MEt3R: Measuring Multi-View Consistency in Generated Images

Supplementary Material

The supplementary materials are structured as follows.
First, we provide detailed information about our multi-
view latent diffusion model (MV-LDM) in Sec. A. Then,
we compare MEt3R with the FWS variants in Sec. B, fol-
lowed by a discussion on MEt3R metric in Sec. C. Finally,
we present additional details on the multi-view generation
baselines in Sec. D and their corresponding runtime statis-
tics in Sec. E. Please also note our supplementary video,
showcasing evaluations in motion.

A. Multi-View Latent Diffusion Model

This section presents further details for MV-LDM, includ-
ing the architectural components, training, and sampling de-
tails.

A.l. Architecture.

Like CAT3D [11], our architecture is based on a multi-
view 2D UNet shared across multiple input views with 3D
self-attention at each UNet block. We initialize the UNet
weights with Stable Diffusion 2.1 [29] and replace each at-
tention layer with a 3D self-attention layer from MVDream
[33] where each token from one view attends to all tokens
from the other views. This accounts for 1.1B parameters
for the multi-view UNet and 83.7M for the VAE. Due to
memory and resource limitations, we fix the total number
of concurrent views to 5, including the target and the con-
ditioning views. Figure 10 shows the architecture of MV-
LDM. We apply a VAE encoder and map the input images
(H x W x 3) into latent representation (£ x ¥ x 4). For the
low-resolution latent maps, we generate the ray encodings
of shape (£ x ¥ x 6), which consists of a 3-dimensional
origin and a 3-dimensional direction vector in relative cam-
era space and concatenate it along the channel dimension.

A.2. Training and Evaluation with MEt3R

Dataset. We use RealEstate10K [51], which consists of

80K video sequences accounting for 10 million frames.

During training, we randomly select a video sequence and

the corresponding conditioning and target views that satisfy

the following criteria:

e Sample 2 conditioning views (left and right) at frame
number 7, and fr with frame distance d. = fr — fr,
satisfying 50 < d. < 180.

e Sample 3 target views with distance d; from the condi-
tioning view that satisfies f;, — 100 < d; < fr + 100.
Afterward, we transform the absolute poses into relative

poses with respect to the first conditioning view.

Training. The training procedure follows DDPM [14],
sampling a noise level ¢, applying that to all given latent
images and training the network to predict the noise present
in the image. We randomly select the conditioning views
N between 1 or 2 and the target views M between 3 and
4, respectively, to allow for single and few-view novel view
generation. We linearly vary the beta schedule from 0.0001
to 0.02 for the forward diffusion process and train MV-LDM
for a total of 1.65M iterations with an effective batch size of
24 at resolution 2562. We use AdamW [23] optimizer with
a constant learning rate of 2¢~°. During sampling, the net-
work can receive a combination of existing and pure noise
images with camera ray encodings to perform conditional
generation. The backward diffusion process is done with
e-parameterization defined as the output of the model €y:

Epred = €9 (Zt7 C¢, t) B (5)

where €,cq = (e;red)f‘il is the predicted noise latent,
z; = (z{)}Z, is the noisy latent, ¢, = (c7)}_, is the clean
latent at the timestep ¢, whereas M and N are the num-
ber of target and conditioning views, respectively. The pre-
dicted noise is used to make a step in the direction of a
sample in the target distribution under the DDIM [34] for-
mulation. For classifier-free guidance, we randomly drop
the clean conditioning views with a probability of 10%, and
during sampling, we apply a guidance scale of 3 similar to
CAT3D [11].

For training, we apply the standard diffusion loss on
the predicted mean noise as the mean-squared error (MSE)
against the ground truth noise:

5 (6)

L =||€e — €p(zt,c4,1)

where € = ()M, and € ~ AN(0,I) is the ground truth
noise for each target view.

Training evolution of MEt3R. Figure 11 shows the trend
in 3D consistency in terms of MEt3R over training itera-
tions, showing consistent improvements with longer train-
ing. There is a significant improvement in the initial 100k,
and afterward, it saturates near 1M iterations.

Anchored vs. autoregressive sampling. We further test
MEt3R with two sampling strategies, i.e., (1) autoregres-
sively generating new target views and new anchors, condi-
tioned on the previous anchor, and (2) using anchored sam-
pling where we generate anchors first and then the rest as
described in Sec. 4. Fig. 12 shows the average MEt3R plot



Input View 1

Target View 1

Cross-Attention

Target View M

View i

2x
ResNet

Cross-Attention

Self-Attention

BT View ().,

Figure 10. MV-LDM. Architecture overview of MV-LDM, which consists of a shared 2D UNet initialized from Stable Diffusion 2.1 [29]
across multiple input views with cross-view attentions (3D attention) in between for modeling multi-view prior.
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Figure 11. MEt3R at different training iterations. As we con-
tinue to train MV-LDM, we see a consistent improvement in 3D
consistency, which is an expected behavior. Furthermore, in the
beginning, the improvements are large, which slows down and sat-
urates in the later iterations.

per image-pair, showing the improvements with anchored
sampling. We observe many diverging peaks attributed to
several anchor-to-anchor transitions and accumulating er-
rors for autoregressive sampling. For anchored sampling,
the anchors are generated together first, followed by gener-
ating the rest. This limits the error accumulation and allows
for fewer anchor-to-anchor transitions. We refer to Fig. 13
for a visual illustration of anchored and autoregressive sam-
pling schemes.

MEt3R on multiple scales. In Tab. 2, we investigate
the effect of image resolutions on MEt3R compared to
SED [48]. We find that SED is highly sensitive to variation
in image resolution with a significant increase at 1282. This
is expected since SED computes the geometric distance of
each correspondence from their epipolar line in the 2D-
pixel space. Meanwhile, MEt3R is more robust, attributed
to the measurement in the feature space (c.f. Sec. 3), thus
maintaining only minor differences in the scores. Although
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Figure 12. Anchored vs. autoregressive. Per-image-pair MEt3R
on 2 different sampling strategies. For autoregressive sampling,
we see significant and periodic spikes becoming larger as we
progress and show the effect of compounding error, i.e., sequen-
tially generating new frames and anchors conditioned on the previ-
ously generated ones. As illustrated in Fig. 13, autoregressive sam-
pling produces several anchor-to-anchor transitions causing these
periodic spikes. On the other hand, anchored generation limits the
effect of compounding error by generating all anchors in parallel.

the differences are small, we still recommend using a simi-
lar resolution for all baselines for a fair comparison.

B. Comparison of FWS Variants

Other metrics based on flow warping score (FWS) have
been introduced to measure consistency, which uses optical
flow, e.g., RAFT [37]. Given a pair of images, it first com-
putes optical flow, which is used to warp one image into
the other. Then, metrics such as SSIM, LPIPS, PSNR, and
RMSE are computed to quantify multi-view consistency.
In Tab. 3, we evaluate both multi-view and video genera-
tion baselines on FWS and MEt3R. We find that most vari-
ants, including PSNR, SSIM, and RMSE, rank DFM better
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Figure 13. Anchored vs. Autoregressive sampling schemes. An illustration of the differences in the sampling schemes. In autoregressive
sampling, we start from the initial input image and generate a set of target frames. The next set of frames is conditioned both on the
input image and on the last frame (anchor) of the previously generated set. With this sampling strategy, we see several anchor-to-anchor
transitions and results in large inconsistencies as visible in Fig. 12. Whereas using anchored generation i.e., generate anchors first and then
sample the remaining conditioned on the closest anchor and the input image. With this strategy, we observe significantly fewer anchor-to-
anchor transitions, limited error accumulation, and relatively stable and lower MEt3R across the image pairs.

2562 2242 1282
MEBR  SED | Diffygizr  Diffsen | Diffuessr Diffsgp

GenWarp [32] 0.120 1398 | -2.58%  -74.84% +6.61%  -80.37%
PhotoNVS [48] 0.069 0479 | -3.89% -26.23% +1.60%  -42.50%
MV-LDM (Ours) | 0.036 0405 | -3.88%  +2.29% +16.66% +34.23%
DFM [38] 0.026 0346 | -9.35% -52.84% +5.73%  -70.20%

Real Video | 0022 0.181 | -246% +18.99% +47.87% +148.17%

Table 2. MET3R vs. SED on multiple resolutions. We show dif-
ferences in SED [48] and MEt3R for the baseline multi-view gen-
eration models over changing image resolution against the base
resolution of 2562 in percentage. MEt3R is more robust to vari-
ations in the input resolution since it measures in feature space,
unlike SED, which measures in pixel space (c.f. Sec. 3). Here,
SEDs total scale is less than one order of magnitude larger than
MEt3Rs, while its variations are more than one order of magni-
tude larger in most cases.

than real video among multi-view generation methods be-
cause of their sensitivity to blur, pixel-level perturbation,
and noise (c.f. Sec. 5.3 and 5.4). Meanwhile, MEt3R and
FWS (LPIPS) ignore such perturbations and rely on feature
and perceptual similarity, respectively. However, as shown
in Fig. 14, FWS (LPIPS) suffers at higher frame distances
between input pairs, where DFM, GenWarp, and MV-LDM
can score better than real videos.

C. Additional MEt3R Architectural Details

This section presents additional details on the MEt3R
pipeline, including the projection of both point maps to the
first view and a description of the overlap mask used.

FWS
MEt3R | | PSNR+ SSIM{ LPIPS| RMSE |

GenWarp [32] 0.120 2141 0716  0.200 0.097
PhotoNVS [48] 0.069 2510 0779 0.137 0.060
MV-LDM (Ours) 0.036 2846  0.851 0.095 0.044
DFM [38] 0.026 39.56 0948  0.082 0.011
Real Video 0.022 3352 0924 0.075 0.026
12VGen-XL [49] 0.050 2862 0.844  0.107 0.044
Ruyi-Mini-7B [36] |  0.047 2801  0.831 0.133 0.043
SVD [2] 0.032 29.93 0.890 0.079 0.038
Real Video 0.022 3360 0925  0.074 0.026

Table 3. Comparison of flow warping scores (FWS) with
MEt3R. We report the results on multi-view and video genera-
tion methods, with FWS variants including PSNR, SSIM, LPIPS,
and RMSE.

Projection matrix. Figure 15 shows a side-by-side com-
parison of different projections we obtain using 1): fixed
focal length and 2): Adjusting focal length based on the
scale of canonical point map. We compute the canonical
point map X qnon as the weighted sum of the point maps
pair X; and X ;1 using their corresponding confidences C;
and C; ;1 from DUSt3R [42] as,

Xcanon - Ci © XZ + CH_I © XH_l (7)
C;+Cipn

Then, we extract the z, y, and z coordinate maps from
X anon a8 X, Y, Z € RT*W Moreover, DUSt3R already
implements this in their codebase, which we incorporate in
MEC(3R as shown in Alg. 1. The computed focal length f,
and f,, along with the principal point offsets c, and c,, are
used to form the projection matrix.
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Figure 14. MEt3R comparison to existing Flow Warping Score
(FWS). For a gap (frame distance) of 10 between the image pair,
MET3R is more robust and does not violate the lower bound, un-
like FWS.

Algorithm 1 Computing focal length given 2D grid of pixel

positions and 3D canonical point maps

Input: 2D pixel position U,V € RZ*W 3D position
X,Y,Z c REXW

Output: f,, f,

1 Q= U)@(Z > © is the Hadamard Product
_Voz
2 Q=%

3. fr = median(Q;) > Across spatial dimension

4 f, = median(Qy)

Overlap mask. We normalize MEt3R with an overlap
mask M as formulated in Eq. 4 which is a crucial step. Dur-
ing rasterization, we set the background values to a large
negative value 7 for each channel and subsequently build
the mask using the background values for each projected

Project onto View i
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View i
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Figure 15. Fixed vs. adjusted projection matrix. With fixed
focal length, the projection area varies across different scales of
DUSt3R [42] point maps. We automatically adjust the focal length
for each example pair to allow maximal projection and, therefore,
more pixels for evaluating feature similarity.

view, i.€,

®)

mk 0 ifpfj =7
* 1 otherwise

where mfj = [MP*];; is the mask for k'" view, pfj = [P¥];;
are the pixel values after projection and rasterization. We

set 7 = —10000, and we perform pixel-wise multiplication
of both masks M? and M‘*! to get the overlap mask M:
M = Mo M ! )

Figure. 16 shows MEt3R without normalizing against the
overlap mask M in Eq. 4. Instead, we take the average of
the similarity scores for all pixels. Compared to MEt3R
(c.f. Fig. 4), the lower bound gets significantly larger with
a large offset, while DFM [38] gets worse than all other
baselines. Meanwhile, PhotoNVS [48] gets almost similar
to GenWarp [32]. This contradicts both the theoretical ex-
pectation and the visual judgment about the 3D consistency
of the baselines. In addition, the standard deviations for all
baselines are large and correspond to noisy scores for in-
dividual image pairs across the test sequences. However,
some key features, such as spikes from anchor-to-anchor
transitions in MV-LDM and the gradual increase in MEt3R
due to decreasing 3D consistency, are still visible.

D. Additional Details on Multi-View Genera-
tion Models

In the following, we present additional details on the multi-
view generation baselines.

GenWarp. GenWarp [32] employs a two-step approach,
i.e., project and in-paint. With a monocular depth estimator,
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Figure 16. MEt3R without overlap mask. Per-image-pair
MEC(3R without normalizing against the overlap mask. Under this
setting, DFM [38] is worse than all other baselines in 3D con-
sistency, even though it has a strong inductive bias, which forces
its results to be 3D consistent at the expense of blur. Whereas
PhotoNVS [48] and GenWarp [32] are similar, both of which in-
crease gradually, whereas MV-LDM stays relatively low with vis-
ible spikes due to anchor-to-anchor transitions.

it predicts depth maps for the input image and un-projects
the RGB in 3D space. The 3D points are rendered onto a
target view, followed by inpainting with an image-to-image
diffusion model. GenWarp generates only one view at a
time. For every novel view, we condition the model on the
fixed input view for every novel view, as an autoregressive
approach diverges very quickly due to error accumulation.

PhotoNVS. Just like GenWarp, PhotoNVS [48] also gen-
erates a single view at a time given a conditioning image.
However, by employing a score-based diffusion UNet archi-
tecture for both views with cross-view attention in-between,
it can always condition on the last generated frame in an
autoregressive fashion, improving multi-view consistency
across a full sequence.

DFM. DFM [38]incorporates a neural radiance field into
the architecture of an image diffusion model such that novel
views are 3D consistent by design. By employing pixel-
NeRF [47], DFM generates the 3D representation given a
set of conditioning views. Starting from a single view, it
generates an extrapolated target view that acts as additional
conditioning in all subsequent sampling steps.

E. Runtime

In Tab. 4, we compare the runtimes of the evaluated meth-
ods for generating 80 frames of a video sequence on an
NVIDIA RTX4090 GPU with 24GB VRAM. GenWarp

GenWarp PhotoNVS DFM MV-LDM
Runtime (s) \ 70 7840 1020 100

Table 4. Runtime comparison. We report the runtime in seconds
for all the baselines for generating a full video sequence compris-
ing 80 frames. MV-LDM and GenWarp [32] achieve the fastest
sampling, followed by DFM [38] and then PhotoNVS [48].

achieves the fastest sampling time, as high-quality but in-
consistent novel views can already be obtained with 20
DDIM steps. Although MV-LDM generates multiple views
at a time, which improves 3D consistency and uses 70
DDIM steps to achieve good image quality, it is only
slightly slower than the single-view generation of GenWarp.
Both DFM and PhotoN'VS are an order of magnitude slower
due to slow volumetric NeRF rendering and many denois-
ing steps, respectively. Our proposed metric MEt3R can be
evaluated in only 95ms per image pair.



GenWarp PhotoNVS MVLDM (Ours) DFM SVD Ruyi-Mini-7Br 12VGen-XL

Figure 17. Examples of generated multi-views and videos. From Top — Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 18. Examples of generated multi-views and videos. From Top — Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 19. Examples of generated multi-views and videos. From Top — Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 20. Examples of generated multi-views and videos. From Top — Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 21. Examples of generated multi-views and videos. From Top — Down is the increasing frame number with columns for each
method. Note that the first row is the input image, the first four columns are the results of multi-view generation models with explicit
camera control, whereas the last three columns are generated videos from video diffusion models without any camera control.
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Figure 24. Qualitative results on GSO. A 360° rendering of the GSO object Blocks.
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Figure 25. Qualitative results on GSO. A 360° rendering of the GSO object Cream.



