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Figure 1. Relighting model overview. For each input image, we
pass to the model raymaps containing the pose information, a bi-
nary mask to highlight which frame is being treated as the ref-
erence, and the conditioning images of the object under varying
illumination. We concatenate all the inputs to the image being cur-
rently denoised. Note that both the conditioning inputs and target
images are the latent encoding of the images, but we show them as
images here for simplicity.

A. Supplemental Webpage and Videos
Please refer to our webpage https://relight-to-
reconstruct.github.io to view our video recon-
struction results and baseline comparisons on our full syn-
thetic dataset, as well as examples from NAVI. We also
show output examples from our relighting model and com-
pare the consistency of our relightings and recent state-of-
the-art generative relighting from IllumiNeRF [4].

B. Diffusion Training and Sampling
In Figure 1 we show the detailed inputs of our diffusion
model. Although our diffusion model operates in the latent
space (so the conditioning and targets are both the latents of
the encoded images), we refer to them as images for clarity.
The raymaps consist of the ray origins, ray directions, and
focal length associated with the image for each pixel. We
downscale them from 512 × 512 to 64 × 64 to match the
dimensions of our latents. The reference mask is a 64× 64
binary mask that is 1 for the reference image, and 0 for the

Figure 2. Extracted illumination from relit images. We use
our relighting model to relight a spherical light probe with vary-
ing illumination, and recover the environment maps from the relit
images. Notice that while the content of the environemnt map is
preserved, we can observe some warping inconsistencies between
samples. This motivates our solution of using per-image shading
embeddings to accommodate for this type of inconsistencies.

images we are relighting. For each denoising step during
training and inference, we also pass the latents original im-
ages that we want to relight. Note that we do not denoise the
reference image, and pass a clean copy of it to the model.
While this design redundantly passes the reference image
twice, this is needed since the model parameters are shared
for all the images.

We train the relighting diffusion model using a DDPM
schedule, with beta values that start at 8.5 · 10−4 and end at
1.2·10−2 increasing linearly over 1024 steps. For objective,
we use velocity prediction. During inference, we use DDIM
sampling with 50 inference steps. We use a learning rate
of 10−4, with 10K warm-up steps. Note that we reset the
learning rate schedule each time we fine-tune the model to
relight larger number of frames.

C. Shading Embeddings Visualization
To reconstruct a highly reflective object perfectly, we would
need the reflections to be exactly consistent across all the
input views. Otherwise, any inconsistencies would appear
as flickering in the 3D reconstruction. However, we observe
that while our relighting model preserves the reflection con-
tent, some of the inconsistencies can appear as warping in
the reflected environment. In Figure 2, we relight a spher-
ical light probe that we rendered using random poses with
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different environment maps. Each of the relit images can
be treated as a separate light probe from which we can ex-
tract the illumination, and compare the different extracted
environment maps in order to visualize the inconsistencies.
Here we find that while the content is largely preserved,
some objects like the house and the trees suffer from some
distortion across the different relit views. This motivates
our novel shading embeddings: it allows the model to opti-
mize the radiance field under a single constant illumination
condition, while optimizing for per-image surface normals
used for rendering reflections.

D. Additional 3D Reconstruction Details
This section provides additional details on our 3D recon-
struction approach described in Section 3.2 of the main pa-
per. Our method is based on NeRF-Casting [3] with a few
modifications.

First, NeRF-Casting is designed for real scenes without
masks. In order to apply it to our setting where background
content is masked out with white pixels, we replace its “re-
flection features”, which volume renders a field of features
along the reflected ray o′+td′, with a single feature queried
infinitely far away, i.e., at:

lim
t→∞

C (o′ + td′) = 2d′, (1)

where C is the contraction function from Zip-NeRF [1]:

C(x) =

{
x if ∥x∥ ≤ 1,(
2− 1

∥x∥

)
x

∥x∥ if ∥x∥ > 1.
(2)

This simplifies the derivation in Section 4.2 of NeRF-
Casting, so that the feature corresponding to the reflected
ray p′ is:

f̄ =
1

K

K∑
j=1

f(2d′
j)⊙ erf

(
(
√
8νσ)−1

)
, (3)

where {d′
j}Kj=1 are NeRF-Casting’s K unscented reflection

directions, σ = 2γ(ṙ + ρ̄) is the scaling parameter defined
in NeRF-Casting for infinitely distant content, ν is a vector
(with the same dimension as f ) containing the scale of NGP
grid resolutions, ⊙ denotes elementwise multiplication. See
NeRF-Casting for additional information.

We also make a few additional small modifications to
NeRF-Casting’s optimization:
1. We optimize our NeRF for 25K iterations rather than

50K. We use the same learning rate schedule as in NeRF-
Casting.

2. We initialize density around exp(−1) instead of exp(2).
3. We use a faster coarse-to-fine rate: using the notation

from Appendix C.1. in [3], we set m = 16 and s = 50.

4. We remove the view direction as input into the color pre-
diction network.
Finally, for scenes from NAVI [2], which have imper-

cise camera poses, we found that adding a simple mask
loss improved our results. For a ray with rendering weights
{wi}Ni=1 we use the following loss:

Lmask = λmask ·

(
N∑
i=1

wi − α

)
, (4)

where
∑N

i=1 wi is the opacity of the ray, and α is 1 for ob-
ject pixels and 0 for background ones. Since the object
masks provided with NAVI are also imprecise, we do not
apply the mask loss in Equation 4 to pixels that are within
7 pixels from a boundary. In our NAVI experiments we set
λmask = 0.01.

E. Ablation Study Details

Number of Sampled Frames. To compare the effects of
the number of frames the model relights simultaneously,
we fine-tune our final model to relight 1 frame, 8 frames,
16 frames, and 32 frames at once. Then, using each model,
we sequentially relight the entire 64-frame input under the
same reference image. Our hypothesis is that with fewer
frames, the relit outputs would be less consistent, and ex-
hibit a drop of performance in the reconstruction. This was
indeed the case, as showed in Table 3 of the main paper. We
find that we gain a significant boost in performance going
from single-frame relighting (what prior work follows) to
8-frame relighting, and additional gain as we increase the
number of relit frames to 64. However, as expected, we
notice diminishing returns where the benefit become more
subtle as we increase the number of frames we relight at
once.

Dataset Ablation. To investigate the benefit of augment-
ing our training data with highly reflective materials, we
trained two models: one model only on standard assets, and
one model where we randomly sample from standard as-
sets, and assets augmented with highly reflective materials.
For the sake of efficiency, we only train a 16-frames ver-
sion of the model, and we train each model for 70K training
steps. We find that adding highly reflective assets signifi-
cantly improves the model’s performance on shiny assets,
and surprisingly that it also provide a benefit to standard as-
sets. Intuitively, this can be attributed to the fact that shiny
assets are significantly more challenging to relight, and are
more beneficial to the improvement of the model’s perfor-
mance than diffuse objects.

Shading Embedding Ablations. While in Section C we
motivate shading embeddings visually, we demonstrated its
importance by comparing our novel shading embeddings
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and the standard appearance embeddings that prior work
used. As we also show in Section 5 of the main paper and
in the supplementary webpage, we show that the typical ap-
pearance embeddings are worse than not using any appear-
ance embeddings and training on the relit images directly.
This can be attributed to the fact that appearance embed-
dings can absorb any view-dependent changes that are nec-
essary for realistic reflections, and render a mostly-diffuse
object. On the other hand, not using any appearance em-
beddings can allow the reflections to move naturally along
the object, but also include the flickering from the inconsis-
tencies. Our shading embeddings resolve these issues: they
can explain away any inconsistencies due to the reflections
warping, while preserving the view-dependent effects nec-
essary to render realistic reflections.
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