DyCON: Dynamic Uncertainty-aware Consistency and Contrastive Learning for
Semi-supervised Medical Image Segmentation

Supplementary Material

This supplementary material is organized as follows:

* Appendix | provides more details about the datasets.

* Appendix 2 provides the gradient analysis of UnCL loss
function with loss surface and grad-cam visualizations.

* Appendix 3 provides more ablation analysis of different
properties of both loss functions.

* Appendix 4 provides more qualitative results from differ-
ent datasets.

* Appendix 5 provides additional experiments on multi-
organ segmentation task using BTCV dataset [4].

All of the above experimental analysis are conducted with

a model trained using 10% labeled data for both ISLES’22

and BraTS’19 datasets to ensure consistency.

1. Datasets

ISLES-2022: The ISLES-2022 dataset [6]' focuses on seg-
menting acute and sub-acute ischemic stroke lesions using
3D multi-channel MRI scans (DWI, ADC, and FLAIR).
Unless otherwise specified, we use the DWI modality only,
as it is highly sensitive to detecting acute ischemic lesions
by excluding FLAIR due to registration complexities. The
dataset consists of 250 skull-stripped cases (three cases
{150, 151, 170} without lesion masks). We use 200 (80%)
images for training and the rest 50 (20%) images for valida-
tion and testing. This dataset presents a challenge due to the
small and scattered nature of stroke lesions, making it well-
suited for evaluating DyCON’s ability to handle uncertain
and imbalanced regions.

Fig. 1 highlights the severe class imbalance in this
dataset by revealing the distribution of lesion counts, sizes
and scatterness. The figure emphasizes the challenge posed
by the dominance of non-lesion and small lesions and the
scarcity of large ones, which complicates model training
and impacts segmentation performance.

BraTS2019: The BraTS2019 dataset [7] consists of 335
preoperative MRI scans (T1, Tlce, T2, T2-FLAIR) with an-
notations for brain tumors. We use the T2-FLAIR sequence
for whole tumor segmentation, since it enhances the visi-
bility of peritumoral edema critical for accurately capturing
the entire tumor region. The dataset is split into 250/25/60
scans for training, validation, and testing. The focus of Dy-
CON on uncertainty and contrastive learning is particularly
valuable for this dataset, such as highly heterogeneous tu-
mor regions, which poses challenges in segmentation.

LA dataset: The Left Atrium (LA) dataset [11] includes
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Figure 1. Characteristics of ISLES-2022 dataset. (Left) Lesion
size distribution, and (Right) Lesion scatterness distribution.

100 3D gadolinium-enhanced MRI (GE-MRIs) images
with manually annotated left atrial segmentation masks.
Each scan has an isotropic resolution of 0.625 x 0.625 x
0.625mms3. Following [12], we used the 80/20 train/test
split, with images cropped to the heart region and normal-
ized to zero mean and unit variance. This dataset poses a
class imbalance problem, with the left atrium occupying a
small portion of the overall image.

Pancreas-NIH: The Pancreas-NIH dataset [9] com-
prises 82 3D CT images with pancreas annotations. For
comparison, we follow split settings from BCP [1]. This
dataset is particularly challenging due to the pancreas’s
proximity to other organs and its unclear boundaries. Dy-
CON’s ability to adapt to uncertain regions makes it a strong
candidate for accurate boundary delineation in this dataset.

2. Gradient Analysis of UnCL Loss

According to the DyCON framework in Fig.2, the teacher
model f} evolves via an EMA of the student model f§, and
only the student model is optimized using UnCL loss:
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where:

* p° = o(f§(x3)) are the student predictions (trainable).

ept = of fg (%)) are the teacher predictions (non-
trainable).

* Hy(pj) = —>_.pi . logp; . is the entropy of the student
predictions,

* Hi(p}) = — .} logp; . is the entropy of the teacher
predictions,



e 8 > 0 is a hyperparameter controlling the influence of
entropy regularization.

Gradient Computation: Since f{ is updated via EMA,
the gradient computations focus solely on the student model
f§. Therefore, the gradient of Lyncr with respect to the
student model parameters 6° is:
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Therefore, the denominator exp(8 - Hs(p$)) + exp(B -
Hy(pt)) inversely scales the gradient by predictive uncer-
tainty. Its derivative with respect to 6° is:
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Thus, the gradient of the consistency loss is modulated by
both the alignment term p; — p! and the entropy-based scal-
ing factor.

The second term % Zfil Hy(p$) in Eq.(1) involves
only the student entropy:
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As a result, this term encourages the student model to pro-
duce more confident predictions in unambiguous regions as
training progresses. Overall, the gradient of Lyycp with re-
spect to 6 is:
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Convergency Dynamics: The teacher model f} evolves
as a smoothed EMA of the student model f;, acting as a sta-
ble reference. (a) Alignment with Teacher Predictions:
The gradient of Ly,cL encourages the student predictions
p® to align with the teacher predictions p?, serving as a de-
noised target. (b) Uncertainty Focus: The exponentiated
entropy-based weighting exp(3- Hs(p$)) +exp(8- Hi(p!))
focuses the optimization on regions with high uncertainty,
such as lesion boundaries. (c¢) Confidence Calibration:
The entropy regularization term % Zf\il H,(p3) prevents
overconfidence, promoting generalization.

Implications for Medical Image Segmentation: (a)
Boundary Refinement: High-entropy regions (e.g., lesion
boundaries) are emphasized during optimization to improve
segmentation accuracy. (b) Generalization: The combina-
tion of alignment and uncertainty regularization ensures the
model balances sharpness and coverage in segmentation.

2.1. Loss Surface Visualization

Fig. 2 illustrates the loss surface visualization over course of
training on ISLES-22 and BraTS-19 datasets, which high-
lights the dynamics of UnCL’s optimization process. The
sharp spikes and valleys indicate regions of high uncer-
tainty, corresponding to ambiguous areas such as subtle le-
sion boundaries or scattered lesions. By leveraging dual-
entropy from both teacher and student models, UnCL dy-
namically modulates the consistency loss in these regions,
mitigating the impact of noisy gradients and overconfident
predictions. This results in a smoother and more balanced
optimization trajectory, promoting stability and better seg-
mentation accuracy in complex lesion distributions.

2.2. Grad-CAM Visualization

In this section, we visualize class-wise activation maps from
the penultimate decoder layer of 3D-UNet to further gain
interpretable insights into the inherent properties of UnCL
loss as shown in Fig.3. The Grad-CAM visualizations ef-
fectively highlight DyCON’s capability to focus on uncer-
tain regions over the course of training. In early epochs
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Figure 2. Loss landscape visualization of UnCL loss over training
epochs for samples in ISLES’22 and BraTS’19 datasets. Notably,
the loss surface is steadily converging toward better alignment and
lower uncertainty across both datasets.
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Figure 3. Grad-CAM visualizations over training epochs on
ISLES’22 and BraTS’19 datasets. Progressively, the model’s at-
tention focuses on lesion regions, showing improved alignment
with ground truth masks as training progresses.

(100), the heatmaps show a broader and less focused acti-
vation across the brain, indicating high uncertainty in iden-
tifying lesion regions, aligned to the ground truth masks.
As training progresses (late 400 epochs), the activations be-
come more refined and concentrated around the true lesion
areas. This refinement reflects the model’s robustness to ac-
curately localize and segment subtle lesions, enhancing le-
sion boundary precision and overall segmentation accuracy.

3. More Ablation Study
3.1. The Essence of Dual-entropy in UnCL Loss

In this subsection, we analyze the role of dual-entropy (en-
tropy from student and teacher models) in enhancing the
performance of the UnCL loss. Dual-entropy introduces
a principled mechanism for jointly capturing uncertainty
from both models, which proves particularly effective in
lesion segmentation under class imbalance and variability.
Specifically, we trained DyCON with single-entropy from
the teacher and student models without modifying other
components. Table | highlights the performance improve-
ment of using dual-entropy over single-entropy baselines on

Strategy Dice (%) IoU (%) HD95]

Teacher-Entropy  63.14 48.85 15.23 2.15
Student-Entropy ~ 64.42 50.24 14.25 1.64
Dual-Entropy 65.75 51.20 13.30 0.76

Table 1. The effect of using single-entropy and dual-entropy in
UnCL loss using 10% labeled data.

Ground Truth Mask Dual-Entropy

Figure 4. Illustration of uncertainty maps generated using dual-
entropy and single-entropy strategies from the teacher and student
models in UnCL Loss.

the ISLES-22 dataset. For example, the Dice score im-
proves from 63.14% (teacher entropy only) and 64.42%
(student entropy only) to 65.75% with dual-entropy. This
result reflects the importance of leveraging uncertainties
from both models.

Fig. 4 further demonstrates the impact of single-entropy
and dual-entropy strategies when combined with the UnCL
loss. The visualizations reveal that relying solely on either
teacher or student entropy results in overconfident predic-
tions in regions of high ambiguity, such as small lesions. It
struggle to reduce uncertainty, exhibiting higher noise levels
while still vaguely highlighting ground truth regions. This
overconfidence occurs because a single-entropy approach
fails to adequately capture the uncertainty inherent in such
challenging areas. In contrast, the dual-entropy effectively
reduces uncertainty over challenging lesion regions, as seen
by the sharper focus around ground truth areas with mini-
mal noise. This shows that dual-entropy provides more sta-
ble and precise guidance, improving the model’s confidence
and segmentation performance in ambiguous areas.

3.2. Effects of Hyperparameters in FeCL

To analyze the impact of the focal weighting factor v and
the top-k hard negative selection in FeCL, we conduct a de-
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Figure 5. Performance comparison of Dice scores and HD95 val-
ues for ISLES’22 and BraTS’ 19 datasets across different A values.

tailed ablation study across two datasets, focusing on their
respective roles in improving lesion segmentation perfor-
mance. These parameters are crucial in addressing class
imbalance and enhancing the model’s ability to discrimi-
nate subtle lesion boundaries under challenging conditions.

Effect of Focus Controller +: The parameter v mod-
ulates the contribution of hard positive and negative patch
pairs by emphasizing samples that are difficult to distin-
guish. A higher v value increases the weight on hard-to-
distinguish patch pairs, while lower values reduce the em-
phasis, treating all samples more uniformly. In this exper-
iment, we vary v € {0.5,0.8,1.0,1.5,2.0} and evaluate
segmentation accuracy using Dice and HD95 metrics. All
experiments are conducted on both datasets with 10% la-
beled data, keeping the other FeCL components constant.
The results for various -y are reported in Fig. 5.

The focal weighting factor v in FeCL demonstrates op-
timal performance at v = 0.8 for BraTS’19 and v = 0.5
for ISLES’22, achieving a balance between emphasizing
hard positive and negative patch pairs and avoiding over-
amplification of noise. Increasing « beyond this value leads
to marginal performance improvements, which indicates the
model already effectively captures complex lesion charac-
teristics with moderate ~y, such as variability in size, shape,
and spatial distribution. This phenomenon highlights the
robustness of FeCL to lesion complexity in handling small,
irregular, and scattered lesions. The results suggest that
~v = {0.8,0.5} provides the optimal trade-off between em-
phasizing subtle lesion patterns and maintaining training
stability. In this way, FeCL ensures consistent feature dis-
crimination across diverse and challenging datasets.

Effect of Top-k Hard Negative Selection: The top-k
parameter controls the number of hard negatives incorpo-
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Figure 6. Performance comparison of Dice and HD95 values for
ISLES-2022 and BraTS-2019 datasets across different /' values.

rated from the teacher model, enriching the negative sam-
pling process in the contrastive loss. In this experiment, we
test K € {8,16,24,32} while keeping the optimal values
of A fixed for BraTS-2019 and ISLES-2022 datasets. For
each setting, we measure Dice and HD95 to evaluate seg-
mentation performance. Fig. 6 shows the Dice and HD95
scores of various K values. The key observations reveal that
increasing k up to k = 16 enhances the diversity of negative
samples, improving feature separability and segmentation
performance, as evidenced by a Dice score increase from
63.57% (k=8) to 65.71% (k=16) on ISLES-22. Beyond
k=16, the performance plateaus or slightly decreases across
both datasets due to the inclusion of redundant or overly
similar negatives, which introduces noise into the loss.

3.3. Integrating DyCON with SSL Frameworks

To demonstrate the versatility and effectiveness of DyCON,
we integrate it into two representative semi-supervised
learning frameworks: Mean-Teacher (MT)[10] and Co-
training (CT)[3]. These frameworks utilize distinct mech-
anisms for leveraging unlabeled data, providing a robust
foundation for evaluating the adaptability of DyCON.

In this regard, MT leverages a student-teacher paradigm
where DyCON’s UnCL improves global consistency by
dynamically weighting uncertain regions, while FeCL en-
hances local feature discrimination for nuanced lesion seg-
mentation, addressing class imbalance effectively. Simi-
larly, Co-Training benefits from DyCON by using UnCL to
align predictions from independent sub-networks through
dual-entropy, and FeCL to refine local features, captur-
ing subtle lesion details. DyCON significantly improves
the performance of both frameworks on ISLES’22 and
BraTS’19 datasets.
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Figure 7. Comparative performance (Dice (%) and HD95) when
integrating DyCON into MT and CT frameworks with 10% la-
beled data. DyCON enhances segmentation accuracy consistently
across ISLES’22 and BraTS’19 datasets without modifying the
underlying architectures or training pipelines.

Our experiments demonstrate that DyCON consistently
improves both MT and CT frameworks, as shown in Fig. 7.
By enhancing global and local feature consistency, Dy-
CON achieves superior segmentation results without requir-
ing modifications to the underlying architectures. These
findings highlight DyCON’s adaptability and potential for
broad adoption in SSL-based medical image segmentation.

4. More Visualization Results

Fig. 8 presents brain tumor and lesion segmentation visual-
izations from BraTS’19 and ISLES’22 datasets. Moreover,
Fig. 9 illustrates left atrium organ segmentation visualiza-
tions from LA dataset. These results demonstrate that, Dy-
CON persistently delivers more accurate segmentation of
complex lesions and organs compared to the SOTA methods
across all datasets. Closely note that, in each of the visual-
izations the False Negatives (blues) are produced due to in-
variance of the lesion or tumor boundaries with the healthy
tissues. In this case, DyCON has achieved a remarkable de-
lineation of these challenging tumors and lesions regardless
of their morphological difficulties.

5. Experiments on Multi-Organ Segmentation

To further assess the versatility and robustness of Dy-
CON, we conducted additional experiments on the BTCV

MRI with GT as Contour MCF BCP AC-MT
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Figure 8. Comparison of brain tumor and lesion segmentation with
SOTA methods. The comparison results are illustrated in terms of
True Positives (green), and False Negatives (blue) in segmenting
challenging lesions of MRI scans. The baseline methods struggle
with detecting subtle lesion boundaries across both datasets, re-
sulting in higher instances of FNs (blue) while DyCON effectively
reduces these errors, leading to a significant number of correctly
identified lesion voxels (green).

MRI with GT as Contour MCF BCP AC-MT DyCON (Ours)

Figure 9. Comparison of challenging left atrium organ segmen-
tation results with SOTA methods using 10% labeled data on LA
dataset. DyCON consistently produces more accurate segmenta-
tion of left atrial organs.

(Synapse) dataset for multi-organ segmentation, following
the evaluation protocol established by existing SOTA meth-
ods such as DHC [5], and GA [8] combined with Magic-



Average

Average Dice of each class using 20% labeled data

Methods
Dice ASD | Sp RK LK Ga Es Li St Ao IVC PSV PA RAG LAG
DHC [5] 486 10.7 | 628 695 592 66.0 132 852 369 679 615 370 309 314 106
GA+MagicNet [8] 684 3.1 | 814 924 908 335 533 891 609 79.1 821 66.7 487 503 614
DyCON+GA+MagicNet 69.5 35 | 885 859 926 496 609 90.6 587 857 8.1 624 519 559 39.64

Table 2. DyCON outperforms all methods in some organ classes while it remains comparable with other classes.

Net [2] (GA+MagicNet). The BTCV dataset encompasses
segmentation tasks across various abdominal organs, each
posing unique challenges, including considerable variabil-
ity in organ size, shape, boundary ambiguity, and proxim-
ity to neighboring structures. Therefore, we integrated our
proposed losses, UnCL and FeCL into the GA+MagicNet
framework, creating the DyCON+GA+MagicNet variant.
Table 2 illustrates the comparative performance of DyCON
against the previous SOTA DHC and GA+MagicNet across
thirteen different organ classes.

DyCON significantly surpasses GA+MagicNet, achiev-
ing new SOTA average Dice performance of 69.5%, attain-
ing a +1.1% improvement. Specifically notable improve-
ments are observed in challenging organ classes character-
ized by high uncertainty and ambiguous boundaries, such
as the Spleen (Sp: 88.5% vs. 81.4%), Left Kidney (LK:
92.6% vs. 90.8%), Gallbladder (Ga: 49.6% vs. 33.5%),
Esophagus (Es: 60.9% vs. 53.3%), and Aorta (Ao: 85.7%
vs. 79.1%). These gains underscore DyCON’s capability to
dynamically emphasize uncertain and ambiguous boundary
regions, enhancing the accuracy of segmentation outcomes
in anatomically complex areas.

Although DyCON slightly increases the ASD from
3.1mm to 3.5mm compared to GA+MagicNet, the improve-
ment in Dice scores across critical organs indicates that Dy-
CON prioritizes precision in delineating organ boundaries
over minimal surface distance discrepancies, beneficially
balancing boundary sharpness and general segmentation ro-
bustness. Overall, these results reinforce DyCON’s effec-
tiveness as a versatile semi-supervised learning framework,
not only for brain lesion segmentation but also extending its
applicability and superior performance to complex multi-
organ segmentation tasks.
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