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1. Datasets, Tasks, and Metrics
We briefly introduce the 11 image-language and 5 video-
language datasets used in the experiments of the main
manuscript. In addition, the system prompt (instruction)
used to get output results for each dataset is given. The
details of datasets used for image-language and video-
language understanding tasks are presented in Tab. 2. Fur-
thermore, the details on 3 extra datasets used for our new
experiments in the supplementary material are provided.

As shown in the table, diverse range of tasks includ-
ing image captioning, visual reasoning, open-ended visual
question answering, closed-ended visual question answer-
ing, and multiple-choice visual question answering are used
to evaluate the performance of the visual token pruning
methods compared with ours. Note that the system prompts
are the default prompts provided in the lmms-evals evalua-
tion package [24].

2. More Examples for Insights
In Fig. 3 of the main manuscript, DivPrune and an
importance-based token pruning method (i.e., FastV [3]) are
compared using (a) t-SNE visualization for a sample input’s
visual tokens and (b) a histogram of the max-min distance
between the selected tokens across 1000 data samples from
SeedBench dataset [8]. In this section, additional examples
from SeedBench and GQA datasets [7] are respectively pro-
vided in Fig. 1-(a)-(b) and Fig. 1-(c)-(f).

As shown in Fig. 1-(a)-(b), similar to the observation
in the main manuscript, the majority of the selected to-
kens using FastV method are densely clustered near each
other, whereas the tokens selected using DivPrune are more
widely separated. As a result, the redundancy among the
selected tokens decreases. In addition, unlike DivPrune,
FastV does not include any tokens from the top clusters.
Hence, DivPrune achieve a better representation for the
original set of tokens.

Further examples using GQA dataset are provided in
Fig. 1-(a)-(e). Inline with earlier observation, Divprune re-
duces redundancy and achieves better representation com-

pared to importance-based token pruning when applied to
GQA dataset. To verify this behavior over multiple dataset
samples, the max-min distance among the selected visual
tokens is obtained using 1000 randomly selected samples
from the GQA. The histogram of the obtained max-min val-
ues for DivPrune and FastV is shown Fig. 1-(f). The his-
togram also verifies that our method achieves higher max-
min distance values, thereby reducing redundancy for the
tested samples of the dataset.

3. Results with Additional Datasets

In addition to the datasets tested in the main manuscript,
we evaluate the proposed method and the baselines with
LLaVA 1.5-7b model on more visual question answering
datasets: TextVQA [19], VizWiz [6], and VQAv2 [5]. The
details corresponding to each dataset are included in Tab. 2.
The same hyperparameters used for results in Tab. 1 of the
main manuscript are applied to both our method and the
baselines. The results for the proposed method and the
baselines are summarized in Tab. 1. The TFLOPs are cal-
culated for each dataset, and the average TFLOP and ratio
are given in the TFLOP column of the table. VTW, FastV,
and ours are the 3 training-free and calibration-free meth-
ods. As the results indicate, our method outperforms VTW

Method
TFLOP TextVQA VizWiz VQAv2
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Original 3.13 (100.00) 46.08 54.24 76.65
VTW [11] 0.507 (16.20) 8.22 50.13 42.13
FastV [3] 0.418 (13.35) 8.21 50.48 41.71

Ours 0.416 (13.29) 35.97 57.41 71.55
PruMerge [18] Variable 37.70 56.31 65.01

Ours∗ Variable 35.00 57.43 69.59
FitPrune△ [21] 0.417 (13.32) 30.10 54.62 64.86

M3• [2] 0.416 (13.29) 44.31 52.98 75.87

Table 1. Comparison results of our method and baselines on three
additional datasets. •: Finetuning is used, △: Calibration dataset
is used. Ours∗: Our method matching the PruMerge selection
ratio.
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COCO-2017 [10] Image Captioning CIDEr Provide a one-sentence caption for the provided image.
Flicker30k [17] Image Captioning CIDEr Provide a one-sentence caption for the provided image.

GQA [7] CE-VQA Eaxct Match Answer the question using a single word or phrase.
MMBench [12] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.

MME [4] CE-VQA Perception Score Answer the question using a single word or phrase.

MMU [23] CE-VQA and OE-VQA Accuracy
Answer with the option’s letter from the given choices directly, OR
Answer the question using a single word or phrase.

Nocaps [1] Image Captioning CIDEr Provide a one-sentence caption for the provided image

OKVQA [16] Visual Reasoning Exact Match
When the provided information is insufficient, respond with ’Unanswerable’.
Answer the question using a single word or phrase.

POPE [9] CE-VQA F1 Score Answer the question using a single word or phrase.
ScienceQA-Image [13] Visual reasoning Exact Match Answer with the option’s letter from the given choices directly.
SeedBench-Image [8] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.

TextVQA [19] CE-VQA Exact Match Answer the question using a single word or phrase.

VizWiz [6] CE-VQA Exact Match
When the provided information is insufficient, respond with ’Unanswerable’.
Answer the question using a single word or phrase.

VQAv2 [5] CE-VQA Exact Match Answer the question using a single word or phrase.
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Accuracy/
GPT-Assisted score

Answer the question using a single word or phrase.

SeedBench-Video [8] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.
VideoChatGPT-temporal [14] OE-VQA GPT-Assisted-score Evaluate the temporal accuracy of the prediction compared to the answer.∗

NextQA [20] CE-VQA WUPS Answer a question using a short phrase or sentence.
EgoSchema [15] MC-VQA Accuracy Answer with the option’s letter from the given choices directly.

Table 2. Details of the datasets, the corresponding tasks, metrics, and prompts used in our experiments. CE-VQA: Closed-Ended Visual
Question Answering, OE-VQA: Open-Ended Visual Question Answering, MC-VQA: Multiple-Choice Visual Question Answering. ∗:
Only the main sentence from the prompt is shown here.

and FastV on TextVQA, VizWiz, and VQAv2 datasets by ≈
27%, 7%, and 29%, respectively.

In the case of dynamic pruning scenario, we matched the
pruning ratio with that of the PruMerge baseline [18]. The
comparison of our results with PruMerge reveals that our
method achieves higher accuracy on VizWiz and VQAv2
datasets. Compared to FitPrune [21], which uses calibra-
tion datasets to optimize the procedure of token pruning, we
achieve higher task performance on all the datasets. Finally,
compared to the fine-tuning-based M3 [2] method, our per-
formance is worse on TextVQA, comparable on VQAv2,
and better on VizWiz dataset. DivPrune achieves better re-
sults compared to the original model on VizWiz dataset. Vi-
sual token pruning has been shown to improve the original
model’s performance for some datasets [3]. Overall, the re-
sults shown in the table are inline with the results reported
in the manuscript. This proves that DivPrune outperforms
baselines on a diverse range of tasks and datasets.

3.1. Different TFLOPs for the 13b Model

In the main manuscript, we showed the performance of
baselines and our method across various TFLOP ratios for
LLaVA 1.5-7b model. In this section, we present the re-
sults with LLaVA 1.5-13b model. The results are shown
in Fig. 2 where the y-axis represents average performance
on four datasets, namely, COCO (CIDEr), OKVQA (Acc),
POPE (F1), and MMBench (Acc). For all datasets, the per-
formance metric spans from 0 to 1, with the exception of the

CIDEr metric, which can reach a peak value of 1.16 for the
tested model. On the x-axis, we only show the high com-
pression scenario (TFLOP ratio ≤ 40%). As shown in the
figure, our method significantly outperforms all the base-
lines, particularly in high compression scenarios (TFLOP
≤ 25%). Furthermore, the gap between our approach and
the baselines increases at extreme compression levels. For
higher TFLOP ratios almost all methods converge toward
the original performance. The pruning ratio and calibration
samples for the FitPrune are not provided for the 13b model,
unlike the 7b model, hence it is excluded from the baselines.

4. Qualitative Results

In this section, we present some qualitative results compar-
ing the proposed method with the relevant baselines. Given
the significant improvement of our method over the base-
lines on image captioning tasks, we provide 3 examples for
image captioning using COCO [10] dataset in Fig. 3. For
all the examples, the prompt, ground truth (GT) caption,
and the LLaVA 1.5-7B model’s output are given for refer-
ence. The model’s output when our pruning method and
baselines are applied is also shown for each example. We
follow the experimental settings used to obtain the results in
Tab. 1 of the main manuscript. The results show that using
DivPrune (our method) enables the model to produce de-
scriptions that closely align with the original model’s out-
put, which is very similar to the ground truth, while only



(a) SeedBench example #1 (b) SeedBench example #2

(c) GQA example #1 (d) GQA example #2

(e) GQA example #3 (f) Histogram of Max-Min Distance for GQA dataset

Figure 1. (a)-(b) t-SNE visualization of visual tokens using SeedBench samples, (c)-(e) t-SNE visualization of visual tokens using GQA
samples, (f) Histogram of the Max-Min distance between the selected tokens over the GQA dataset.



using 12% TFLOP compared to the original model. In con-
trast, FastV and VTW generate irrelevant captions for the
given images with the same TFLOP ratio.

We also provide qualitative examples for a visual ques-
tion answering task. Specifically, the output of LLaVA
1.5-7B model for sample images and questions from
OKVQA [16] dataset, along with the ground truth and the
corresponding prompt are shown in Fig. 4. As the figure
illustrates, the output of the model when DivPrune is ap-
plied matches the ground truth. However, when FastV or
VTW method are used, the model either generates incorrect
responses or indicates that insufficient information is pro-
vided.

5. Hyper-Parameters of Baselines
In the main manuscript, TFLOP ratio and values are re-
ported for DivPrune and the baselines. In this section, we
provide the details on the hyperparameters specific to these
methods. For DivPrune, the pruning ratio is set to 91.2%.
For FastV with 7B models K = 3 and R = 0.001, and with
13B models K = 3, R = 0.023 are used. For VTW, we
use K = 4 for LLaVA 1.5 models and K = 3 for LLaVA
1.6 model. For M3, S is set to 56, and for FitPrune pruning
ratio is set to 90%.

Figure 2. Comparison of different visual token pruning methods
across various pruning ratios for LLaVA 1.5-13B. The y-axis is the
performance averaged on COCO (CIDEr), OKVQA (Acc), POPE
(F1), and MMBench (Acc). The x-axis is the TFLOP ratio of the
model after token pruning compared to the original model before
pruning.
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Figure 3. Visual examples for image captioning task, comparing the model outputs using the baselines and the proposed method. Colors
in text are used for better readability.
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Figure 4. Visual examples for visual question answering task, comparing the model outputs using baselines and the proposed methods.
Colors in text are used for better readability.
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