
Sample- and Parameter-Efficient Auto-Regressive Image Models

Supplementary Material

10. Benchmark Datasets

Dataset train test classes
Imagenet-1k [22] 1,281,167 50,000 1000
iNAT-18 [46] 437,513 24,426 8142
CIFAR-10 [34] 50,000 10,000 10
CIFAR-100 [34] 50,000 10,000 100
Food101 [9] 75,750 25,250 101
DTD [21] 3,760 1,880 47
Pets [36] 3,680 3,669 37
Cars [33] 8,144 8,041 196
iWildCam [8] 129,809 14961 182
Camelyon17 [5] 302,436 34904 2
PCAM [47] 262,144 32768 2
RxRx1 [42] 40,612 9854 1139
EuroSAT [30] 16,200 5400 10
fMoW [20] 76,863 19915 62
Infograph [37] 36,023 15,582 345

Table 7. Evaluation benchmarks. We provide the references, the
number of images in the train and test sets, and the number of
categories of all the 15 recognition benchmarks used in this work.
Table taken from [26].

11. Computational Cost Estimation
In Table 8, we estimate the computational cost of each method
using the following simplified formula:

Cost=Parameters→Samples→Epochs→Views2→Tokens2

(2)
This formula provides an approximate scaling relationship

rather than an exact measurement, as it does not account
for hardware optimizations, model-specific efficiencies, or
parallelization effects.
• Parameters (Linear): The number of parameters in the

model determines the size of weight matrices involved
in computation. Since most architectures perform matrix
multiplications that scale with the number of parameters,
computation cost is approximately proportional to this term.

• Samples (Linear): The number of training samples
contributes linearly since each sample requires a forward and
backward pass.

• Epochs (Linear): The number of epochs scales cost linearly
because training for more epochs means repeating the entire
dataset multiple times.

• Views (Squared): If a method processes multiple views of the
same data (e.g., contrastive learning with augmentations), the

Name Pa
ra

m
et

er
s

Sa
m

pl
es

Ep
oc

hs

V
ie

w
s

To
ke

ns

Cost Acc.

DINO 85M 1.2M 800 2 768 19.2e22 75.0
iBOT 307M 1.2M 250 2 196 1.4e22 77.6

BEiT 307M 14M 150 1 256 4.2e22 65.4
MAE 632M 1.2M 1600 1 256 8.0e22 75.3
AIM 632M 2B 2.5 1 256 20.7e22 75.6
XTRA 632M 14M 100 1 256 5.8e22 76.2

Table 8. Computational cost comparison.

computational cost increases quadratically. This is because
each pairwise interaction between views often involves com-
puting similarities or attention across all view combinations.

• Tokens (Squared): The number of tokens per sample affects
cost quadratically because self-attention mechanisms in trans-
formers require O(Tokens2) operations per forward pass.
For clarity, the numbers reported in Table 3 are divided by

1022, as the absolute units of computation do not impact the
relative comparisons between methods.

While this formula captures key scaling behaviors, it does
not precisely reflect real-world training cost due to factors like
activation memory usage, hardware acceleration, and mixed
precision training. Nonetheless, it serves as a useful proxy for
comparing methods at scale.

Compared to MAE, AIM, and DINO, XTRA demonstrates
greater effectiveness. While BEiT is slightly more efficient,
XTRA outperforms it by +10.8% in accuracy. iBOT, which
integrates contrastive learning with masked image modeling,
achieves better accuracy at a lower computational cost.


