset contain-
ing 500 large tiles, each with 2048 × 1536 pixels cap-
tured at 40× magnification and sampled from 500 WSIs.
The dataset is classified into four different tissue types,
including normal, benign, in-situ carcinoma, and invasive
carcinoma. The official training (320 tiles) and testing (80
tiles) splits are provided.

• PatchCamelyon (2 Classes): is a breast cancer dataset
containing normal and metastatic tumor tissues. This
dataset is collected from 400 WSIs, containing 327,680
H&E stained histology images with 96×96 pixel tiles.
The samples are extracted from lymph node sections at
10× magnification level to provide an increased field of
view. The official training, validation, and testing splits
contain 262,144, 32,768, and 32,768 histology images.

• WILDS-CAM17 (2 classes): is a patch-based breast
metastasis detection dataset based on CAM17 dataset,
with folds created by WILDS for testing the models’ ro-
bustness under distribution shift. The dataset consists of
417,894 patches, each with 96× 96 pixels extracted from
WSIs of breast cancer metastases in lymph node sections.
The patch label refers to whether the patch contains a tu-
mor or is normal. For training and evaluation, we used the
official train–validation–test folds provided by WILDS.
The training set contains 302,436 patches from three hos-
pitals, and the model is evaluated on 34,904 validation
patches and 80,554 testing patches. We resized images at
224× 224 pixels and evaluated SOTA methods.

• UniToPatho (6 classes): is a colorectal polyp classifica-
tion dataset containing 9,536 each with 1, 812 × 1, 812
pixels at 0.44 µm/pixel annotated and extracted from
292 WSIs. The dataset contains six tissue types, in-
cluding normal (950 patches), hyperplastic polyp (545
patches), tubular adenoma with high-grade dysplasia
(454 patches), tubular adenoma with low-grade dysplasia
(3,618 patches), tubulovillous adenoma with high-grade
dysplasia (916 patches), and tubulovillous adenoma with
low-grade dysplasia (2,186 patches). The official train set
consists of 6,270 patches, while the testing set contains
2,399 patches. We resized images at 224×224 pixels and
evaluated SOTA methods.

• Osteo (3 Classes): dataset focuses on osteosarcoma and
contains 1,144 patches of size 1024 × 1024 pixels. The
dataset is collected from 40 heterogeneous WSIs at 10×



magnification level. The dataset contains three distinct
classes, including tumor, non-tumor, and necrotic tumor.
The official train and test splits are provided with a ratio
of 80:20.

• SkinCancer (16 Classes): comprises 36,890 skin tissue
patches extracted from 386 patients, each with 395× 395
pixels. The patches are captured at 10× magnification
from patients with basal cell carcinoma, squamous cell
carcinoma, naevi, and melanoma. The tiles are cate-
gorized into 16 distinct categories, including chondral
tissue, dermis, elastosis, epidermis, hair follicle, skele-
tal muscle, necrosis, nerves, sebaceous glands, subcutis,
eccrine glands, vessels, BCC, SqCC, naevi, melanoma.
The official train (88971), validation (72348), and testing
(28039) splits are provided.

• MHIST (2 Classes): is a colorectal polyps dataset that
contains 3,152 tissue patches of size 224 × 224 pixels
extracted at 40× magnification level from 328 WSIs. The
tiles are annotated into two classes, including hyperplastic
polyps and sessile serrated adenomas. For training, 2,175
tiles are utilized, while 977 tiles are reserved for testing.

• RenalCell (5 Classes): dataset contains histology pat-
terns of clear-cell renal cell carcinoma. The dataset con-
sists of 52,713 H&E-stained images with 300× 300 pix-
els captured at 40×. The dataset is annotated into five
distinct classes, including red blood cells, renal cancer,
normal tissue, torn adipose necrotic tissue, and muscle fi-
brous stroma blood vessels.

• NCT-CRC (9 Classes): is a colorectal cancer dataset
comprising H&E stained images encompassing nine dis-
tinct classes including Adipose, background, debris, lym-
phocytes, mucus, smooth muscle, normal colon mucosa,
cancer-associated stroma, and colorectal adenocarcinoma
epithelium. Tissue patches, corresponding to 224 × 224
pixels, are extracted at 20× magnification level. The
training dataset comprises 100K patches extracted from
86 patients, while the testing set consists of 7,180 images
extracted from 50 patients.

• LC25000Lung (3 Classes): is a lung cancer dataset
comprising 25K H&E stained images corresponding to
768×768 pixels extracted from 750 patients. The dataset
encompasses three classes, including lung adenocarci-
noma, benign lung, and lung squamous cell carcinoma.
The official training and testing splits are provided with a
ratio of 80:20.

• LC25000Colon (2 Classes): is a colon cancer dataset
containing H&E stained images each of size 768 × 768
pixels extracted from 500 patients. This dataset contains
two classes: benign colon tissue and colon adenocarcino-
mas. The official training and testing splits are provided
with a ratio of 80:20.

• DigestPath (2 Classes): is a colonoscopy dataset con-
taining H&E 660 tissue images. Similar to PLIP, we per-

formed tile-based zero-shot classification for Tumor Vs.
Normal on the testing split containing 18814 images.

• SICAP (4 Classes): is a prostate cancer dataset tailored
for Gleason pattern classification. It encompasses 512 ×
512 pixels tiles extracted from 155 WSIs. The official
training split comprises 9,959 images sourced from 124
WSIs, while the testing split includes 2,122 images from
31 WSIs. The dataset encompasses four labels, indicating
the primary Gleason pattern (3, 4, or 5) or noncancerous
(NC).

• WSSS4LUAD (2 Classes): is a lung adenocarcinoma
dataset containing tiles of 200 × 500 pixels. It encom-
passes three distinct classes: tumor, tumor-associated
stroma, and normal. We conducted a binary classifica-
tion of tumor vs. normal. The training dataset comprises
7,063 images, while the testing set comprises 3,028 im-
ages (2,015 tumors, 1,013 normal).

7.2. Tumor Subtype Classification Datasets
We used eight distinct datasets for tumour subtyping at the
WSI level: CAMELYON16 (CAM16) [12], CAMELYON-
17 (CAM17) [9], RCC-DHMC [75], BRCA-BRACS [15],
HunCRC [55], PANDA [17], EBRAINS [58, 65] and
NSCLC-CPTAC [27], all of which provide only slide-level
labels. Following the approach of CONCH [51] and MI-
Zero [52], we employed a top-K pooling operator for
WSI classification task. CAM16 focuses on breast cancer,
specifically the detection of lymph node metastasis from
400 gigapixel WSIs, with a training split of 270 WSIs and
a testing split of 130 WSIs, where 159 are normal, and
111 contain tumor regions. CAM17, another breast cancer
dataset, originates from sentinel lymph node sections of 200
patients, comprising 1000 WSIs with 5 slides per patient,
labeled for metastasis vs. normal, with the model evalu-
ated on 500 WSIs for both training and testing. CPTAC
dataset, consisting of 1091 WSIs of different patients, fo-
cuses on LUng ADenocarcinoma (LUAD) and LUng Squa-
mous cell Carcinoma (LUSC) and offers images at differ-
ent resolutions, providing a comprehensive set of data for
validating WSI-level classification performance. EBRAINS
is a dataset for 30-way fine-grained brain tumor subtyping.
RCC-DHMC is a Renal Cell Carcinoma (RCC) subtyping
dataset. HunCRC is a colorectal cancer screening dataset.
BRCA-BRACS is a breast cancer subtyping dataset while
PANDA is a prostate cancer dataset for gleason scoring.

• CAMELYON16 (CAM16) (2 Classes) is a breast can-
cer dataset designed for detecting lymph node metastasis
using gigapixel WSIs. It comprises a total of 400 WSIs
with only slide-level labels provided. The official train-
ing split consists of 270 WSIs, while the testing split con-
tains 130 WSIs. Within the training set, there are 159
normal WSIs, and 111 WSIs contain tumor regions indi-
cating breast cancer metastasis.



• CAMELYON17 (CAM17) (2 Classes) is a breast cancer
dataset generated from a sentinel lymph node section of
the Breast from 200 patients. The Camelyon17 dataset
contains 1000 WSIs with 5 slides per patient. The WSI
is labeled as metastasis vs. normal. The proposed model
is evaluated on the official train (500 WSIs) and test set
(500 WSIs) splits.

• NSCLC-CPTAC (2 Classes) is a Non-Small Cell Lung
Carcinoma (NSCLC) subtyping based on CPTAC con-
tains two classes including LUAD and LUSC. We ex-
cluded slides that were frozen tissue, nontumor tissue,
or were not labeled as having acceptable tumor seg-
ments, which resulted in 1,091 slides (578 LUAD and 513
LUSC). For training and evaluation, we divided datasets
into train-validation-test folds with 80:10:10 ratio and
872:109:109 slides. For zero-shot classification, we used
109 testing WSIs.

• EBRAINS [58, 65] (30 classes) is a dataset consists of
H&E histopathology WSIs of brain tissue selected from
The Digital Brain Tumour Atlas an open histopathology
resource. Similar to the CONCH [52], we used a subset
of 2,319 WSIs out of 3,114 WSIs and defined a 30-way
fine-grained brain tumor subtyping task limited to diag-
nostic labels that have at least 30 slides. For the super-
vised dataset, we performed a 50–25–25 split for train-
ing (1,151 slides), validation (595 slides) and testing (573
slides). For the zero-shot test set, we used the testing split
of 573 slides. The WSI counts for each class in the dataset
were also set according to the CONCH [52].

• RCC-DHMC (5 classes) is a Renal Cell Carcinoma
(RCC) subtyping dataset consisting of 563 RCC H&E di-
agnostic histopathology WSIs. The dataset contains six
cancer subtypes, including primary Clear Cell Renal Cell
Carcinoma (CCRCC) (344 slides), Papillary Renal Cell
Carcinoma (PRCC) (101 slides), CHromophobe RCC
(CHRCC) (23 slides), Renal Oncocytomas (ROCY)(66
slides), and benign cases (29 slides). Similar to UNI [19],
for training and evaluation, we used a modified configu-
ration of the train–validation–test folds with a 70:4:26 ra-
tio (393:23:147 slides), with eight CHRCC cases moved
from the test to the training fold due to CHRCC being
absent in the training fold.

• HunCRC (4 Classes) is colorectal cancer screening
dataset containing of 200 H&E diagnostic histopathol-
ogy WSIs of colorectal biopsies. Similar to UNI [19],
we employed a 4-way coarse-grained subtyping task us-
ing the categories of normal (10 slides), non-neoplastic
lesion (38 slides), CRC (46 slides), and adenoma (106
slides), in which the ground-truth label was set by the
study’s pathologist. For training and evaluation, we
split the dataset into 50:25:25 train–validation–test folds
(158:21:21 slides).

• BRCA-BRACS (3 classes) is a BReast CAncer (BRCA)

dataset containing 547 breast carcinoma H&E WSIs from
187 patients sourced from the breast carcinoma subtyping
task. The dataset contains 3 classes, including benign,
atypical, and malignant tumor labels. For training and
evaluation, we used the official train–validation–test folds
with a 72:12:16 ratio (395:65:87 WSIs).

• PANDA (6 classes) is the International Society of Uro-
logical Pathology (ISUP) grading task derived from the
PANDA challenge. It consists of 10,616 prostate cancer
core needle biopsies of the prostate. Each slide is as-
signed an ISUP score that defines prostate cancer grade
(6-class grading task). We removed the noisy labels and
considered 9,555 slides only in which Grade 0 (G0) con-
tains 2,603 WSIs, G1 contains 2,399 WSIs, G2 contains
1,209WSIs, G3 contains 1,118 WSIs, G4 contains 1,124
WSIs, and G5 contains 1,102). For training and evalu-
ation, we employed 80:10:10 train–validation–test folds
(7,647:954:954 WSIs).

7.3. Histology Image Segmentation Datasets

We used three distinct datasets for histolog image segmen-
tation tasks, including DigestPath, SICAP, and TIGER [60].
• DigestPath: focuses on colonoscopy H&E tissue sec-

tions, comprising 660 images with pixel-level lesion an-
notations for colorectal cancer provided for 250 testing
images from 93 patients.

• SICAP: This dataset aimed at prostate cancer, facilitates
Gleason pattern classification with 31 WSIs in the testing
split for tumor vs. normal tissue segmentation, and 124
WSIs in the training split.

• TIGER: dataset, dedicated to tumor-infiltrating lympho-
cytes (TILs) score prediction in H&E stained breast can-
cer images, includes 195 WSIs from as many patients.
These WSIs are annotated for semantic segmentation to
identify regions such as invasive tumor, tumor-associated
stroma, in-situ tumor, and others. For our study, we
simplified the classification into three classes: tumor,
stroma (merging tumor-associated and inflamed stroma),
and background, by combining invasive and in-situ tu-
mors to denote the tumor region, with all other regions
marked as background.

7.4. Nuclei Segmentation Datasets

For the nuclei segmentation task, we follow the same set-
tings as proposed in DINOSSLPath [41] by employing a
HoverNet [30] baseline model. We used two publicly avail-
able datasets: PanNuKe [29] and CONSEP [30].

• CONSEP: This dataset focuses on diverse nuclei seg-
mentation and classification across six nuclear types, con-
taining 41 image tiles of 1000 × 1000 pixels each, cap-
tured at 40× magnification, with 26 images designated
for training and 14 for testing.



Table 1. Ablation study of MR-PLIP’s zero-shot classification performance (weighted F1 score) using different multi-resolution image-text
pairs. The best resolution combinations for each dataset are highlighted.

Resolutions CAM16 CPTAC SICAP DigestPath Databiox NCT-CRC
5×,10× 0.566 0.706 0.421 0.792 0.421 0.732

20×,40× 0.631 0.805 0.529 0.887 0.472 0.835
5×,10×, 20× 0.599 0.771 0.469 0.883 0.518 0.807
10×,20×,40× 0.621 0.843 0.502 0.891 0.506 0.834

5×,10×,20×,40× 0.664 0.875 0.546 0.935 0.532 0.871

• PanNuKe: This dataset offers a broad diversity with 19
distinct tissue types for nuclei segmentation and classifi-
cation. It includes 4,346 images for training and 1,888
images for testing, each measuring 256 × 256 pixels,
showcasing a wide variety of tissues and nuclei types for
comprehensive segmentation analysis.

7.5. Cross-modal Retrieval Datasets
Mirroring the approaches of PLIP and QuiltNet, we as-
sessed the effectiveness of cross-modal retrieval through
zero-shot text-to-image and image-to-text retrieval tasks,
using the Twitter validation [35] and ARCH [28] datasets.

• ARCH: dataset, designed specifically for computational
pathology, consists of 25,028 vision-language pairs from
PubMed articles and pathology textbooks, narrowed
down to 8,176 pairs after filtering, providing detailed di-
agnostic and morphological information across various
stains, tissue types, and pathologies.

• Twitter: dataset, derived from pathology-related hash-
tags [4, 35, 53], offers a comprehensive collection of
243,375 public pathology images, including H&E stained
cases, along with image-text pairs from tweets and
replies. For our analysis, we utilized a validation sub-
set similar to PLIP, comprising 2,023 image-text pairs fil-
tered from over 200,000 pairs, to evaluate our model’s
cross-modal retrieval performance on both common and
rare pathology cases.

8. More Ablation Studies

8.1. Impact of Magnification Levels (Table 1)
In Sec. 1, we presented the argument that multi-resolution
pre-training is advantageous, considering that downstream
CPath tasks are executed at various magnifications. Our ex-
perimental results indeed confirm that incorporating multi-
ple resolutions in the pre-training dataset improves the per-
formance of downstream tasks (see Table 1 for details).

To substantiate this finding, we carried out an ablation
study by performing zero-shot classification tasks using
combinations of different resolutions. We noted that the
combination of 5×,10×,20×, and 40× resolutions yielded
the highest performance. On average, using 10×, 20×, and

40× resolutions was the second most effective, outperform-
ing the use of just 20× and 40×.

The rationale is that images and their paired textual de-
scriptions at lower magnifications, like 5×, provide suf-
ficient contextual information, whereas higher magnifica-
tions, like 40×, offer the necessary cellular detail for high
performance. Current SOTA methods fail to capture either
the broader context or the intricate details, leading to a de-
crease in performance.

8.2. Optimal Number of Positive Keywords (ko) for
the CVTA Module (Table 2)

We explore how different numbers of positive keywords
(ko), as detailed in Sec. (3.3), impact performance. Accord-
ing to the results shown in Table 2, enhancing ko from 3 to 9
leads to performance gains across all datasets, attributed to
the enrichment of information with more keywords. How-
ever, a further increment to ko = 12 only marginally dimin-
ishes performance across most datasets, with the exception
of DigestPath, which still shows improvement. Beyond this
point, performance suffers due to the addition of noisy key-
words that dilute the textual description’s relevance.

8.3. Performance Comparison of Different Caption-
ing Models (Table 3)

Table 3 presents the zero-shot classification performance
of MR-PLIP across six datasets using four different cap-
tioning methods: Quilt-LLaVA [59], QuiltNet [37], BLIP2
[50], and GPT4V [2]. The best performance is observed
with Quilt-LLaVA. Therefore, all results in this work are
reported using Quilt-LLaVA as the captioning model.

8.4. Generalization to other Image-Text Encoders
(Table 4)

In this experiment, we compared the performance of our
proposed MR-PLIP model in terms of initializing different
image-text encoders including CLIP (out-of-domain pre-
trained encoders), PLIP (in-domain pre-trained encoders),
CTransPath (in-domain pre-trained image encoder), Pub-
MedBERT (out-of-domain pre-trained text encoders), Bio-
clinicalBert (out-of-domain pre-trained text encoders), Di-
noSSLPath (in-domain pre-trained image encoder), Quilt-
Net (in-domain pre-trained encoders) as shown in Table



Table 2. Ablation study examining the zero-shot classification performance of the MR-PLIP model in terms of weighted F1 score, while
varying the number of positive keywords (k0). The table highlights the effect of different k0 values on the classification results across six
datasets, with the optimal performance marked in bold for each dataset.

k0 value CAM16 CPTAC SICAP DigestPath Databiox NCT-CRC
k0 = 3 0.602 0.816 0.514 0.918 0.476 0.813
k0 = 6 0.636 0.858 0.529 0.926 0.484 0.847
k0 = 9 0.664 0.875 0.546 0.935 0.532 0.871
k0 = 12 0.662 0.859 0.532 0.938 0.498 0.863
k0 = 15 0.642 0.824 0.528 0.929 0.481 0.859
k0 = 18 0.611 0.821 0.505 0.901 0.470 0.850

Table 3. Ablation study comparing the zero-shot classification per-
formance of MR-PLIP in terms of weighted F1 score using differ-
ent captioning models to generate textual descriptions of histology
images at the multi-resolution level. The table highlights the per-
formance of Quilt-LLaVA, QuiltNet, BLIP2, and GPT4V across
six datasets, with the best performance for each dataset marked in
bold.

Models Quilt-LLaVA QuiltNet BLIP2 GPT4V
CAM16 0.664 0.621 0.577 0.634
CPTAC 0.875 0.834 0.788 0.817
SICAP 0.546 0.507 .468 0.433

DigestPath 0.935 0.881 0.821 0.846
Databiox 0.532 0.510 0.401 0.476

NCT-CRC 0.871 0.837 0.703 0.752

9. The best results on six datasets are reported using UNI
(ViT-L/16-224) as an image encoder and QuiltNet (GPT-
2/77) to initialize the text encoder. This is because UNI
is pre-trained on unlabeled large histology images, and the
QuiltNet text encoder is trained on 1M histology image-text
pairs. The in-domain MR-PLIP variants also showed com-
parable performance compared to the best-performing MR-
PLIP (in-domain) variant.

8.5. Impact of Zero-Shot Inference (Figs. 5-6 &
Table 5)

In this experiment, we evaluate the performance of the MR-
PLIP algorithm by employing two different zero-shot in-
ference protocols. Echoing the SOTA approaches such as
PLIP [35], QuiltNet [37], and MI-Zero [52], we extract vi-
sual features for a given histology patch using our vision
encoder and compare them against a predefined set of test-
ing prompts to determine its class label as shown in Fig.
5.

Since our VLM is based on fine-tuning two uni-modal
encoders (one vision encoder and one text encoder) and one
multi-modal encoder, we introduce a novel zero-shot ap-
proach (Fig. 6) where, for a specific test histology patch,
we select ko positive keywords from a dictionary of tex-
tual descriptions collected during the training process of the
CVTA module (Sec. 3.3 in the main manuscript). These

positive keywords and the visual features are input to the
multi-modal encoder to obtain text-guided visual features
which are then used to match with the testing prompts to
predict the class label as shown in Fig. 6.

Table 5 shows the performance comparison of using both
zero-shot inference protocols on six independent datasets in
terms of weighted F1 score. Following [37] and [52], we
used similar testing prompts to compare the performances
of both zero-shot evaluation protocols. Our proposed zero-
shot inference protocol outperformed the classical approach
across six datasets. This demonstrates that the learned
text-guided visual representations using the proposed multi-
modal encoder are more effective compared to the unimodal
encoder representations.

8.6. Motivation of using Positive Keywords vs. Full
Text (Table 6)

Synthetically generated textual descriptions may contain
hallucinations, noise, and irrelevant words, which the pro-
posed CVTA module (Sec. 3.2) removes. The top-ko
well-aligned words with visual features are retained as pos-
itive keywords. By using positive keywords, we capture
fine-grained tissue morphology in multi-resolution histol-
ogy images, enhancing zero-shot classification. In con-
trast, full-text descriptions may obscure such details. More-
over, aligning multi-resolution positive keyword represen-
tations with histology images enables MR-PLIP to localize
meaningful tissue structures more effectively. Our positive
keyword-based alignment approach improves generaliza-
tion to novel keyword-tissue structures. As shown in our ab-
lation study (Table 6), positive keyword alignment outper-
forms full-text and all-word alignments across six datasets.

9. Zero-Shot Experiments

Zero-shot learning refers to the capability of models to ac-
curately perform tasks on new, unseen data without direct
training on those specific tasks, utilizing pre-learned repre-
sentations from image-text pairs.



Table 4. Zero-shot classification performance comparison in terms of weighted F1 score using different pre-trained vision and text encoders.

Ablation Study Vision Encoder Text Encoder CAM16 CPTAC SICAP DigestPath Databiox NCT-CRC
MR-PLIP CLIP CLIP 0.483 0.702 0.398 0.761 0.251 0.721

(ViT-B/16-224) (GPT-2/77)
MR-PLIP PLIP PLIP 0.541 0.729 0.461 0.834 0.452 0.749

(ViT-B/32-224) (GPT-2/347)
MR-PLIP CTransPath BioClinicalBert 0.584 0.752 0.531 0.883 0.471 0.751

(ViT-B/16-224) (BioClinicalBert/512)
MR-PLIP CTransPath PubMedBERT 0.581 0.799 0.528 0.881 0.471 0.761

(ViT-B/16-224) (PubMedBERT/256)
MR-PLIP PLIP PubMedBERT 0.556 0.765 0.500 0.841 0.440 0.769

(ViT-B/32-224) (PubMedBERT/256)
MR-PLIP PLIP BioClinicalBert 0.534 0.756 0.491 0.804 0.450 0.781

(ViT-B/32-224) (BioClinicalBert/512)
MR-PLIP CTransPath PLIP 0.563 0.771 0.503 0.924 0.479 0.806

(ViT-B/16-224) (GPT/347)
MR-PLIP QuiltNet QuiltNet 0.591 0.773 0.498 0.871 0.451 0.774

(ViT-B/16-224) (GPT-2/77)
MR-PLIP QuiltNet PubMedBERT 0.611 0.785 0.519 0.909 0.485 0.821

(ViT-B/16-224) (PubMedBERT/256)
MR-PLIP DinoSSLPath PubMedBERT 0.634 0.802 0.538 0.914 0.486 0.835

(ViT-B/16-224) (PubMedBERT/256)
MR-PLIP DinoSSLPath QuiltNet 0.622 0.841 0.541 0.931 0.491 0.842

(ViT-B/16-224) (GPT-2/77)
MR-PLIP DinoSSLPath BioClinicalBert 0.589 0.783 0.528 0.901 0.472 0.841

(ViT-B/16-224) (BioClinicalBert/512)
MR-PLIP UNI QuiltNet 0.664 0.875 0.546 0.935 0.532 0.871

(ViT-L/16-224) (GPT-2/77)

Table 5. Zero-shot transfer for histology image classification performance comparison in terms of weighted average F1 score. The results
are reported using the zero-shot inference protocol used in the SOTA methods [35, 37, 52] and our proposed zero-shot transfer protocol.

Zero-Shot CAM16 CPTAC SICAP DigestPath Databiox NCT-CRC
Classical Zero-shot 0.636 0.812 0.526 0.902 0.472 0.841
Proposed Zero-shot 0.664 0.875 0.546 0.935 0.532 0.871

Table 6. Zero-shot weighted F1 scores for MR-PLIP using full
text, all words, and positive keywords alignment.

Alignment NCT-CRC SICAP Databiox CAM16 CPTAC EBRAINS
Full Text 0.834 0.446 0.481 0.611 0.833 0.351

All Words 0.846 0.458 0.501 0.629 0.846 0.376
Positive Keywords 0.871 0.546 0.532 0.664 0.875 0.398

9.1. Zero-shot Segmentation Results (Table 7)
We conduct zero-shot WSI-level segmentation using a pro-
cess akin to the one for tile-based classification previously
mentioned. Rather than compiling scores from tiles into
a singular WSI-level prediction, we map tile-level scores
back to their respective spatial locations within the WSI,
averaging scores in overlapping areas. The highest-scoring
class at each location is used to determine the pixel-level
segmentation mask. Table 7 presents the zero-shot WSI-
level segmentation outcomes on three datasets, setting them
against six SOTA methods. Our MR-PLIP model outper-
forms all other methods in terms of performance across all

three datasets. Overall, CPLIP secures its position as the
runner-up in performance on the DigestPath and SICAP
datasets, while QuiltNet ranks as the second-best on the
TIGER dataset.

9.2. Zero-shot Cross-modal Retrieval Results (Ta-
ble 8)

The zero-shot text-to-image and image-to-text retrieval
tasks are evaluated by locating the closest matches for each
modality and verifying whether the correct ground-truth
pair falls within the top 1, 50, 200 closest matches. Ta-
ble 8 shows the zero-shot cross-modal retrieval performance
on two separate datasets, alongside a comparison with five
SOTA VLMs in CPath. On both datasets, the MR-PLIP
model outperforms all other methods by a significant mar-
gin, indicating its robust ability to align cross-resolution
features across diverse textual and visual domains. CONCH
and CPLIP also show strong performance, ranking as the
second-best in terms of recall metrics.



Table 7. Zero-shot segmentation performance comparison of gigapixel images in terms of dice score, precision, and recall with existing
VLMs in CPath on three independent datasets. The MR-PLIP algorithm outperforms existing models.

Methods DigestPath[23] SICAP [62] TIGER [60]
CLIP [57] 0.367 0.492 0.511 0.367 0.599 0.605 0.210 0.261 0.278

BioCLIP [73] 0.446 0.581 0.601 0.484 0.536 0.557 0.255 0.281 0.302
PLIP [35] 0.426 0.526 0.541 0.549 0.605 0.644 0.311 0.341 0.331

MI-Zero [52] 0.599 0.648 0.691 0.587 0.651 0.726 0.371 0.402 0.398
CONCH [51] 0.615 0.663 0.709 0.601 0.672 0.751 0.424 0.447 0.406
QuiltNet [37] 0.581 0.621 0.681 0.595 0.661 0.706 0.386 0.433 0.418
CPLIP [39] 0.687 0.722 0.761 0.651 0.715 0.806 0.420 0.454 0.413
MR-PLIP 0.706 0.741 0.785 0.664 0.745 0.823 0.459 0.489 0.436

Table 8. Zero-shot cross-modal retrieval (text-to-image and image-to-text) results on two datasets. In each cell, the results are displayed in
the format (%|%), with text-to-image retrieval results on the left and image-to-text retrieval results on the right.

Methods ARCH Twitter
R@1 R@50 R@200 R@1 R@50 R@200

CLIP 0.07 0.05 2.42 2.52 7.21 7.22 0.09 0.08 1.28 1.23 6.61 6.97
BioCLIP 8.89 9.97 53.24 52.13 71.43 68.47 9.11 10.56 40.30 39.23 52.33 51.66

PLIP 0.56 0.74 43.10 42.71 29.85 29.46 2.33 2.42 52.76 53.25 62.33 64.40
MI-Zero 6.87 7.71 52.10 54.14 60.96 61.21 5.77 6.98 70.21 68.83 75.66 74.10
QuiltNet 8.77 9.85 55.14 53.06 77.64 73.43 7.89 8.66 69.81 70.44 73.44 72.11
CONCH 8.16 9.11 58.91 59.10 75.16 76.90 9.90 10.19 75.91 76.80 80.91 81.68
CPLIP 9.10 9.06 56.77 57.12 79.10 80.19 6.17 7.90 72.89 73.09 79.10 80.17

MR-PLIP 11.17 12.56 61.31 62.23 83.98 84.20 10.21 11.33 78.84 76.91 83.21 82.97

Table 9. Performance comparison of the proposed MR-PLIP with existing SOTA foundation models, including both VLMs and vision-
only models. The tile-level classification performance is reported using linear probe evaluations, while WSI-level classification results are
reported using weakly supervised learning in which the ABMIL method is employed for both feature aggregation and MIL classification.
BA represents balanced accuracy and F1 is the weighted F1 score.

Datasets CONCH QuiltNet UNI REMEDIS Virchow CHIEF CTransPath GigaPath MR-PLIP
(Tile-level) BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1

NCT-CRC 0.938 0.955 0.922 0.947 0.874 0.875 0.787 0.802 0.960 0.968 0.844 0.856 0.845 0.867 0.929 0.942 0.965 0.976
PatchCamelyon 0.866 0.869 0.822 0.831 0.901 0.930 0.805 0.822 0.933 0.933 0.833 0.851 0.911 0.935 0.925 0.931 0.955 0.961
WILDS-CAM17 0.911 0.925 0.861 0.877 0.983 0.983 0.926 0.926 0.971 0.971 0.901 0.922 0.960 0.960 0.951 0.962 0.975 0.980

MHIST 0.791 0.807 0.802 0.823 0.856 0.881 0.781 0.807 0.831 0.836 0.791 0.813 0.811 0.826 0.851 0.879 0.876 0.915
SICAP 0.711 0.745 0.722 0.767 0.826 0.841 0.806 0.811 0.855 0.873 0.771 0.783 0.678 0.747 0.845 0.861 0.886 0.905

WSSS4LUAD 0.811 0.825 0.805 0.812 0.831 0.835 0.769 0.782 0.866 0.873 0.812 0.828 0.844 0.857 0.860 0.872 0.887 0.896
BACH 0.856 0.871 0.833 0.861 0.925 0.926 0.863 0.864 0.915 0.920 0.847 0.863 0.875 0.872 0.933 0.947 0.945 0.966

UniToPatho 0.451 0.467 0.446 0.457 0.504 0.533 0.446 0.473 0.557 0.574 0.405 0.416 0.432 0.481 0.535 0.540 0.605 0.622
Datasets CONCH QuiltNet UNI REMEDIS Virchow CHIEF CTransPath GigaPath MR-PLIP

(WSI-level) BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1 BA F1

CAM16 0.881 0.902 0.902 0.922 0.957 0.961 0.930 0.923 0.951 0.913 0.944 0.952 0.897 0.907 0.967 0.960 0.950 0.966
RCC-DHMC 0.856 0.866 0.851 0.864 0.919 0.926 0.865 0.877 0.922 0.931 0.897 0.901 0.804 0.883 0.921 0.936 0.941 0.952

HunCRC 0.681 0.721 0.702 0.722 0.643 0.824 0.604 0.787 0.621 0.667 0.651 0.667 0.556 0.728 0.641 0.667 0.688 0.701
BRCA-BRACS 0.723 0.748 0.718 0.725 0.687 0.691 0.676 0.696 0.708 0.722 0.656 0.666 0.639 0.648 0.704 0.715 0.741 0.767

PANDA 0.702 0.733 0.722 0.744 0.757 0.809 0.711 0.766 0.728 0.741 0.724 0.745 0.691 0.752 0.744 0.789 0.786 0.816
EBRAINS 0.687 0.717 0.655 0.666 0.675 0.746 0.382 0.471 0.701 0.723 0.688 0.706 0.514 0.597 0.687 0.704 0.745 0.763

NSCLC-CPTAC 0.881 0.902 0.877 0.900 0.904 0.935 0.841 0.866 0.923 0.936 0.922 0.934 0.877 0.895 0.900 0.915 0.930 0.955

10. Linear Probe Experiments (Table 9)

In the context of deep learning, linear probing refers to a
technique used to evaluate the quality of features learned
by a deep neural network. Specifically, it involves training
a simple linear classifier (e.g., logistic regression) on top
of the features extracted from a pre-trained neural network.

This process is performed without fine-tuning the original
network’s weights; only the weights of the linear classifier
are updated during the training process. The primary goal
of linear probing is to assess how well the pre-trained net-
work has captured valuable data representations. If a sim-
ple linear classifier can achieve high performance using the
features extracted by the neural network, it suggests that the
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Figure 5. Illustration of the zero-shot classification process used
by SOTA VLMs, like PLIP [35] and MI-Zero [52]. An input im-
age, in this case, an H&E-stained tissue image indicating a tumor,
is processed in parallel by a vision encoder and a text encoder.
The vision encoder extracts features from the image, while the
text encoder processes a set of predefined text prompts relating to
possible classifications (e.g., Tumor, Lymphocyte, Stroma, Epithe-
lium). Each class has a corresponding token (T1, T2, T3, ..., T5),
and the model outputs a probability score for each class, predict-
ing the likelihood that the input image corresponds to each class
based on visual-textual feature matching. The highest probability
score indicates the model’s classification of the image.

Table 10. WSI-level segmentation performance comparison in
terms of dice score, precision, and recall of the MR-PLIP with
other SOTA methods using linear probe evaluation protocols on
three datasets.

Datasets DigestPath SICAP TIGER
PLIP 0.426 0.526 0.541 0.549 0.605 0.644 0.463 0.478 0.493

QuiltNet 0.521 0.545 0.564 0.592 0.603 0.621 0.602 0.619 0.627
DINOSSLPath 0.551 0.588 0.603 0.634 0.667 0.683 0.601 0.628 0.636

CTransPath 0.503 0.516 0.526 0.534 0.567 0.582 0.533 0.561 0.587
CONCH 0.615 0.663 0.709 0.601 0.672 0.751 0.433 0.457 0.461

UNI 0.804 0.811 0.826 0.645 0.662 0.603 0.687 0.702 0.724
Virchow 0.833 0.865 0.889 0.641 0.652 0.687 0.707 0.732 0.755

MR-PLIP 0.851 0.873 0.903 0.655 0.688 0.708 0.726 0.730 0.778

network has learned a rich and informative representation
of the data.

Following the SOTA VLMs in CPath, we conducted a
downstream analysis by freezing the weights of our pro-
posed model and subsequently training linear layers for
supervised classification tasks. We obtained text-guided
visual features by inputting an image alongside its most
closely matching text description from a predefined prompt
set. A downstream linear classifier was then trained on these
features for tile-level assessments to evaluate the quality of
the representations learned by our MR-PLIP model.
Tables 9-11 displays the results of linear probe evalua-
tions on three downstream histopathology tasks includ-
ing tile-level classification, WSI-level segmentation, and
nuclei segmentation across 21 datasets, evaluating the
weighted average F1 score and comparing it against SOTA
CPath models including PLIP [35], MI-Zero [52], QuiltNet
[37], CTransPath [68], and DINOSSLPath [41]. Across
all datasets, our MR-PLIP algorithm consistently outper-
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Figure 6. Illustration of the zero-shot classification process using
the proposed MR-PLIP model. An input H&E (Hematoxylin and
Eosin) stained tissue image is input to the vision encoder and a
set of testing prompts are input to the text encoder. The vision
encoder generates an image embedding, while the text encoder
processes input text prompts such as “An H&E image of Tumor”
and generates embedding. The image embeddings are matched
against a pathology keyword dictionary, leading to a list of top k0
positive words associated with various types of histology prompts.
The multi-modal encoder (MR-PLIP) then combines these text and
image embeddings to produce a text-guided visual representation.
This yields a set of probability scores (such as 0.92, 0.49, etc.) for
each possible classification token T1, T2, T3, ...T5, that represent
different pathological features or diagnoses, predicting the most
likely classification for the input image. The MR-PLIP model
presents a significant enhancement through its integration of a
pathology keywords dictionary, which augments the classification
process. By comparing input text prompts with an extensive col-
lection of relevant medical terminology provided by the dictionary,
MR-PLIP can produce more precise and contextually detailed vi-
sual representations guided by text. As a result, it can determine
more accurate classification probabilities for various pathology-
specific tokens drawn from both the image and associated textual
data. This approach advances beyond prior models by embedding
specialized knowledge specific to the field of medicine into the al-
gorithm’s framework.

Table 11. Nuclei segmentation results in terms of mPQ measure of
the MR-PLIP with other SOTA methods using both linear prob-
ing and full fine-tuning evaluation protocols on two datasets

.
Datasets CONSEP PanNuKe

(Segmentation) Linear Fine-tune Linear Fine-tune
QuiltNet 41.11 45.56 48.11 52.21
MI-Zero 40.91 43.33 49.54 54.90
CONCH 39.85 51.75 44.31 50.21

DinoSSLPath 42.71 46.70 48.88 54.41
MR-PLIP 46.61 52.25 51.64 58.61

forms other methods by a substantial margin, affirming
the advanced performance of the MR-PLIP model over
the second-best performing methods GigaPath, Virchow,
CONCH, and UNI.



11. Weakly-Supervised WSI Classification Re-
sults (Table 9)

We performed weakly-supervised WSI classification to
evaluate the text-guided visual representations learned by
MR-PLIP across seven diverse WSI classification datasets.
MR-PLIP was used to extract text-guided visual features
from each patch, after which the ABMIL method [38] was
employed for feature aggregation and MIL-based classifi-
cation, as done in other SOTA methods [8, 19, 67–69]. For
training, we used the AdamW optimizer with a cosine learn-
ing rate scheduler, a learning rate of 1×10−4, cross-entropy
loss, and a maximum of 20 epochs. To ensure fair compar-
isons, we followed the experimental protocols of existing
SOTA methods for WSI classification tasks [19]. If official
data folds were not available, the WSI datasets were case-
stratified and label-stratified into train-validation-test splits
as suggested by UNI [19].

Table 9 compares MR-PLIP with SOTA foundation mod-
els based on balanced accuracy and F1 score. Our results
show that MR-PLIP outperforms existing models by a sig-
nificant margin, highlighting the benefits of explicitly incor-
porating multi-resolution image-text features.

12. Fine-tune Evaluation (Table 11)

In the context of deep learning, fine-tuning refers to a tech-
nique used to assess the adaptability and transfer potential
of the learned weights by a deep neural network. Specifi-
cally, it involves fine-tuning the original network’s weights.
The primary goal of full fine-tuning is to assess how well the
network weighted are transferred to the downstream analy-
sis task.

We performed full fine-tuning of our model in con-
junction with the linear layers for classification. This ap-
proach assesses the adaptability and transfer potential of the
learned weights within the MR-PLIP framework.

Tables 11 display the results of full fine-tuning across
nuclei segmentation datasets, evaluating the mPQ scores
and comparing them against the SOTA methods. Across
all datasets, our MR-PLIP algorithm consistently outper-
forms other methods by a substantial margin, affirming
the advanced performance of the MR-PLIP model over the
second-best performing methods QuiltNet, MI-Zero, and
DINOSSLPath.

13. More Comparisons with SOTA MIL-based
Methods (Table 12)

In this experiment, we compared the performance of our
MR-PLIP model with recently proposed MIL-based meth-
ods including FiVE [47], R2T [64], SI-MIL [42], ViLa-MIL
[61], and PANTHER [63]. For a fair comparison, we em-
ployed the same ABMIL method for WSI-level feature ag-

gregation and classification as discussed in Sec. 11.
Table 12 shows the results of the weakly supervised WSI

classification and comparison with recently proposed SOTA
methods on three tumor subtype classification datasets in-
cluding CAM16, NSCL, and PANDA. The performance is
reported in terms of balanced accuracy, F1 score, and AUC.
The MR-PLIP model consistently achieved superior perfor-
mance across most evaluation metrics.
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Daniel Riccio, Giosuè Scognamiglio, Guillaume Jaume,
Giuseppe De Pietro, Maurizio Di Bonito, Antonio Foncu-
bierta, Gerardo Botti, et al. Bracs: A dataset for breast carci-
noma subtyping in h&e histology images. Database, 2022:
baac093, 2022. 7

[16] Otso Brummer, Petri Pölönen, Satu Mustjoki, and Oscar
Brück. Integrative analysis of histological textures and lym-
phocyte infiltration in renal cell carcinoma using deep learn-
ing. bioRxiv, pages 2022–08, 2022. 6

[17] Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen,
Peter Ström, Hans Pinckaers, Kunal Nagpal, Yuannan Cai,
David F Steiner, Hester Van Boven, Robert Vink, et al. Artifi-
cial intelligence for diagnosis and gleason grading of prostate
cancer: the panda challenge. Nature medicine, 28(1):154–
163, 2022. 7

[18] Chengkuan Chen, Ming Y Lu, Drew FK Williamson,

Tiffany Y Chen, Andrew J Schaumberg, and Faisal Mah-
mood. Fast and scalable search of whole-slide images via
self-supervised deep learning. Nature Biomedical Engineer-
ing, 6(12):1420–1434, 2022. 2

[19] Richard J Chen, Tong Ding, Ming Y Lu, Drew FK
Williamson, Guillaume Jaume, Andrew H Song, Bowen
Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban,
et al. Towards a general-purpose foundation model for
computational pathology. Nature Medicine, 30(3):850–862,
2024. 5, 8, 14

[20] X Chen, S Xie, and K He. An empirical study of training
self-supervised vision transformers. in 2021 ieee. In CVF
International Conference on Computer Vision (ICCV), pages
9620–9629. 4

[21] Toby C Cornish, Ryan E Swapp, and Keith J Kaplan. Whole-
slide imaging: routine pathologic diagnosis. Advances in
anatomic pathology, 19(3):152–159, 2012. 3

[22] Angel Cruz-Roa, Hannah Gilmore, Ajay Basavanhally,
Michael Feldman, Shridar Ganesan, Natalie NC Shih, John
Tomaszewski, Fabio A González, and Anant Madabhushi.
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