
A. Detailed Related Work
Efficiency in Vision Transformers [26] falls primarily into two broad categories: reducing the computation per token or

the number of tokens overall.

Reducing the amount of computation per token. Reducing the amount of computation per token can be achieved by
reducing the model size when training via distillation [8] or pruning the network after training [47, 114]. These methods
again though typically work with a static inference protocol. As in [112], we compare in Fig. 10 our class-conditioned Ima-
geNet FlexiDiT model, against popular based pruning techniques, based on Diff pruning [31], Taylor, magnitude or random
pruning [48]. As one can see, our dynamic scheduler outperforms these baselines. We note that our method can also be
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Figure 10. We compare our dynamic scheduler with more baselines.

applied in conjunction with pruning techniques to achieve even higher efficiency gains, offering potential orthogonal ben-
efits. In concurrent work, [112] propose to adjust, in a dynamic way, the model during inference in different steps. In our
work, we do not train separate models for each target FLOPs ratio like they do, meaning that we can train a single model
and decide how many FLOPs we want to invest during inference. This makes our approach more versatile. Additionally,
our training is very stable, and no specific training tricks are required to converge successfully. That is how we were able
to extend experiments to high-resolution image and video generation, achieving significantly better speed-ups than the ones
they reported. We also outperform their results when the compute budget is very small. Nonetheless, this work could inspire
adaptive per-sample schedulers, that could open new future directions.

Given the large computational requirements of the attention operation, many methods nowadays focus on that to reduce
the overhead imposed. These methods commonly use some form of hierarchical attention [34, 66], skip (usually the first)
attention layers altogether [102], or reduce the number of the attended keys [16, 30, 108], by commonly aggregating keys in
a spatial neighborhood or applying some form of windowed attention.

Reducing number of tokens. Our method primarily falls within the second category of reducing the overall number of
tokens. Previous work here, typically relied on filtering [64, 82, 101], merging [12, 44, 69] or dropping [2]. Although merging
works well for applications that eventually lead to some pooling operations (like classification tasks or for the task of creating
an image-specific embedding), it works significantly less well for applications that require dense (token-level) predictions,
where some un-merging operation has to be defined. In other concurrent work, [97] reduces the number of representative
tokens to calculate the attention over. Our approach resembles most [9], where vision Transformers are trained to handle
inputs with varying patch resolution. By applying less compute for some steps, we can reduce computational complexity
significantly, without a drop in performance.

Image generation. In the context of image generation, diffusion has been largely established as the method for attaining
state-of-the-art results. There have been previous works that try to take advantage of potential correlations between successive
denoising step predictions [86], by either caching intermediate results in the activations [71, 100], or in the attention [113].
Caching has the advantage of a training-free method. Nonetheless, potential benefits are lower. Similar to our work, [5] use
different experts for different denoising steps. Instead of using different experts that require separate training and separate
deployment, we show how a single model can be easily formed into a flexible one that can be instantiated in different modes,
with each of its modes corresponding essentially to a different expert. Similar in-spirit approaches have been proposed that
rely on the smaller compute requirements for lower resolution image generation [54, 111]. [50] also adapt the computation
per step, by projecting into smaller subspaces. We instead, keep the dimension of the latent space and the characteristics



of it the same across diffusion steps. Orthogonal gains to our approach are also possible through methods such as guidance
distillation [56, 74] and consistency models [89]. Our approach is also largely agnostic to the diffusion process and can
be applied out of the box for flow matching methods [61]. We point the interested reader to [73] for a survey for further
efficiency in diffusion models. Finally, compared to other established techniques [35, 63] we do not fundamentally change the
architecture, which allows us to apply our framework effortlessly for numerous pre-trained models across different modalities.

Video generation. Our approach can be easily extended for video generation, and in principle for the generation of any
modality where some inductive bias (spatial, temporal, etc) is employed in the diffusion (latent) space. In video generation,
typically, latent video tokens are processed in parallel [11, 65, 79]. Training-free methods [51, 62, 113] have been proposed
in this case to accelerate video generation. Benefits with training-free methods are nonetheless minimal before performance
degradation kicks in (see Table 1 in [51], where one can typically save less than 30%).

An interesting direction for future work involves adapting the inference scheduler, i.e. what patch size we are using for
each denoising step, based on the requirements of each sample. It is natural to assume that when generating more static
videos, increasing the temporal patch size, and thus decreasing the amount of compute along the temporal dimension, will
result in smaller drops in performance. The same holds for the spatial patch sizes when generating images or videos that
require less high-frequency details.

B. Additional Experiments and Details
We provide additional experiments, complementary to the main text.

B.1. Exposure Bias and Accumulation of Error
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Figure 11. Left: We use maximum mean discrepancy to estimate the distribution mismatch between pθ(xt|xT :t+1) and q(xt|x0). Right:
The proposed bootstrapped loss. During training, we perform a few denoising steps with a weak model followed by a few denoising steps
with a powerful model (reminiscent of the scheduler during inference) and apply a distribution matching loss on the resulting samples.

Inference with diffusion suffers from exposure bias, due to the discrepancy of the input distribution during training and
inference [21, 57, 58, 76]. Briefly, models are trained to denoise images sampled from the q(xt|x0) distribution [40]. Infer-
ence on the other hand is characterized by repeated model evaluations pθ(xt|xt+1) and any distribution mismatch between
pθ(xt|xT :t+1) and q(xt|x0) accumulates, as also shown in Fig. 11 (left). The error at each iteration depends on the model,
with a perfect model resulting in 0 error and thus no error accumulated. In our case, the accumulation of error is exacerbated
by the characteristics of our model, where weak models could lead to higher, but also specific in nature, kinds of errors.
Training with the standard denoising objective, where real samples are randomly noised for some t, does not make the more
powerful model aware of the nature of the mistakes made by the weak model, rendering it unable to potentially correct them.
We propose to mitigate this issue by introducing a bootstrapped distribution matching loss [93], as illustrated in Fig. 11
(right). The loss is applied in a patch size-dependent manner, according to the desired inference protocol (from weak to
powerful model calls during inference).

Given natural images x0, x̃0 ∼ q(x0), we sample two time points t1 > t2 and corrupt the images with noise xtarget
t1 ∼

q(xt1 |x0), x̃
pred
t2 ∼ q(x̃t2 |x̃0). We then apply a chain of denoising steps ϵθ(x̃

pred
t−1|x̃

pred
t ; p) for t ∈ (t1, t2] and a patch size p.

Ultimately, we wish for the distributions of xtarget
t1 and x̃pred

t1 to match, for which we employ the maximum mean discrepancy
(MMD) [33]. To let the powerful model learn and potentially correct mistakes of the weak model and to simulate how
our inference patch size scheduler works, we perform the first of these denoising steps with the weak model, followed by
denoising steps with the powerful model. Given a set of patch sizes {pi}ki=1 where p1 < p2 < · · · < pk and a number of



denoising steps to perform with each s1, s2, . . . , sk, where
∑k

j=1 s
j = t2 − t1, we denoise with a given patch size pi for all

t’s in (t1 +
∑k

j=i+1 s
j , t1 +

∑k
j=i s

j ]. An illustration of this process can also be seen in Fig. 11 (right). When sampling
a time step t1, we bias our sampling similar to [85]. The proposed distribution matching loss, inspired by the notion of
consistency [88, 89], provides a principled way to correct the errors accumulated during inference. We note that we are
optimizing a simple distribution matching loss, instead of over-optimizing according to desired downstream metrics (namely
FID), thus not violating Goodhart’s law6. Different distribution matching losses (including discriminator-based losses) can
also be used. Note that we only correct this exposure bias for the class-conditioned image generation experiments, as this is
the only case where we fine-tune the powerful pre-trained model.

B.2. Inference with Packing
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Figure 12. Different approaches can be employed to perform forward passes with CFG when the conditional (C) and unconditional (UC)
predictions use different patch sizes. Here, each row corresponds to a sequence of tokens propagated through the DiT, and each bracket
corresponds to a batch of sequences for a single NFE. Generally ‘Approach 2’ leads to the smallest amount of FLOPs, but for batch size
1, inference can be memory bound for low-resolution image generation. ‘Approach 4’ mostly leads to the smallest latency, as long as the
number of generated images is larger than 4, i.e. the ratio of the sequence lengths between the powerful and the weak model. On the right,
we plot FLOPs and Latency from the four different approaches of performing inference, for a different number of generated images. Batch
size plays a role here (class-conditioned image generation experiments) as generated images are of lower resolution, namely 256 × 256,
and thus sequence lengths through the Transformer are smaller. Normalized FLOPs are determined based on ‘Approach 2’ and normalized
latency based on ‘Approach 3’. We use torch.compile with fullgraph=True and mode = ’reduce-overhead’.

We provide more details in Fig. 12, on how to perform inference with CFG when the conditional and unconditional
predictions employ a different patch size. We show this for our class-conditioned model, but results easily generalize for
all our FlexiDiT models. Performing CFG entails NFEs with double the batch size (or 2 distinct NFEs), for the conditional
and unconditional input, respectively. Performing the conditional and unconditional calls with different patch sizes leads to
propagating sequences of different lengths through the DiT. Depending on how these sequences are ‘packed’ together, and
for lack of a hardware-specific implementation of masked attention, more FLOPs can be traded for better latency. Our weak
model additionally leads to memory benefits, which can be traded for a bigger batch size when serving the model. Notice
that current state-of-the-art image generation models in practice require much longer sequences compared to the 256 × 256
images generated here (see also Section 4.4) and so generation is compute-bound even when generating with batch size equal
to 1.

6Goodhart’s law states that: ‘When a measure becomes a target, it ceases to be a good measure’.



B.3. What does the Model Learn?
Transformers are composed of a series of channel mixing components — feed-forward layers with shared weight applied

to all tokens in the sequence — and token mixing components — attention applied to tokens in the sequence. By coercing the
model to learn the denoising objective when applied to images processed with different patch sizes, we are enforcing inductive
bias in its weights and helping it better understand global structures in the image [27, 81, 102]. We test this hypothesis and
evaluate what the model is learning in the following ways in Fig. 13. (left) We visualize using t-SNE, centered kernel
alignment (CKA) between feature maps across layers when performing NFEs with different patch sizes. Activations across
layers exhibit similar transformations [96], except the early layers, where features are lower level, i.e. more patch specific.
(right) We visualize the Jensen–Shannon divergence (JSD) between attention maps (interpolated to the same image space)
when performing NFEs with different patch sizes. We compare using our FlexiDiT model with different patch sizes (Flexible)
versus using two static models trained with different patch sizes (namely DiT-XL/2 and a trained from scratch DiT-XL/4). Our
flexible model showcases lower JSD, demonstrating better knowledge transfer between the different patch sizes. We believe
that this “transfer” of knowledge is crucial to (1) confirm that parameter sharing across patch sizes is valid and (2) ensure that
fine-tuning can be fast and sample efficient.

Figure 13. Interpretability of the model activations and attention scores, when propagating samples tokenized with different patch sizes.

B.4. Class-Conditioned Image Generation
Additional metrics. For class-conditioned experiments on the main text we focused on the DiT-XL/2 [78] and FID as a
metric. Here, we report more metrics apart from FID, namely Inception Score (IS), sFID, and Precision/Recall. Results are
presented in Fig. 14 for our flexible DiT-XL/2 model. We remind that for class-conditioned models, we fine-tune models
using our distribution matching loss. As a result, the powerful model that we get after fine-tuning is different to the pre-
trained checkpoints we start from. To verify that our weak model does not lead to less diverse samples, we embark on a small
experimental study to guarantee the diversity of generated images. We follow [92] and generate images from the same label
map. We then calculate pairwise similarity/distance between these images and average across all similarities/distances and
all label maps. We use MS-SSIM [98], LPIPS [110] and plot results in Fig. 15. Results indicate very similar values in terms
of the diversity of the generated images. We also provide some sample images demonstrating diversity from the baseline
model in Fig. 16 and our tuned model in Fig. 17. Note that the diversity of the generated images is in general high and not
affected much by using the weak model for more of the initial denoising steps.

Caching distance. In the main text, we have shown how weak and powerful models generate more similar predictions
during the early steps of the denoising process. Previous papers to accelerate diffusion have largely relied on caching [17,
71, 100, 108, 113] previous activations, by taking advantage of the similarity in activations between successive steps. For
completeness, we also plot the caching distance between activations of the same layer between successive generation steps in
Fig. 18. In this paper, we do not employ caching but focus on an orthogonal approach. We advocate that all steps are important
for high-quality image generation, as demonstrated by our experiments on reducing the overall number of generation steps.
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Figure 14. More metrics for our FlexiDiT based on the DiT-XL/2 model for class-conditioned generation on ImageNet. We plot (a) FID (b)
sFID, (c) inception score, (d) precision, and (e) recall when generating 50, 000 samples with 250 steps of the DDPM schedule for various
values of the CFG scales. Red lines correspond to the values that lead to the optimum FID scores for each compute level.
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Figure 15. Average distance/similarity of images generated from the same label map. Both metrics take values between 0 and 1.

Instead of completely skipping steps, we simply invest less compute for them, and let the model decide how to allocate this
compute.

Additional schedulers. Based on the results on activation distance between successive denoising steps (Fig. 18), one
could argue that first denoising steps are also important and thus a better inference scheduler would deploy the powerful
model for these as well. In practice, we found no benefit from deploying a scheduler that works like that. Notice though
how activation distance is high for the first denoising steps only for some of the layers. We additionally experimented with
dynamic schedulers that choose the patch size of each denoising step based on the activation distance of different layers
between successive denoising steps. We did not find additional potential benefits.

In this paper, we are training a single model that can denoise images with any patch size for any denoising step. Given
a fixed desired inference scheduler — i.e. if we know exactly which t’s to run with the powerful and the weak model —,
one can train a model specifically based on that, leading to undoubtedly better quality images for the same compute. Similar
techniques are regularly applied in consistency models [89]. Finally, we compare our scheduler — performing the first Tweak
denoising steps with a weak model — versus the opposite scheduler, i.e. performing the last Tweak denoising steps with a
weak model. Results in Fig. 19 indicate that, as expected, using the weak model in the last diffusion steps is suboptimal,
leading to a loss in fine-grained details. We also provide qualitative examples of how these different schedulers affect image
quality in Fig. 20.



Figure 16. Sample images generated with the baseline DiT-XL/2 for the ImageNet category ‘Brambling’.

Figure 17. Sample images generated with our flexible DiT-XL model when performing inference using only the powerful model, for the
ImageNet category ‘Brambling’.

More results on CFG. In the main text, we presented results on performing inference with different CFG scales and
different invocations to our weak model for the unconditional and conditional part. The 4 generated curves in Fig. 6 (middle)
correspond to performing our scheduler as 250/250, 130/130, 70/70, and 30/0 where x/y means using the powerful model
for the last x denoising steps for the conditional and y denoising steps for the unconditional part. When performing CFG, we
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Figure 18. We plot average distance (L2-norm) between activation of different layers during successive steps of the denoising process of
the DiT-XL/2 model. Different layers exhibit different characteristics. Similar observations have been made in [70].
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Figure 19. We compare our scheduler versus a different scheduler that uses the weak model for the last denoising steps when generating
class-conditioned images. Points correspond to the minimum — concerning CFG scale — FID values.

use the update rule as presented in the main text{
ϵθ(xt−1|xt, ∅; puncond) + scfg1(ϵθ(xt−1|xt, c; pcond)− ϵθ(xt−1|xt, ∅; puncond)), if pcond = puncond

ϵθ(xt−1|xt, c; puncond) + scfg2(ϵθ(xt−1|xt, c; pcond)− ϵθ(xt−1|xt, c; puncond)), if pcond < puncond
.

This guidance scheme seeks to reduce errors made by the powerful model, enhancing potential differences in predictions
of the corresponding weak model, when the two models disagree, indicating the general direction towards higher-quality
samples. In practice, different values of scfg1 and scfg2 lead to the best results. We find that the rule (1−scfg1)/(1−scfg2) = 2.5,



84.9% FLOPs: Weak model
for the first denoising steps

84.9% FLOPs: Weak model
for the  last denoising steps

69.7% FLOPs: Weak model
for the first denoising steps

69.7% FLOPs: Weak model
for the last denoising steps

54.6% FLOPs: Weak model
for the first denoising steps

54.6% FLOPs: Weak model
for the last denoising steps

Figure 20. We compare our scheduler versus a different scheduler that uses the weak model for the last denoising steps when generating
class-conditioned images. Using the weak model for the last denoising steps leads to images with lower image fidelity.
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works consistently across experiments. Although we fix the value of the CFG scale during inference, different combinations
are likely to lead to higher quality images as demonstrated by previous work [14], which we leave for future exploration.

We point out that our scheduler is very stable in terms of performance attained for similar compute. For instance, per-
forming inference with a 70/70 scheduler or a 90/50 scheduler, which both require the same overall compute, produces FID
results of 2.64 and 2.65 respectively. Finally, we present detailed experiments on the effect of the CFG scale for different
levels of compute and more metrics in Fig. 21.
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Figure 21. Effect of CFG scale on the generated images from our class-conditioned FlexiDiT model. We plot (a) FID, (b) sFID, (c)
inception score, (d) precision, and (e) recall when generation 50, 000 samples with 250 steps of the DDPM scheduler.

B.5. Text-to-Image Experiments
Generally, T2I generation is performed for a fixed target CFG scale. For our experiments we choose scfg = 4.5 for the T2I

Transf. model, as this is the value used in [15] and scfg = 6.0 for the Emu model, as for these values we observed the best
quality images. In general, we can match with our dynamic inference other target values of the CFG scale. One simply needs
to adjust the used CFG scale for the dynamic inference accordingly.

We follow the evaluation protocol of PIXART-α [15] and perform inference using the same solvers as they do, namely
iDDPM [24] for 100 steps, DPM solver [68] for 20 steps, and SA solver [106] for 25 steps. In the main text — Fig. 7 (left)
— we presented results for the iDDPM solver. We present results for all the schedulers with the settings used in PIXART-α
in Fig. 22, 23 and 24. For all the schedulers, there are settings where we reach the Pareto front of FID vs CLIP score of the
baseline model with a lot less required compute.
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Figure 22. FID vs CLIP score us-
ing iDDPM for 100 steps for the T2I
Transf. model.
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Figure 23. FID vs CLIP score using
the DPM-solver for 20 steps for the T2I
Transf. model.
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Figure 24. FID vs CLIP score using
the SA-solver for 25 steps for the T2I
Transf. model.

To better characterize the effect of reducing compute, i.e. heavier use of the weak model, we also present more detailed
results for the DDPM scheduler in Fig. 25. Less compute-heavy inference schedulers, often produce images with smaller
possible maximum CLIP scores (for large CFG guidance scales scfg). In practice, as large CFG scale values lead to larger
values of FID, these are less preferred. In every case, our weak models can max the FID vs CLIP score tradeoff of the base
model for the default configuration used, i.e. scfg = 4.5.
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Figure 25. FID vs CLIP score using DDPM for 100 steps for the T2I Transf. model, for different levels of compute. On the right, we
present results separately for each compute level.

We also provide results on using a smaller overall number of steps with the DDPM solver in Fig. 27.
To generate the baseline curves, we sample 10, 000 samples using a CFG scale scfg from the set
{1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5}. The
same values are used when sampling with our flexible models. Finally, we also provide FID vs CLIP for the Emu model in
Fig. 26. In this case, we take CFG scales scfg from the set {1.0, 1.5, 2.0, 2.5, 3.0, 4.5, 6.0, 7.5, 8.0, 9.0}. We use captions
from the training set of MS COCO to generate images. Neither of the models was trained on images from this dataset.
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Figure 26. FID vs CLIP score using DDIM for 50 steps for the Emu model.

VQA results. VQA scores are calculated by querying a visual-question-answering model to produce an alignment score by
computing the probability of a ”Yes” answer to a simple ”Does this figure show {text}?”. question. To calculate this score,
we use the clip-flant5-xxl model from huggingface7 as suggested in [60]. We provide more detailed results on the VQA
benchmark in Tables 1 and 2. More specifically, we provide per dataset VQA scores, along with the CFG scale scfg used to
generate the images for each case . As we can see, using the weak model requires a bigger CFG scale to reach the same level
of optimality (calculated from the FID vs CLIP score tradeoff). We also note that using the weak model often leads to images
with better text alignment. We hypothesize that fewer tokens (as a result of larger patch sizes) help with spatial consistency
at the beginning of the denoising process. To calculate VQA scores, we take the first 200 prompts from each dataset and

7https://huggingface.co/zhiqiulin/clip-flant5-xxl

https://huggingface.co/zhiqiulin/clip-flant5-xxl
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Figure 27. We plot FID vs CLIP score when generating images with different CFG scales. (left) Overall Pareto front when generating
images with 100 denoising steps. (right) Pareto front generating images with a different number of steps zoomed in the typical tradeoff
generation values.

use the train split from the DrawBench [84], train split from the Pick-a-Pic [55], test split from the Winoground [94] and
tifa v1.0 text inputs8 from the TIFA160 [43] dataset.

CFG scale
scfg

DrawBench Pick-a-Pic Winoground TIFA160 Average

T2I Transf. (100 %) 4.5 58.93 50.56 62.01 81.65 63.29
T2I Transf. (92.9 %) 4.5 58.37 51.53 62.09 82.16 63.54
T2I Transf. (85.8 %) 4.5 57.58 51.67 62.41 81.53 63.30
T2I Transf. (78.8 %) 4.7 58.62 51.97 62.04 80.60 63.31
T2I Transf. (71.7 %) 4.7 58.44 51.56 63.03 80.57 63.40
T2I Transf. (64.6 %) 4.9 60.16 52.34 62.98 80.06 63.89
T2I Transf. (57.7 %) 5.0 59.04 50.80 63.27 79.90 63.26
T2I Transf. (50.5 %) 5.0 56.77 51.72 61.87 79.38 62.44
T2I Transf. (43.4 %) 5.0 56.87 51.92 61.30 78.33 62.11

Table 1. Detailed VQA evaluations for the benchmarks tested with the T2I Transf. model. As in the class-conditioned experiments, using
more of the weak model during denoising requires a higher CFG scale scfg to reach optimum performance.

CFG-scale scfg DrawBench Pick-a-Pic Winoground TIFA160 Average

Emu (100 %) 6.0 69.44 58.70 65.75 86.77 70.17
Emu (84.3 %) 6.0 68.00 58.93 67.33 86.51 70.19
Emu (68.6 %) 6.25 69.53 60.62 66.00 85.33 70.37
Emu (52.9 %) 6.5 69.79 58.14 66.23 86.20 70.09

Table 2. Detailed VQA evaluations for the benchmarks tested with the Emu model. As in the class-conditioned experiments, using more
of the weak model during denoising requires a higher CFG scale scfg to reach optimum performance.

Alignment between powerful and weak model. It is common practice nowadays to train images (and especially videos)
in different stages, where a large (potentially lower quality) dataset is used for the first stage, followed by a shorter fine-
tuning stage, characterized by higher quality and aesthetically more pleasing images. Although we are directly distilling the
weak model from the predictions of the powerful model, the data used throughout training are still important. In practice,

8https://github.com/Yushi-Hu/tifa/blob/main/tifa_v1.0/tifa_v1.0_text_inputs.json

https://github.com/Yushi-Hu/tifa/blob/main/tifa_v1.0/tifa_v1.0_text_inputs.json


our fine-tuning is sample efficient, and we find that even a few thousand images (< 5000) are enough to succeed. We thus
suggest fine-tuning on the last (potentially smaller) but higher-quality dataset. When generating images based on shorter
prompts with Emu, we use a prompt re-writer, prompting a small LLM to expand on the information provided. We consider
this prompt re-writer as part of the model.

C. Implementation Details
We provide additional details on the experiments in the main text.

C.1. Figure Details
Prompts used for Fig. 1. We provide in Table 3 the exact prompts used to generate the images.

Prompts for Fig. 1

The image shows a frog wearing a golden crown with intricate designs, sitting on a wooden log in a serene
environment reminiscent of a Japanese anime setting. The frog’s crown is adorned with small gems and its eyes
are large and expressive. The log is covered in moss and surrounded by lush greenery, with a few cherry blossoms
visible in the background. The frog’s skin is a vibrant shade of green with blue stripes, and it has a regal demeanor,
as if it is a monarch of the forest. The overall atmosphere is peaceful and whimsical.

The image shows a serene waterfall cascading down a rocky slope in a lush tropical forest, reminiscent of Claude
Monet’s impressionist style. Sunlight filters through the dense foliage above, casting dappled shadows on the
misty veil surrounding the falls. The water plunges into a crystal-clear pool, surrounded by large rocks and vibrant
greenery. The atmosphere is tranquil, with a warm color palette and soft brushstrokes evoking a sense of serenity.
The forest floor is covered in a thick layer of leaves, and the sound of the waterfall echoes through the air.

Table 3. Details on the prompts used to generate the images in the paper.

Details on Fig. 2. In Fig. 2 (b), we fix randomness of the denoising process in terms of the initial sampled image p(xT ), and
from the denoising process in Eq. (2). Then we generate images with 250 steps using the DiT-XL/2 official public checkpoint.
During denoising, we modify only 1 of the 250 denoising steps, bypassing the model predictions from that step through a
high/low pass filter. We then compare the resulting generated images in terms of LPIPS, L2 distance, SSIM, and DreamSim.
In general, modifying one of the first denoising steps, leads to larger final image differences, due to the accumulation of
differences. We still note a distinctive pattern: a high-pass filter, i.e. removing low-pass components, leads to larger image
differences during the first denoising steps. The opposite holds for the last denoising steps. We can thus argue, that low-pass
components, i.e. ‘coarser’ image details are more important compared to high-frequency details, for the first denoising steps.
To calculate spatial frequencies, we keep the corresponding values of the FFT of an image.

Details on Fig. 9. In Fig. 9, we plot GPU utilization when propagating different sequence lengths. All experiments are
conducted in bfloat16 using PyTorch 2.5 and CUDA 12.4 and with our Emu DiT that has 24 layers and a hidden dimension
of 2048. We also plot peak FLOPs and memory bandwidth for the GPU tested, an NVIDIA H100 SXM5 in this case. When
we report FLOPs, we count additions and multiplications separately, as it is commonly done [41]. We count FLOPs as
the theoretical required operations for a forward pass, and not the actual GPU operations, which might be a higher number
due to the potential recalculation of partial results. As bytes for the x-axis, we only consider the model parameters (2
bytes per model parameter). Note that for our choice of weak models, the GPU is fully utilized (it reaches the maximum
compute intensity that can be achieved for this application). In reality, compute intensity drops when larger sequence lengths
are used, mainly due to the larger memory footprint of intermediate activations. Thus, latency benefits are indeed even
larger than FLOPs benefits reported in the paper. Compiling and fusing operations is crucial to ensure that the GPU is not
bottlenecked by waiting instructions from the CPU. When we are performing inference with the weak model without first
merging the LoRAs, inference time is proportional to the additional FLOPs required. For the attention operation, we use the
memory efficient attention operation from the xformers library. Other efficient implementations of attention do not lead to
significant differences. Our T2I model operates in a 128× 128 latent space, which means that using a patch size of (1, 2, 2)
results in 4096 tokens, compared to 1024 tokens for the (1, 4, 4) patch size. Our T2V model operates in a 32× 88× 48 latent
space, which means that using a patch size of (1, 2, 2), (2, 2, 2), (1, 4, 4) leads to 33792, 16896 and 8448 tokens respectively.
We obtain similar results using different-sized models, like our Video DiT model.



When we report FLOPs in the paper, we report numbers for the denoising process, as it is commonly done. We thus ignore
latency induced by decoders that map samples from a latent space, or potential prompt-rewrite modules. The added latency
by the decoder, is in our settings negligible.

C.2. Flexifying Diffusion Transformers
Although for the class-conditioned experiments, we use a single embedding and de-embedding

layer that we always project to the required patch size, we note that this projection can be done
once to pre-calculate embedding and de-embeddding parameters during inference. These projected
embeddings can then be used out of the box, for the tradeoff of some minuscule additional memory.
The choice of p′ as the underlying patch size is not too important for our experiments. In practice, we
use a value of p′ = 4. As mentioned in the main text, we add positional embeddings according to the
coordinates of each patch in the original image. A schematic of this can be found on the right.

Apart from the architecture modifications listed in the main text, we experimented with adding
patch size specific temperatures in the self-attention computation:

softmax

(
QK⊤

τp
√
d

)
V,

where Q,K,V are the queries, keys and values respectively and τp is a patch size specific temperature initialized as 1. We do
not include this in the end, as it occasionally leads to instabilities during fine-tuning, even under different parametrizations.

Class-conditioned implementation details. We largely use the same hyperparameters as [78] to fine-tune. When fine-
tuning to match distributions, we train to minimize the MMD loss, as introduced in Section B.1. During bootstrapping, we
denoise images with a DDPM scheduler, operating on T = 250 steps, the same as the target inference scheduler. As we
found that MMD distance is higher for diffusion steps closer to x0 ∼ q(x0) — see also Fig. 11 —, we bias the sampling to
reflect that during training as well.

Parameter Value

training data ImageNet
learning rate 10−4

weight decay 0.0
EMA update frequency every step

EMA update rate 0.9999

Table 4. Class-conditioned implementation details.

In our experiments, we focused on fine-tuning pre-trained models, as we were interested in efficiency. We note that
training with different patch sizes has been used in the past to also accelerate pre-training [3, 9]. We believe that flexible
patch sizes can also be used in this application to accelerate pre-training.

T2I Transf. implementation details. For the T2I Transf. model, we follow exactly the recipe of [15], and fine-tune a
256 × 256 pre-trained variant9. For fine-tuning, we use the same image dataset, namely the SAM dataset10 with captions
generated from a vision-language model. The model has overall the same parameters as the DiT-XL/2 model, with the
addition of cross-attention blocks. When adding new embedding and de-embedding layers, we initialize them as we did for
the class-conditioned experiments. Embedding layers are initialized to Qembed

†wembed and de-embedding layers are initialized
to wde-embedQde-embed

†. Here wembed, wde-embed are the pre-trained model parameters and Qembed, Qde-embed are the same —
patch size dependent — fixed projection matrices that better preserve the norm of the output activations at initialization. As
aforementioned, we add a patch size embedding that is added to all tokens in the sequences after the tokenization step. This
embedding is equal to 0 for the pre-trained patch size, to ensure functional preservation. We fine-tune the T2I Transf. model
on a small subset of the SAM dataset used to originally train the target model. We add LoRAs on the self-attention and
feed-forward layers, with a LoRA dimension of 32. We use a higher learning rate, due to the different learning objectives —
distilling a powerful model’s predictions into the ones of a weal model.

9Our starting pre-trained model exactly matches the public checkpoint https://huggingface.co/PixArt-alpha/PixArt-XL-2-SAM-
256x256.

10https://segment-anything.com/.

https://huggingface.co/PixArt-alpha/PixArt-XL-2-SAM-256x256
https://huggingface.co/PixArt-alpha/PixArt-XL-2-SAM-256x256
https://segment-anything.com/


Parameter Value

training data SAM with captions from a VLM model
optimizer AdamW

learning rate 8× 10−4

weight decay 10−2

gradient clipping 0.02
batch size 512

EMA update frequency every step
EMA update rate 0.9999

LoRA rank 32

Table 5. Image text-conditioned implementation details.

Emu implementation details. Our Emu model is fundamentally identical to the T2I Transf. model. Small variations are
due to different ways to calculate text embeddings, which lead to a different number and size of the cross-attention tokens,
and slight architectural modifications — primarily the use of QK-normalization [22] and the use of learnable positional
embeddings. We train using a high-quality aesthetic dataset. To calculate metrics based on the 1024×1024 images generated
with this model, we follow the evaluation protocol of [105] and resize images to 512× 512. For both our Emu and our Video
DiT model, we use a LoRA rank of 64.

T2V implementation details. As aforementioned, our Video DiT model has a pre-trained patch size of (pf, ph, pw) =
(1, 2, 2). Compared to our T2I experiments, we only change the 2D convolutional layers used for tokenization with a 3D
convolution layer. When increasing the temporal patch size pf, we duplicate parameters along that dimension. When inter-
polating positional embeddings, we also do that along the temporal dimension. No additional changes are made. For eval-
uation, we use the prompts from https://github.com/facebookresearch/MovieGenBench/blob/main/
benchmark/MovieGenVideoBench.txt to generate videos of length equal to 256 frames. We evaluate according
to VBench [45] and report the average over Subject Consistency, Background Consistency, Temporal Flickering, Motion
Smoothness, Dynamic Degree, Aesthetic Quality, Imaging Quality, Temporal Style and Overall Consistency.

C.3. Human Evaluation Details
We prompt humans, asking them to: “Compare the two side-by-side images. Focus on visual appeal and flawlessness,

considering factors like aesthetic appeal, clarity, composition, color harmony, lighting, and overall quality, then select ’left’
if the left image is better, ’right’ if the right image is better, or ’tie’ if both are equally appealing or you have no preference.”.
In total, we collected votes for the 4 different settings presented in the paper and aggregated them across 200 prompts. For
each setting and each prompt, we ask 3 people for votes. In cases where there are 3 votes for each of ’left’, ’right’, and ’tie’,
we ask a fourth labeler to break the tie.

D. Generated Samples
We provide more examples of generated samples.

D.1. Text-Conditioned Image Generation
We showcase more examples with varying amounts of compute in Fig. 28, 29 and 30. We further show more examples of

how performance and diversity in image generation are preserved in Fig. 31 and 32. Finally, we show examples of the effect
of CFG scale scfg and reducing the overall number of FLOPs used to generate an image using our method, in Fig. 33. For all
the images seen in the paper with our Emu model, we use 50 steps of the DDIM scheduler.

D.2. Text-Conditioned Video Generation
We showcase more examples of video generation with our flexible model in Fig. 34 and 35.

D.3. Class-Conditioned ImageNet Generation
We provide a more comprehensive comparison for generated images from the same original sample from pnoise, using

varying amounts of compute from our flexible model in Fig. 36. Note that for class-conditioned generation we do not use

https://github.com/facebookresearch/MovieGenBench/blob/main/benchmark/MovieGenVideoBench.txt
https://github.com/facebookresearch/MovieGenBench/blob/main/benchmark/MovieGenVideoBench.txt


100.0 % FLOPs 84.3 % FLOPs 68.6 % FLOPs 52.9 % FLOPs 37.2 % FLOPs
The image portrays a finely detailed portrait of a cat office worker, donning a sleek silk office suit and glasses, exuding an air of professionalism. The suit is rendered in intricate detail, with every fiber and fold meticulously captured. The cinematic lighting casts a dramati
c glow, accentuating the cat's features and the textures of the suit. The dark shot is balanced by neutral colors, with hints of muted hues, evoking a sense of sophistication. The image boasts an epic, realistic quality, with intricate details that rival those of a high-end photo
graphy studio, reminiscent of the work of renowned photographers like Oliver Wetter and Annie Leibovitz.

The image is a stunning underwater macro shot of a glowing jellyfish, perfectly centered and symmetrical. The jellyfish's translucent body glows with a soft, ethereal light, surrounded by vibrant corals and bulbs that add pops of color to the neutral-toned background. The image i
s hyperdetailed and cinematic, with a complex and extremely detailed background that showcases the beauty of the ocean's depths. The bokeh effect adds a sense of depth and dimensionality to the image, drawing the viewer's eye to the jellyfish's glowing form.

The image depicts a stunning flower in a serene and lush botanical garden, captured with a DSLR camera. The flower is a vibrant shade of pink, with delicate petals and a prominent center. It is situated in the foreground, surrounded by an assortment of foliage and stems of varyin
g textures and colors. The garden's tranquil atmosphere is accentuated by the soft, diffused light and the subtle mist rising from the ground. The DSLR camera's high-quality sensor has captured the intricate details of the flower and its surroundings, showcasing the beauty of nat
ure.

The image presents a breathtakingly realistic portrait of an orange cat with vibrant, bright eyes and majestic angel wings. The cat's fur is intricately detailed, with subtle texture and shading that gives the impression of softness. The wings are radiant and ethereal, with delic
ate feathers and a subtle glow. The photography is cinematic, with a shallow depth of field created by the 50mm lens, resulting in a beautiful bokeh effect in the background. The lighting is soft and warm, illuminating the cat's features with a gentle, heavenly glow.

The image shows a determined 35-year-old space colonist, wearing a high-tech space suit with a gleaming metallic finish, standing proudly on the Martian surface. The suit is adorned with various tools and gadgets, and the colonist holds a Martian soil sample in their gloved hand.
 The historic portrait, captured by a space exploration photographer in 2055, is framed through the visor of the space helmet, providing an intimate and immersive view of the Martian landscape. The vast, crimson terrain stretches out behind the colonist, punctuated by rocky forma
tions and the distant horizon.

Figure 28. More samples generated by our Emu model for varying amounts of compute.

LoRAs, and images generated from the original baseline model may not be exactly the same. They do however have the
same characteristics (FID score) as seen in Sec 4.1. We also show samples of our flexible DiT-XL/2 model when using only
64% of the compute of the original model in Fig. 37, 38, 39, 40, 41, 42 and 43. All images are generated using 250 DDPM
steps and a CFG-scale equal to 4.0.



100.0 % FLOPs 84.3 % FLOPs 68.6 % FLOPs 52.9 % FLOPs 37.2 % FLOPs
The image portrays a delectable arrangement of sushi and sashimi on a sleek, minimalist plate at a 3 Stars MICHELIN restaurant. The dish is artfully presented with honey and soy sauce, radiating an alluring aroma and appearance. Soft, dramatic lighting illuminates the culinary ma
sterpiece, accentuating its indulgent appeal. The centered composition and clean layout evoke a sense of luxury and sophistication, highlighting the expertise of the food stylist. In the evening setting, the high-end dish exudes irresistible beauty, making it a true gastronomic d
elight.

The image transports viewers to a mystical realm, reminiscent of Middle Earth's hidden hobbit towns. Amidst lush hills and gardens, cascading houses with steampunk flair seem to defy gravity. The atmosphere is both ancient and mysterious, with a soft, limpid color palette that ev
okes a sense of wonder. Every detail, from the intricate architecture to the lush foliage, is rendered in hyper-realistic clarity, as if plucked from the imagination of Howard Behrens or djamilaknopf. The cinematic quality is further enhanced by the subtle glow of luminescent ref
lections and the subtle sheen of crystalline structures.

The image shows a medium shot of a snow leopard in a snowy rocky mountain forest on a cloudy day. The forest is entirely covered in snow, and the snow leopard is in full-body view, showcasing its sleek white fur and black spots. The snow leopard's eyes are highly detailed and int
ensely focused on its prey, with a predatory gaze. The image is captured in crisp focus and natural lighting, highlighting the snow leopard's majestic appearance. The surrounding environment is also highly detailed, with visible trees, rocks, and snow-covered mountains in the bac
kground.

The image depicts a luxurious sakura-themed ring in a closeup product view, showcasing exquisite hyper details in 4K resolution. The ring features a combination of gemstones and diamonds, crafted with precision and elegance. The soft illumination highlights the intricate design, 
casting a dreamy glow. Rendered using Unreal Engine, the digital art exudes high-end fashion and luxury, evoking a sense of opulence. The overall effect is one of ultra-quality, making it a showstopper on platforms like ArtStation and CGSociety. The ring's beauty and craftsmanshi
p are truly a work of art.

The image depicts a serene and adorable kitten, no more than a few weeks old, nestled in a cozy ball amidst a peaceful nocturnal setting. The kitten's fur is a soft gray, with distinctive white patches on its nose and paws, and its eyes are closed in tranquil slumber. The moon ca
sts a soft, ethereal glow on the kitten's fur, illuminating the fine details of its whiskers and the gentle rise and fall of its chest as it breathes. The surrounding environment is dark, with only the faintest hint of stars and a crescent moon visible in the sky.

The image is a highly detailed portrait of an anthro frog mage, a human-like frog holding a wand, with intricate details and radiant light. The frog stands in a lush environment with dense foliage and twisted vines, its green skin glistening in the soft light. Its eyes are bright
 and wise, and its long fingers grasp the wand with elegance. The scene is reminiscent of fantasy art by renowned artists such as Greg Rutkowski, Loish, and Lois van Baarle, with global illumination casting a warm glow on the entire setting. The atmosphere is mystical and enchant
ing, inviting the viewer to step into the magical world.

Figure 29. More samples generated by our Emu model for varying amounts of compute.



100.0 % FLOPs 84.3 % FLOPs 68.6 % FLOPs 52.9 % FLOPs 37.2 % FLOPs
The image depicts a futuristic cityscape inspired by the mandelbulb, a three-dimensional representation of the Mandelbrot set. The city's skyline is dominated by towering structures with intricate, swirling patterns reminiscent of the mandelbulb's fractal design. The buildings se
em to stretch on forever, with smaller, ornate details visible on their surfaces. The city's streets are bustling with activity, as strange, otherworldly vehicles move through the city, leaving trails of light behind them. In the distance, a massive, glowing mandelbulb serves as 
a beacon, illuminating the city's vibrant, dreamlike atmosphere.

The image depicts an ancient village at dusk, with traditional Chinese houses made of wood and stone standing along the misty streets. The walls and streets are covered in moss, adding a touch of mystique to the scene. Jacaranda trees with vibrant purple flowers tower above the r
oofs, while a majestic, mystical mountain looms in the background. Three dogs lie sleeping on the cold, foggy street, seemingly undisturbed by the eerie silence. The atmosphere is ultra-realistic and cinematic, with every detail meticulously rendered to transport the viewer to a 
bygone era.

The image shows a flock of sheep gathered together, taking a selfie with a smartphone held by one of the sheep. They are standing on a lush grassland, surrounded by the majestic Himalayan mountains in the background. The landscape is depicted in extraordinary detail, with snow-ca
pped peaks, rolling hills, and valleys. The sheep are all looking towards the camera, with some of them smiling and others looking curiously at the phone. The grassland is teeming with life, with wildflowers and other vegetation sprouting from the ground. The atmosphere is serene
 and peaceful, with the sun shining down on the scene.

The image depicts the White Castle of the King, a majestic and serene structure surrounded by lush greenery and vibrant flowers, including a few roses. The sky above is a deep shade of pink, reminiscent of Miyazaki's Nausicaa, with dramatic clouds that evoke a sense of epic fanta
sy, similar to Breath of the Wild. In the garden, a powerful warrior, akin to a berserker from anime, stands tall, exuding a sense of strength and protection. The scene is set in an ultra-wide shot, with an atmospheric and cinematic quality, boasting hyper-realistic details and p
ost-processing that rivals the Unreal Engine, all in stunning 8k resolution and rendered with Octane.

The image depicts a chimpanzee wearing a sleek astronaut spacesuit, posing heroically in a grandiose setting reminiscent of classical oil paintings. The hyperrealistic and highly detailed 8k image is rendered in warm, cinematic lighting that accentuates the subject's textures and
 contours. The chimpanzee's fur and the spacesuit's metallic sheen are meticulously captured, with each strand of hair and every rivet on the suit's surface visible in extraordinary detail. The background is a muted, gradient blue, evoking the vastness of space. The overall atmos
phere is one of awe-inspiring wonder and discovery.

Figure 30. More samples generated by our Emu model for varying amounts of compute.
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Figure 31. Samples for the prompt: ”A playful kitten just waking up.”. We showcase the image generated by the baseline and our flexible
scheduler using only 53% of FLOPs.



100 % FLOPs (Baseline) 52.9 % FLOPs 100 % FLOPs (Baseline) 52.9 % FLOPs

Figure 32. Samples for the prompt: ”A baby hippo swimming in the river.”. We showcase the image generated by the baseline and our
flexible scheduler using only 53% of FLOPs.
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Figure 33. Effect of CFG and total compute for the prompt: ‘The image shows a gigantic juicy burger placed on a white plate on a wooden
table. The burger is composed of a large beef patty, crispy bacon, melted cheese, lettuce, tomato, onion, pickles, and a slice of red tomato,
all sandwiched between a soft bun. The burger is so large that it occupies most of the plate, with some toppings falling out of the sides.
The bun is slightly toasted, and the cheese is melted to perfection, giving off a savory aroma. The burger is garnished with a side of crispy
fries and a refreshing glass of cola.‘.



Drone view of waves crashing against the rugged cliffs along Big Sur s garay point beach. The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore. A small
 island with a lighthouse sits in the distance, and green shrubbery covers the cliff s edge. The steep drop from the road down to the beach is a dramatic feat, with the cliff s edges jutting out over the sea. This is a v
iew that captures the raw beauty of the coast and the rugged landscape of the Pacific Coast Highway.

A gorgeously rendered papercraft world of a coral reef, rife with colorful fish and sea creatures.

A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.

Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered trees and dramatic snow capped mountains in the distance, mid afternoon lig
ht with wispy clouds and a sun high in the distance creates a warm glow, the low camera view is stunning capturing the large furry mammal with beautiful photography, depth of field.

This close-up shot of a Victoria crowned pigeon showcases its striking blue plumage and red chest. Its crest is made of delicate, lacy feathers, while its eye is a striking red color. The bird s head is tilted slightly t
o the side, giving the impression of it looking regal and majestic. The background is blurred, drawing attention to the bird s striking appearance.

A tropical fish swimming in ocean reefs

Aerial shot of the ocean. a maelstrom forms in the water swirling around until it reveals the fiery depths below.

Figure 34. More samples generated by our Video DiT model, using 25.2 % compute compared to the pre-trained baseline.



Dragon-toucan walking through the Serengeti.

A curious cat peering out from a cozy hiding spot.

bears figure out how to launch a rocket

A building collapsing into a puddle of lava.

A spaceship being pulled into a blackhole.

An orange cat jumps onto a kitchen counter after seeing butter there.

A gibbon swinging through the canopy.

Figure 35. More samples generated by our Video DiT model, using 25.2 % compute compared to the pre-trained baseline.



DiT-XL/2 (256x256) Ours: 100% of Compute Ours: 85% of Compute Ours: 70% of Compute Ours: 55% of Compute Ours: 39% of Compute

Figure 36. Sample for the ImageNet dataset comparing the baseline model and varying inference schedulers of our model, using different
levels of compute.



Figure 37. Samples for the ImageNet class ‘tree frog, tree-frog’ from our FlexiDiT model that uses only 46% of the compute compared to
the baseline model.

Figure 38. Samples for the ImageNet class ‘prairie chicken, prairie grouse, prairie fowl’ from our FlexiDiT model that uses only 46% of
the compute compared to the baseline model.



Figure 39. Samples for the ImageNet class ‘hummingbird’ from our FlexiDiT model that uses only 46% of the compute compared to the
baseline model.

Figure 40. Samples for the ImageNet class ‘cairn, cairn terrier’ from our FlexiDiT model that uses only 46% of the compute compared to
the baseline model.



Figure 41. Samples for the ImageNet class ‘French bulldog’ from our FlexiDiT model that uses only 46% of the compute compared to the
baseline model.

Figure 42. Samples for the ImageNet class ‘Granny Smith’ from our FlexiDiT model that uses only 46% of the compute compared to the
baseline model.



Figure 43. Samples for the ImageNet class ‘cock’ from our FlexiDiT model that uses only 46% of the compute compared to the baseline
model.
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