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6. Background: Classification Calibration

We theoretically derive the classification calibration for im-
age classification. Let ps(y|x) and p;(y|z) be the source
and target conditional distributions. Using the Bayes theo-
rem, we write the source and target conditional distributions
as:

ps(z|y)ps(y)

o) = pe(2]y)pe(y)
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Dividing them, we write the target conditional distribution:

1 pi(y) pe(z]y)
pe\y|r) =—7—= ps\y|x (13)
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where k(z) = 5 t%i)) During training, we approximate

ps(y|z) by model f,(z;0) = =z and a scorer function
s(r) = e* for multiple category classification. Thus,
the learned source conditional distribution is ps(y|z)
efv(#:9)  Substituting it inside Eq. 13, we rewrite the tar-
get condition distribution as:

(y|x)<x—41471”(y) £ (a0) Pe(2]Y) (14)
r(x) ps(y) ps(zly)
=d(z,y) - efv(@0)Hoa(P:(y)~log(p: (y))—log(r(2))
where we assume that d(z,y) = ;’fgﬂlz; — 1. Thisis a

reasonable assumption, in cases where both train and test
generating functions come from the same dataset, as it is in
our benchmarks. In inference, we calculate the prediction ¥
by taking the maximum value of Eq. 14:

7 = arg max e fy(z:0)+108(p: (1)) ~log(pa (1)) ~log(x(x))
Yy

=arg mgX(fy(x; 0) + log(p:(y)) — log(ps(v)))

5)

where () is simplified because it is a function of x and
it is invariant to argmax,. Eq. 15 is the post-calibration
method [28, 65]. It can be used during inference to achieve
balanced performance by injecting prior knowledge inside
the model’s predictions, via p;(y) and ps(y), in order to
align the source with the target label distribution and com-
pensate for the label shift problem.

7. Fractal Dimension Variants

We explore various ways for computing the fractal dimen-
sion using the box-counting method [80], the information

Dimension | AP™ AP™ AP®
Info 28.6 232 283
SmoothInfo | 28.6 234 283
Box 286 230 284

Table 9. Fractal Dimension Variants using MaskRCNN with
ResNet50 and RFS on LVISv1. All of the are robust and we have
chosen the Box variant in the main paper.

dimension [78] (Info), and a smooth variant (SmoothInfo).
The information variant is defined as:

Info-®(y) = lim logz ZG 1 l(ny -
V= el log(G)

(16)

It is the similar to the box-counting dimension, except for
the box count which is normalised by the grid size G.
This way, the information dimension is represented by the
growth rate of the probability p = w
infinity.

as G grows to

In practise, the quantity 1(n, (u)) can be frequently zero
for many locations u especially for rare classes that have
few samples and are sparsely located. For this reason, we
also proposed a smooth information variant defined as:

. 1+ logz EG 1 1+]1(ny(u))
Smooth-®(y) = lim
G=o0 log(G)

a7)
This Equation is inspired by the smooth Inverse Document
Frequency [79] used in natural language processing and its
purpose is to smooth out zero values in 1(n,(u)) calcula-
tion.

All variants are robust and SmoothInfo achieves slightly
better AP because its calculation is more tolerant to few
samples compared to the box-counting method. However,
SmoothInfo and Info achieve slightly worse AP?, thus we
use the box-counting method in the main paper.

8. Object Distributions

We show that the object distribution ps(o,u) in the train-
ing set is similar to the object distribution p;(o,u) on the
test set in the LVIS vl dataset [22]. As shown in Figure
6, the distributions are close therefore we can safely as-
sume that ps (0, u) & p;(0,u). This explains the reason why
the background logit should remain intact during calibration
because there does not exist label shift for the generic object
class (also for the background class) between the train and
test sets.



Method dAPY, (1) dAP},.(1) dAPh,,,(1) dAPp,,.(1) dAPR (1) dAPy, (1)
Baseline 31.76 6.16 0.45 0.32 1.8 6.82
Cls calibration 20.49 6.96 1.02 0.01 3.26 6.46
Cls + Space calibration 16.91 6.42 0.85 0.01 2.84 6.84

Table 10. Error analysis using TIDE toolkit [6]. The class calibration reduces the misclassification error but it introduces more false
background detections compared to the baseline. When adding the space calibration, it further reduces the misclassification error and also
reduces the false background detections compared to the class calibration only.

LVISv1 train set

LVISv1 validation set

Figure 6. Comparison between the ps(o,u) (left) and p¢(o,u)
(right) in LVISv1 dataset. The distributions are similar, therefore
we can safely assume that ps (0, u) = p:(o,u).

9. Error Analysis

We perform an error analysis on the baseline method
that uses MaskRCNN ResNet50 and our FRACAL with
the same architecture, using the TIDE toolkit [6]. The
TIDE toolkit, reports errors using the dAP® metric which
shows the AP? loss due to a specific detection error. In
more detail, dAP2,, shows the AP’ loss due to mis-
classification, dAPLbOC shows the AP? loss due to mislo-
calisation, dAPgoth indicates the loss due to both misclas-
sification and mislocalisation, dAP,%upe indicates the loss

due to duplicate detections, dAP]g, kg Shows the error due to

background detections and dAP,, .. shows the errors due
to miss-detections.

As Table 10 shows, by adding only the class calibra-
tion, the dAPglS is reduced significantly by 11.29 percent-
age points (pp) compared to the baseline. This shows that
the class calibration method increases the correct rare class
predictions. However, the class calibration sometimes over-
estimates the rare classes and predicts rare objects instead
of background obtaining 1.44pp larger dAP},  than the
baseline. When the space calibration is added to the class
calibration then it further reduces the misclassification rate
dAPgls by 3.58pp showing that the space calibration classi-
fies better the rare classes. At the same time, the space cali-
bration slightly reduces the false background predictions by
0.42pp compared to the class calibration method. This anal-
ysis shows that both class and space calibration are impor-
tant and the joint use can lead to better and more balanced
detectors.

10. Confidence Calibration.

Many works in classification [21, 39, 67, 74] and object de-
tection [40, 42, 73] study confidence calibration, which is
a technique that allows the model to match its confidence
score with its expected accuracy. Confidence calibration
is important because it allows the detectors to output cal-
ibrated predictions that match the expected average preci-
sion. This leads to a safer deployment of detectors because
the calibrated detectors provide reassurance regarding their
detections which is a desired property in many safe-critical
applications like autonomous vehicles [42].

In our main paper, we have focused on logit calibration,
following the terminology of [69], which is different from
confidence calibration, as the former aims in improving
the rare class performance and the latter aims in reducing
the expected calibration error. Despite that, we have anal-
ysed the calibration performance of our method compared
to the baseline using the LVIS validation set, MaskRCNN
ResNet50 and the newly proposed LaECEy and LaAC Ey
metrics [42]. The LaFEC Ey metric shows the mean abso-
lute error between the detection confidence of all predic-
tions and the respective IoU that matches the ground-truth
aggregated over 25 confidence bins. LaACFEj is similar
to LaECEy, however instead of using 25 bins, it uses an
adaptive bin size. Both metrics jointly measure the local-
isation and classification quality and a low value indicates
that the detection has an aligned localisation and classifica-
tion estimate for the ground-truth. For more details on these
metrics, please refer to [42].

Method LaECEqy (}) | LaACEy ()
Baseline 16.8 19.8
FRACAL (ours) 14.9 15.1

Table 11. Calibration Errors using MaskRCNN ResNet50 on LVIS
validation set. FRACAL reduces the calibration error compared to
the baseline.

As Table 11 shows, FRACAL reduces the calibration er-
ror by 1.9 LaECEy points and by 4.7 LaACEy points,
compared to the baseline. This shows that FRACAL logit
calibration does not produce unreasonable class confidence
estimates, in contrast, it enhances the confidence estimates
for the rare classes making FRACAL a suitable logit adjust-
ment method for long-tailed object detection.



11. Visualisations

11.1. Visualisation of the ® distribution

As shown in the Figure 7, after applying our method, the
detected objects have larger ® values than the baseline, es-
pecially for the rare classes, which means that the detector
makes more spatially balanced detections than the baseline.
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Figure 7. @ distributions of the detected objects.

11.2. Detections using FRACAL

We provide more visualisations of our method in Figure &.
In (a) the ground-truth p(y, «) of LVIS validation set is dis-
played using a grid of 64 by 64. In (b) the Baseline py(y, u)
is shown, with an one example prediction in (c) using a de-
tection threshold of 0.01. In (d) our FRACAL p(y,u) is
shown using the same detection threshold and finally in (e)
one example prediction of FRACAL is shown. In these sub-
figures, the name of the y-axis denotes the class name and
the name of the x-axis indicates the average euclidean dis-
tance D between the coordinates of the predictions and the
center point in image space. This distance measure shows
how spread-out are the predictions and a larger distance in-
dicates larger spatial uniformity because more predictions
are further away from the image center. As the Figure sug-
gests, our FRACAL predictions in (d) have larger distance
D from the image center compared to the baseline predic-
tions in (b), highlighting that FRACAL is more spatially
balanced than the baseline. Furthermore, FRACAL makes
more rare class-predictions as shown in (d) than the base-
line predictions shown in (b), and correctly retrieves the rare
classes scarecrow, sobrero, crow, gargoyle and heron in the
(1-e), (2-e), (3-e), (4-e) and (5-e) respectively, in contrast to
the baseline that fails to detect them.

12. FRACAL computational cost

FRACAL needs 28 seconds to compute the fractal dimen-
sion of all objects in LVIS dataset, using multiprocessing
with 24 CPU cores. In comparison, LVIS inference costs
90 minutes, using 4-V100, thus our method only accounts
for 0.5% of the total computation.
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Figure 8. Visualisations on LVIS validation set using MaskRCNN ResNet 50 and mmdetection framework. It is recommended to zoom in
for better visualisation of the detections. Our FRACAL, makes more spatially balanced predictions indicated by the larger distance D, and
it detects more rare classes compared to the baseline.
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