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6. Implementation Details

In this section, we provide details on our data preprocessing,
model architecture, and training hyperparameters.

6.1. Data Preprocessing

For input, we sample 16 frames uniformly from each video, along
with corresponding 4-second audio segments with temporal align-
ment determined as described in Section 3.3. For audio, each
waveform is first converted to a sequence of 128-dimensional log
Mel filterbank (fbank) features computed with a 25ms Hanning
window every 10ms., we extract 4-second segments from the
spectrograms of size 128→416, chosen to enable non-overlapping
patch extraction. We use a patch size of 16→ 16, resulting in 208
audio tokens. The RGB images are resized and center-cropped to
224 → 224 pixels, following the same patch extraction process,
resulting in 196 visual tokens.

6.2. Model Architecture

For the model architecture, we initialize our modality-specific en-
coders from the same MAE checkpoints as CAV-MAE [14], but
conduct our own pretraining rather than using their pretrained
weights. Our single-modality encoders each contain 11 trans-
former layers, followed by a 1-layer joint encoder for cross-modal
fusion. This was chosen to maintain the compatibility with the
original MAE architecture, from which we initialize our weights.
For the linear probing downstream task, the final transformer clas-
sifier consists of 2 layers followed by a single linear layer applied
to the CLS token.

6.3. Training

In all experiments we use a single backbone model pretrained on
AudioSet2M [11]. During pretraining, we use a masking ratio
of 0.75 for both modalities with unstructured masking following
[14]. We conduct ablation studies on the impact of different mask-
ing ratios in Table 8.

The contrastive and reconstruction loss weights are set to ωc =
0.1 and ωr = 1.0 respectively. For the contrastive loss weight
ωc, we use a higher value of 0.1 compared to CAV-MAE’s 0.01,
since aligning multiple fine-grained audio segments with their cor-
responding frames is a more challenging task than aligning a single
global audio representation.

We use a batch size of 512 and an initial learning rate of 2 →
10→4 with cosine learning rate scheduling. We pretrain for 25
epochs in total. Detailed hyperparameters for both pretraining and
finetuning stages are provided in Table 9.

7. Modality-Specific Linear Probing

Table 10 presents the results of our modality-specific linear
probing experiments. We compare the performance of models
trained with audio-only, video-only, and audio-visual inputs on

Pretraining Probing

Dataset AS-2M AS-20K VGG
Optimizer Adam, weight decay=5e→7, betas=(0.95, 0.999)
Learning Rate 2e→4 5e→2 1e→3
LR Scheduler Cosine Cosine Cosine
Epochs 25 15 10
Linear Warmup Epochs 2.5 1.5 1
Batch size 8↑ 64 48 48
GPUs 8↑ AMD MI200 2↑ AMD MI200
Training time 16h 2h 10h
Audio Input Size 128↑ 416 16↑ 128↑ 416 16↑ 128↑ 416
Class Balance Sampling No No Yes
Mixup No Yes Yes
Random Time Shifting Yes Yes Yes
Loss Function - BCE CE
Weight Averaging No Yes Yes
Input Norm Mean →5.081 →5.081 →5.081
Input Norm STD 4.485 4.485 4.485

Table 9. Our pre-training and fine-tuning hyperparameters.

two datasets: AudioSet-20K (AS20K) [11] and VGGSound [6].
The results are reported using mean Average Precision (mAP) for
AS20K and accuracy for VGGSound. The audio-visual model out-
performs both the audio-only and video-only models, achieving
the highest scores of 30.5 mAP on AS20K and 52.7 accuracy on
VGGSound. This demonstrates the effectiveness of combining au-
dio and visual modalities for classification tasks.

Modality AS20K→ VGGSound→

Audio Only 8.7 30.3
Video Only 22.3 46.3
Audio-Visual 30.5 52.7

Table 10. Comparing audio-visual classification performance us-
ing linear probing. Numbers reported for AS20K are calculated
using mAP and VGGSound with accuracy.

8. Retrieval Aggregation Methods

We evaluate different strategies for aggregating similarity scores in
cross-modal retrieval, as shown in Table 11. For any pair of videos,
we compute a similarity matrix where each element represents the
similarity between a visual token from the query video and an au-
dio token from the target video, as detailed in Section 3. The “di-
agonal mean” strategy averages only the diagonal elements of this
matrix, focusing on temporally aligned token pairs, while “block
mean” averages all pairwise similarities between the two videos.
Our experiments show that “diagonal mean” consistently outper-
forms other approaches, including “block mean” and maximum-
based strategies (“diagonal max” and “block max”). This suggests
that emphasizing temporal alignment through diagonal averaging
better captures the audio-visual correspondences compared to con-
sidering all possible token pairs or focusing on single maximum
similarity values. The advantage is particularly pronounced on



AudioSet, where “diagonal mean” achieves 35.2% R@1, surpass-
ing “block mean” by 2.7% and “diagonal max” by 6.7% absolute.

Strategy AudioSet Eval Subset VGGSound Eval Subset

R@1 R@5 R@10 R@1 R@5 R@10

block max 27.8 51.9 62.4 23.0 43.9 54.3
diag max 28.5 51.9 61.3 22.6 43.5 54.6

block mean 32.5 54.8 65.0 25.9 48.2 59.2
diag mean 35.2 58.3 67.6 27.9 51.7 61.8

Table 11. Comparison of retrieval aggregation strategies for cross-
modal retrieval. The “diagonal mean” aggregation achieves the
best performance, surpassing “block mean” by 2.7% and “diago-
nal max” by 6.7% absolute on AudioSet R@1. (V ↑ A Retrieval.)

9. Register Tokens Analysis

In this section, we analyze the information captured by different
token types through linear probing on the AudioSet-20k dataset.
Table 12 shows the performance comparison between register to-
kens, patch tokens, and the global token. Our findings reveal that
register tokens serve as an intermediate representation between
highly localized patch tokens and the global token.

With our proposed 8 registers setup, the global token achieves
the highest performance (30.8 mAP), followed by register tokens
(17.8 mAP) and patch tokens (11.7 mAP). This hierarchy indi-
cates that register tokens effectively aggregate information from
patches while maintaining more specialized representations than
the global token. The performance gap between register and patch
tokens (17.8 vs 11.7 mAP) shows that registers capture more se-
mantic information than individual patches.

Adding registers improves global token performance from 27.1
to 30.8 mAP, suggesting that registers serve as a ”buffer” to ag-
gregate information independently. Interestingly, we observe that
register tokens reduce patch token performance from 12.3 to 11.7
mAP, indicating that registers are drawing contextual information
away from patches. This supports our disentanglement hypothesis,
while we don’t observe the high-norm tokens reported in the pa-
per that first introduced register tokens to vision transformers [10],
this reduction in patch performance suggests registers are success-
fully serving as intermediaries between local and global represen-
tations. Our design uses registers to untangle the competing gener-
ative (patch tokens) and contrastive (global token) objectives. The
empirical improvement in global token performance, coupled with
the reduction in patch token performance, demonstrates that this
additional buffer, not directly controlled by any loss, effectively
helps the model develop more specialized representations.

# Registers AS20k (mAP) ↓
Register Patch Global

0 N/A 12.3 27.1
8 17.8 11.7 30.8

Table 12. Linear probing of models with and without registers on
AudioSet-20k, using various tokens as representation.

10. Sound Prompted Segmentation Examples

Figure 5 shows our model’s sound-prompted segmentation re-
sults. As described in Section 3, we compute localization maps
by calculating cosine similarities between the global audio token
and visual patch tokens. Using VGGSound audios from class la-
bels like “writing on blackboard with chalk”, “roller coaster run-
ning”, and “airplane” as prompts, our model generates localization
maps highlighting relevant image regions. The results demonstrate
strong audio-visual token alignment for scenes with clear objects
like airplanes, also for more complex scenes like roller coasters
with high visual clutter, which are naturally more challenging.

Notably, while specific classes like “writing on blackboard
with chalk” and “roller coaster running” are not explicitly labeled
in our AudioSet-2M pretraining dataset, examples of these sounds
still exist under different labels. Despite this labeling discrepancy
and the domain gap compared to datasets like VGGSound, our
model demonstrates strong localization capabilities. For instance,
in the ”writing on blackboard” example, the model precisely high-
lights the blackboard region, while in the roller coaster examples,
it effectively focuses on the coaster structure within visually clut-
tered scenes. These results are particularly encouraging given that
our model was trained in a self-supervised manner on AudioSet-
2M without explicit localization objectives. This robustness to un-
labeled classes suggests that our global contrastive learning ap-
proach inherently learns some degree of spatial correspondences
between audio and visual signals.

11. Intra-Instance Temporal Segmentation

To investigate how finer-grained audio representations impact the
understanding of video clips, we conduct a qualitative analysis of
temporal segmentation within samples from the AudioSet dataset.
For this experiment, we manually annotate the occurrence of the
classes throughout the video. In many cases, especially when mul-
tiple classes are present, different classes occur in separate seg-
ments of a video, not necessarily overlapping. We observe how
well our model’s features can discern between these classes of au-
dio events by extracting features from each of the 16 frames and
corresponding audio segments.

We apply a simple adaptive clustering algorithm to the ex-
tracted features to create temporal segments within each video.
Using Agglomerative Clustering with a dynamic distance thresh-
old, we iteratively adjust the threshold to achieve the desired num-
ber of segments, which if set to 5. If this fails, we fall back to
K-means clustering. Figure 6 shows examples where our model
can segment different classes based on the audio, even when the
visual information remains nearly constant. We compare segmen-
tation results using audio-only, video-only, and combined features
to demonstrate how audio features capture most of the semantic
changes occurring within videos. This highlights why using a sin-
gle global audio representation would be insufficient, as it would
fail to capture these important temporal variations in the audio sig-
nal.

In the first example with the red car, while the visual scene re-
mains largely static, the model detects distinct ”speech” and ”toot”
segments, demonstrating audio’s ability to capture semantic tran-
sitions invisible in the visual domain. The second sequence shows
clear delineation between speech and breathing segments, with



Figure 5. Sound-prompted segmentation results showing localization maps generated from audio prompts from VGGSound classes like
”writing on blackboard”, ”roller coaster”, and ”airplane”. The model highlights relevant image regions corresponding to the audio, demon-
strating strong audio-visual alignment for clear objects while more complex, cluttered scenes remain challenging.

audio features driving the segmentation despite minimal visual
changes. The third example captures the transition from applause
to speech in a crowd setting, where both audio and visual cues
contribute to the boundary detection. The final sequence shows
gurgling transitioning to speech, with audio features again provid-
ing the primary signal for segmentation.

Notably, the audio-visual segmentation (middle bar in each set)
often closely matches the audio-only segmentation (bottom bar),
suggesting that audio features frequently dominate the temporal
boundary detection. This makes intuitive sense for events like
speech, breathing, and applause that have distinct acoustic signa-
tures but may not correspond to major visual changes.

These examples highlight the importance of processing audio
in smaller segments rather than using a single global representa-
tion. The audio features are often more relevant for segmenting
these videos, demonstrating the value of the fine-grained audio
processing approach of CAV-MAE Sync.



Figure 6. Temporal segmentation results showing audio-visual event boundaries across different scenarios. Each row shows frame se-
quences with corresponding segmentation bars for visual, audio-visual, and audio-only features, along with spectrograms. Labels indicate
primary events (Speech, Text, Breathing, Applause, Gurgling) manually detected in different temporal segments
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