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Figure A. Overall Performance. We underline external datasets.
LP stands for Linear Probing.

In this appendix, we provide detailed results in Sec. A, an
extended ablation study in Sec. B, and provide implementa-
tion details in Sec. C. Finally, we provide more details on
the datasets and experiments of the main paper in Sec. D

A. Detailed Results

We provide qualitative illustrations of our predictions and
detailed quantitative results for the test sets of GeoPlex.

Qualitative Results. We present qualitative illustrations
in Fig. B for four segmentation tasks: PASTIS, FLAIR,
SICKLE, and BraDD-S1TS. AnySat predicts precise seg-
mentations that closely follow the extents of buildings, trees,
and parcels. Notably, the predictions do not display grid
artifacts despite our segmentation head being a simple linear
layer applied to each subpatch. This suggests that using
subpatches of small sizes (e.g., 4 x 4 pixels for PASTIS
and 10 x 10 pixels for FLAIR), combined with larger con-
text through patch embeddings, is an effective strategy for
producing smooth and consistent segmentation maps.

Quantitative Results. We provide in Tab. A and Tab. B the
detailed performance of AnySat, with and without pretrain-
ing, and an extensive comparison with recent EO models.

Pretraining on GeoPlex improves performance for smaller
datasets (e.g., TreeSatAI-TS, PASTIS in classification), but
this effect is more limited for segmentation datasets (FLAIR,
PASTIS in segmentation) or larger ones like PLANTED. We
hypothesize that this is due to the quantity of available super-
vision; for instance, FLAIR has over 20 billion individual
labels. In the case of FLAIR, the pretrained model is 0.5
points behind training from scratch, which we attribute to
stochastic noise, as our performance on the validation set
is on par with training from scratch: 54.7 for pretrained vs.
54.8 from scratch.

B. Additional Ablation

We propose an additional experiment to evaluate the impact
of one of our design choices.

No Modality or Temporal Masking. In this experiment,
we remove the modality and temporal masking for the stu-
dent encoder during pretraining. This modification results
in a slight increase in segmentation performance by +-0.4
mloU but a decrease in classification performance by —0.6
F1 score. These ambiguous results are similar to the effects
we observed with naive patch dropping. An advantage of
including modality and temporal masking is that it reduces
the memory requirements during training by up to 30%.
Since our goal is to train a single model on several datasets
aimed to be fine-tuned for multiple tasks, we keep a unique
configuration and adopt this masking strategy.

C. Implementation Details

GeoPlex. See Tab. C for more details on the composi-
tion of GeoPlex. GeoPlex is composed of five distinct
datasets—TSAI-TS, PASTIS-HD, FLAIR, PLANTED, and
S2NAIP-URBAN—which collectively offer a rich combina-
tion of data types, including images, time series, and various
modalities. These datasets span extensive geographical ar-
eas, ranging from 180 km? to over 211,000 km?, and provide
a wide array of spatial resolutions (from 0.2m to 250m),
temporal resolutions (from 1 to 140 time steps), and spectral
resolutions (from 3 to 10 bands). The inclusion of multiple
satellite and aerial platforms, such as Sentinel-1/2, Land-
sat 7/8/9, SPOT6/7, and NAIP, ensures a robust and varied
training set.

Network Architecture. AnySat’s architecture follows the
Vision Transformer (ViT) template and has 125M learn-
able parameters, of which 73.6% are modality-agnostic and
resolution-adaptive. The components of the model are:
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Figure B. Illustration of Results. We represent the inputs, predictions, and ground truth for tiles from four datasets. The colormaps are

taken directly from the papers. TS: time series, a single date has been chosen. S1/2 stands for Sentinel-1/2. For PASTIS-HD, white parcels
are not annotated (void label).



Table A. Model Performance on the Test Sets of GeoPlex. For time series, we denote by @ whena single date has been selected, and =]

when seasonal medians have been concatenated in the channel dimension.

linear probing

AL stands for ALOS-2 and MO for MODIS. LP stands for

Model Pre-training Modalities PASTIS-HD - multilabel classif. VHR S1 S2  maFl1
TSAI-TS - multilabel classif. =~ VHR  S1 S2 wF1 AnySat (ours) GeoPlex v v v 72.8
AnySat (ours) GeoPlex v v v 75.1 AnySat (ours) None v v v 65.5
AnySat (ours) None v v v 72.7 OmniSat [6] PASTIS-HD v v 69.9
OmniSat [6] TSALTS 742 glé(;r‘zi 1l PD%S&S'HD v = = 22‘ ;
DOFA [44] DOFA v & & 716 D [ ]4] oo M 3 3 o
PSE+LTAE [15] None v v 12 L14] mageNet :
s ke UTAE [16] None v v 46.9
PSE + ResNet [6] None v [« ] [+ ] 68.1 ScaleMAE [29 PASTIS.HD v Y 429
ScaleMAE [29]  TSAI v & 625 cale [29] - = :
SatMAE [11] TSAI v = ] 61.5 PASTIS-HD - semantic seg VHR S1 S2 OA mloU
CROMAI3]  TSAIL v @ 610 AnySat (ours)  GeoPlex « ' « 850 665
UT&T [14] ImageNet v v :_/._ 36.7 AnySat (ours) None v Vv V 848 663
MOSAIKS[30]  TSAI & 560
PRESTO [38] PRESTO @ 463 SkySense [18] ~ SkySense Vv ¢ « 859 -
o .. UTAE-MM [17] None v Vv 842 66.3
Model Pre-training Modalities TSVIT [37] None v 834 654
PLANTED - classif. S1 S2 LS ALMO maFl1 UTAE [16] None v - 63.1
AnySat (ours) GeoPlex ' v VvV vV vV 615 PASTIS-HD - semseg LP VHR S1 S2 mloU
A vVvvVVV 1.2
nySat (ours)  None 6 AnySatLP (ours) GeoPlex 427
iViT [5, 2 .
Xﬁ {S’ 7;} ggﬁz : : Vv gg § S12-DINO LP [26, 34] foundation v « « 362
- : S12-MoCo LP [20, 34] foundation v ' 34.5
FLAIR - semantic seg VHR S2 mloU S12-D2V LP [7,34] foundation v 343
AnySat (ours) GeoPlex v v 551 Sp.ectr.alg}PT [21] foundatTon z : z 354
AnySat (ours) None v v 55.6 Prithvi [22] foundation 339
UT&T [14] ImageNet v v 56.9
UNet [19] ImageNet v 54.7
UTAE [16] None v 36.1

+ Modality Projectors ¢P™ (33M parameters for 11
projectors). These modules are MLPs responsible for
projecting the input data of each modality into a common
feature space.

« Spatial Transformer ¢"®" (45M parameters). Com-
posed of three self-attention transformer blocks, this
module captures the spatial relationships between sub-
patches for each modality and patch.

+ Modality Combiner ¢<°™ (49M parameters). This
module consists of three self-attention blocks followed
by a cross-attention block, and merges the representa-
tions from different modalities into a unified feature vec-
tor for each patch.

* Predictor ¢P™ (29M parameters). Exclusive to the stu-
dent, this module is a single self-attention block and pre-
dicts the teacher’s embeddings for the dropped patches.

Handling MODIS data. In the Planted dataset [27],
MODIS observations are included, but their resolution
(250 meters) is larger than the entire observed tile (120 me-

ters). We treat these observations as context tokens: we
concatenate their pP*“" embeddings to the M| - (S/P)? to-
kens from all other modalities. We do not add positional
encoding, and this token is not included in the contrastive
loss.

Optimization Parameters. To better manage our memory
usage, we adapt the batch size to the size of the samples of
each dataset: TreesatAI-TD: 384, PASTIS-HD: 8, FLAIR:
96, PLANTED: 2048, S2NAIP: 16. We use 8 NVIDIA H100
for experiments on GeoPlex, PLANTED and Pastis-HD , and
a smaller cluster of 3 A600 for TreeSatAI-TS and FLAIR.

Beyond the changes above, all optimization parame-
ters are shared across all datasets. We used the AdamW
[24] optimizer with a learning rate of 5 x 10> for all
our experiments (pretraining and fine-tuning). We used a
LinearWarmupCosineAnnealingLR [1] for classifi-
cation and ReduceLROnPlateau [2] scheduler for pre-
training and segmentation.

We set he contrastive temperature 7y to 0.1 to n Eq. X. We



Table B. External Datasets. We evaluate our pretrained model
on 4 external datasets, in the fine-tuning or linear probing settings.
i@ stands for single-date observations. We report the number of
trainable parameters for probing experiments.

SICKLE [31] L8 S1 S2 mloU
AnySat (fine-tune) v v v 89.3
AnySat (linear 6.1K) v v 82.0
Unet3d [25, 31] v v v 82.1
UTAE[16, 31] v v v 51.4
BraDD-S1TS [23] S1 mloU
AnySat (fine-tune) v 80.9
AnySat (linear 6.1K) v 78.9
UTAE [16] v 70.7
3D-UNet [25] v 68.1
Conv-LSTM [33] v 63.7
TimeSen2Crop [42] S2 OA
AnySat (fine-tune) v 92.2
AnySat (linear 14K) v 70.3
OS-CNN [36, 41] v 81.2
MLP+TAE [15, 40] v 80.9
W.LSTM [10, 32] v 78.2
Transformer [39] v 78.1
MSResNet [12] v 76.3
Senl1Floods11 [9] S1 S2 mloU
AnySat (linear 6.1K) = | | 91.1
CROMA [13] (UperNet 47M) & ] 90.9
CROMA [13] (fine-tune 350M) ] ] 90.9
Prithvi [22] (fine-tune 130M) ] ] 90.4
Prithvi [22] (UperNet 39M) ] & 88.3
Prithvi2 [35] (fine-tune 630M) ] ] 90.4
SatlasNet [8] (UperNet 33M) ] & 90.3
HLS Burn Scar [28] HLS mloU
AnySat (fine-tune) v 90.6
AnySat (linear 3M) v 87.7
Prithvi2 [35] (fine-tune 630M) v 90.5
Prithvi [22] (fine-tune 130M) v 86.9
Prithvi [22] (UperNet 39M) v 83.6
CROMA [13] (UperNet 47M) v 82.4
DOFA [44] (UperNet 39M) v 80.6
So2Sat [45] S1 S2 OA
AnySat (linear 29k) @ @ 59.1
DOFA [44] (linear) =] & 59.3
CROMA [13] (linear) ] @ 49.2
SatMAE [11] (linear) = | | 46.9

used an EMA decay of 0.996. All other hyperparameters are
shared with original JEPA implementation.

Position Encodings. We describe here our scale-adaptive
positional encoding which allows us to use the same en-
coders for different resolutions, scales, and patch size. The
input tokens to the modality combiner ¢*°™ correspond to
patches of size P x P meters, while those to the spatial trans-
former ¢ represent subpatches of size (Ry, 0 ) X (R 0m,)
meters. Here, R,, varies per sensor modality m, and P is
randomly chosen for each batch during training. To train a
single scale-aware model capable of handling varying res-
olutions, we employ a scale-adaptive positional encoding
inspired by Scale-MAE [29].

We use the same positional encodings in ¢®°™ and ¢,
We first describe the positional encoding of a token by ¢<°™.
We denote by pos,, the index of the token’s patch within its
tile along the z-axis; similarly, pos,, along the y-axis. If the
embeddings of the token have a dimension D, the positional
encodings 11,;(pos,, i) and equivalently /i, (pos, ) are of
size D/2. For i € [0, D/2[ we have:

. . (g Dpos, s ,

Maﬂ(posx’ i) = sin (G 100005 + QmOd(l7 2)) ;o (A)
where g = P is the size in meter of the patch considered
unit: patch of size for $°°™, and G is a reference length that
we set to one meter. We compute /i, (pos, , i) similarly, and
the positional encoding is the channelwise concatenation of
both vectors. The positional encoding is directly added to
the embeddings.

For ¢, we define the positional encoding of each sub-
patch within its patch with the same formula, but set g to
g = Ry,0m, the size of the subpatch in meter.

D. Datasets and Tasks

Here, we provide more details about the datasets used to
train and evaluate AnySat and their associated tasks. See
Tab. C for an overview of the datasets used in GeoPlex.

TreeSatAI-TS [3, 6]: This multimodal dataset is designed
for tree species identification and consists of 50,381 tiles,
each covering an area of 60x60 meters, with multi-label
annotations across 20 classes. All data were collected in
Germany. The dataset includes Very High Resolution (VHR)
images at 0.2 m with a NIR band, Sentinel-2 time series, and
Sentinel-1 time series.

PASTIS-HD [6, 17]: This crop mapping dataset supports
classification, semantic segmentation, and panoptic segmen-
tation. Each agricultural parcel is delineated at a resolution
of 10 m and annotated across 18 crop types. The dataset
contains 2,433 tiles with an extent of 1,280x 1,280 m, in-
cluding Sentinel-2 time series, Sentinel-1 time series (we
use only the ascending orbit), and SPOT6 VHR imagery at
1.5 m resolution.


https://github.com/facebookresearch/ijepa

Table C. Considered Datasets. We present the detailed composition of GeoPlex, the collection of datasets used for self-supervised training,
and our external evaluation datasets. For each dataset, we consider a set of acceptable patch sizes.
img: img, t.s.: time series: t.s. S1/2: Sentinel-1/2. { upsampled from original acquisition resolution.

Sample Size (S) Resolution
Dataset Extent Modalities
Patch Size (P) Spatial (R)  Temporal (T)  Spectral (C)
GeoPlex
. Aerial VHR 0.20m 1 4
50k x (1img +2t.s.) S = 60m
TSAI-TS [3, 6] ) . S1 10m 10-70 3
180 km2 - 4.7 GPix P € {10,20,30}m 5 10m 10-70 10
. SPOT6/7 Imf 1 4
2433 x (limg + 2t.s.) S = 1280m
PASTIS-HD [6, 16] ) . S1 10m 140 3
3986 km? - 7.5 GPix P € {40,80,160}m 5 10m 38.61 10
FLAIR [14] 78k x (1img + lt..s.) S =102.4m Aerial VHR 0.2m 1 5
815 km? - 20 GPix P € {10,20,50}m S2 10m 20-114 10
S2 10m 8 10
S1 10m 8 3
1.3M x (5t.8.) S =120m
Planted [27] R . Landsat 7 30m 20 3
33,120 km? - 3.0 GPix P € {30,60}m ALOS-2 30m 4 3
MODIS 250m 60 7
NAIP 1.25m 1 4
S2NAIP- 515k x (limg + 3t.s.) S = 640m S2 10m 16-32 10
URBAN [4, 43] 211,063 km? - 136 GPix P € {40,80,160}m S1 10m 2-8 3
Landsat 8/9 10mf 4 8
External datasets
13k x (1t.s.) S = 480m
BraDD-S1TS [23] 2.995 km? - 1.2 GPix P—10m S1 10m 20-66 10
Sickle [31] 35k x (2t.8.) S = 320m S2 10m 13-148 10
i 3,584 km2 - 3.6 GPix P =10m Landsat 8/9 10m? 8-34 8
. 1.2M x (1ts.) S = 10m
TimeSen2Crop [42] 120 km? - 35 MPix P — 10m S2 10m 29 10
4.8k x (2img) S = 5120m S2 10m 1 10
Senlfloodst1 [9] 125,829 km? - 2.6 GPix P = 80m S1 10m 1 3
) 400k x (2 img) S = 320m S2 10m 1 10
So25at [43] 41,029 km? - 82 GPix P =10m Sl 10m 1 3
) 804 x (1t.s.) S = 15300m
HLS Burn Scar [28] 188.208 km? - 211 MPix P — 240m HLS 30m 1 6

FLAIR [14]: This dataset combines VHR aerial imagery
at a 0.2 m resolution with Sentinel-2 time series data and
comprises 77,762 tiles acquired across metropolitan France.
The VHR images include five channels: RGB, near-infrared,
and a normalized digital surface model derived by pho-
togrammetry. Each VHR pixel is annotated with one of
13 land cover classes.

PLANTED [27]: The PLANTED dataset is specifi-
cally designed for tree species identification and features
1,346,662 tiles of planted forest across the world. Each tile

is associated with one of 40 distinct classes. This dataset
integrates imagery from five different satellites with various
resolutions: Sentinel-2 (10 m), Landsat-7 (30 m), MODIS
(250 m), as well as radar time series from Sentinel-1 (10 m)
and ALOS-2 (30 m). The time series are temporally aggre-
gated at various intervals—seasonally, monthly, or yearly.

S2Naip-Urban [4, 43]:  This dataset includes images cap-
tured at the same locations as the S2NAIP-Urban super-
resolution dataset [43], which is a subset of the extensive
S2NAIP [4] dataset focused on urban areas. This split



comprises 515,270 tiles, featuring imagery from NAIP at
a 1.25 m resolution, Sentinel-2 and Sentinel-1 time series,
and Landsat-8/9 data rescaled to a 10 m resolution. We use
this dataset for pretraining only because there are no official
labels and evaluations.

BraDD-S1TS [23]: BraDD-SITS (Brazilian Deforesta-
tion Detection) is a change detection dataset comprising
Sentinel-1 time series of the Amazon rainforest, aiming to
segment deforested areas. It includes 13,234 tiles covering
regions with varying deforestation rates, providing pixel-
wise binary annotations for deforestation events occurring
between the time series’ first and last radar image.

Sickle [31]: SICKLE is a multimodal crop mapping
dataset from India containing 34,848 tiles with Sentinel-
1, Sentinel-2, and Landsat-8 time series. We use the paddy
/ non-paddy culture binary semantic segmentation task. As
the test set has not been released by the authors, we perform
our experiments on the validation set.

TimeSen2Crop [42]: TimeSen2Crop is a crop mapping
dataset consisting of 1,212,224 single-pixel Sentinel-2 time
series, a configuration not present in GeoPlex. It includes
data from Slovenia with annotations for 16 different crop

types.

Senlfloods11 [9]: SenlFloodsl11 is a flood segmentation
dataset featuring 4,831 pairs of Sentinel-1 and Sentinel-2
images, each annotated with dense flooded/not-flooded la-
bels. The dataset spans diverse global regions, with each
tile covering a 5120 x 5120 m area ( 2600 hectares) and
containing a single acquisition date per sensor.

So2Sat [45]: So2Sat is a local climate zone classification
dataset containing co-registered single-date Sentinel-1 and
Sentinel-2 imagery across multiple cities worldwide. It com-
prises 400,673 image patches, each annotated with one of
17 local climate zone classes according to the LCZ scheme.
An image represents a zone of size 320 x 320 m. So2Sat
specifically targets urban morphology classification tasks for
sustainable urban planning and climate studies.

HLS Burn Scar [28]: HLS Burn Scar is designed for post-
fire burn scar detection using Harmonized Landsat-Sentinel
(HLS) imagery. It contains 804 tiles covering a 15.3 x 15.3
km area 23400 hectares) at 30m resolution and covering
multiple wildfire events across diverse ecosystems in the
United States.
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