
HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video
Understanding

Supplementary Material

In this supplementary material, we provide additional
quantitative results in Section A. Then we present additional
ablation studies in Section B, followed by qualitative anal-
ysis in Section C. Next, we provide more implementation
details in Section D. Finally, we address some limitations
and outline directions for future research in Section E.

A. Additional Results

In Table 9 we present the results for metadata classification
task on the LVU dataset. The metadata classification task
consists of - director, genre, writer, and year categories.
Similar to the content understanding task presented in Ta-
ble 1, HierarQ achieves state-of-the-art performance with
an average performance gain of 5.5% over the best model
[23] proving its the effectiveness across multiple categories
of classification task. Additionally, in Table 10, we present
performance comparison of our model against other concur-
rent approaches on the task of video captioning and report
the METEOR scores.

B. Additional Analysis

Computational Cost Analysis. In Figure 8 we present de-
tailed computation cost analysis of our method HierarQ and
compare it against baseline Q-Former (BLIP-2 [34]) and
few other concurrent approaches. Token: HierarQ uses
a 32-token count, matching the token-count of MA-LMM
and Video LLaMA while being smaller in tokens than base-
line Q-Former (BLIP-2) and Video ChatGPT. Memory bank
size: HierarQ uses fixed-size memory banks with 10 frames
and 32 tokens per frame for both short- and long-term mem-
ory bank. In contrast, MA-LMM uses a variable-sized
memory ranging from 10 to 40 frames with 32 tokens per
frame, while MovieChat has 18 frames and 32 tokens per
frame in short-term memory and 256 frames in long-term
memory. Computation cost: HierarQ maintains constant
memory consumption, processing over 10K frames on a
24GB A100 GPU (Figure 8 left). Unlike models with expo-
nential computation growth, its auto-regressive design en-
sures scalability, fitting within a 24GB GPU for 100-frame
inputs. Its training-free memory banks incur no additional
computation costs, while the number of trainable parame-
ters is only 390M. Latency: While latency increases lin-
early with frames (Figure 8 right), HierarQ remains capable
of processing arbitrarily long videos, unlike other models
that fail beyond a certain frame threshold.
Temporal modeling method ablation. Table 11 compares

Table 9. Performance comparison of medium to long video un-
derstanding on LVU dataset. The top-1 accuracy is reported. ‡
indicates without LLM finetuning. Best and second-best perfor-
mances are highlighted.

Model Director Genre Writer Year Avg
VideoBERT [62] 47.3 51.1 38.5 36.1 43.3
Obj T4mer[77] 47.7 52.7 36.3 37.8 43.6
Orthoformer [47] 55.1 55.8 47.0 43.4 50.3
VIS4mer [28] 62.6 54.7 48.8 44.8 52.7
TranS4mer [29] 63.9 55.9 46.9 45.5 53.1
S5 [71] 67.3 65.4 51.3 48.0 58.0
Movies2Scene [12] 70.9 55.9 53.7 57.8 59.6
VideoMamba [37] 67.3 65.2 53.0 48.2 58.4
MA-LMM [23] 74.6 61.1 70.4 51.9 64.5
HierarQ ‡ 76.6 66.2 71.1 59.2 68.3
HierarQ 78.4 67.9 71.9 61.9 70.0

different temporal modeling methods. Some strategies to
reduce token load due to auto-regressive frame processing
is to do concatenation, average pooling or even token merg-
ing (ToMe) [6]. Our HierarQ outputs 32 tokens per frame,
with simpler methods like concatenation and averaging of
frame features yielding lower performance. Concatenation,
in particular, is computationally expensive due to simulta-
neous processing of all frames. ToMe reduces tokens per
frame from 32 to 2, but for 100-frame inputs, it still re-
quires 200 tokens, imposing significant memory demands
and sub-optimal performance. In contrast, our framework
utilizes entity and scene-level task-aware streams with ded-
icated memory banks to store historical temporal informa-
tion. The short-term memory bank employs a FIFO ap-
proach, while the long-term memory bank performs com-
pression of similar token based on high cosine similarity
(MBC). This temporal modeling technique keeps the to-
ken count fixed at 32 per frame, while not losing essen-
tial information and also optimizing GPU memory usage.
Our temporal modeling approach achieves superior accu-
racy on the LVU and Breakfast datasets as compared to the
other approaches. Here, we limit the number of frames to
100 for a fair comparison to the other methods that risk
facing the LLM context length bottleneck with increased
frames. Here, it is important to mention that previous works
[23, 60] have successfully performed temporal modeling re-
spectively using ToMe and MBC. However, here we empir-
ically show that our combination of using short and long
term memory for temporal modeling gives the best perfor-
mance.

Long-term memory bank compression at different spa-
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Figure 8. GPU memory (line), accuracy (dots) and latency vs. frames.

Table 10. Performance comparison of video captioning. Here
we report the METEOR scores.

Model MSRVTT MSVD YouCook2
SwinBERT [40] 29.9 41.3 15.6
GIT [70] 32.9 51.1 17.3
mPLUG-2 [80] 34.9 48.4 -
HowToCaption [59] 32.2 46.4 15.9
MA-LMM [23] 33.4 51.0 17.6

HierarQ 35.1 51.2 18.1

Table 11. Ablation of different temporal modeling techniques.

Method #Frame #Token GPU LVU Breakfast
Concat 60 1920 53.1 65.1 94.2

Avg Pool 100 32 25.9 60.3 84.0
ToMe [6] 100 200 26.6 65.6 95.7

Ours 100 32 22.4 67.9 97.4

tial levels. Table 12 compares the performance of com-
pressing the long-term memory bank at different spatial lev-
els: frame-level and token-level, on the LVU and Break-
fast datasets. In frame-level compression, cosine similar-
ity is calculated between adjacent frame features, and fea-
tures with the highest similarity are averaged. In token-
level compression, cosine similarity is computed between
tokens at the same spatial location across the entire tempo-
ral axis, leveraging the fact that each frame feature com-
prises multiple spatial tokens. We hypothesize that token-
level compression preserves finer spatial details compared
to frame-level compression. Proving our hypothesis, the re-
sults demonstrate that token-level compression consistently
outperforms frame-level compression, supporting its ability
to retain more detailed spatial information.
Feature modulation method ablation. To assess the task-
aware feature modulation method’s effectiveness, we con-
ducted experiments using a randomly sampled subset of
the LVU dataset’s content-understanding videos, constitut-

Table 12. Long-term memory bank compression strategy.

Spatial Level LVU Breakfast
Frame-level 63.5 94.8
Token-level 67.9 97.4

ing 50% of the test set. We perform evaluation in two se-
tups: frozen frames and out-of-distribution (OOD) frames.
In the frozen frames setup, a single frame from each clip is
repeated 10 times, testing the modulator’s ability to iden-
tify task-relevant frames despite redundancy. In the OOD
frames setup, 10 frames in each clip are replaced with
frames from a randomly chosen sports video from YouTube
1, simulating irrelevant content to evaluate the modulator’s
filtering capabilities. Samples for both setups are shown in
Figure 9.

We compare two modulation methods: CLIP scoring
[52] and multi-headed attention. In the CLIP-based ap-
proach, frame relevance is scored and weighted against the
text prompt, with higher scores indicating stronger rele-
vance. As shown in Figure 10, the attention-based method
outperforms CLIP scoring by better bridging the perfor-
mance gap in both setups, demonstrating superior efficiency
in filtering task-relevant frames and maintaining high per-
formance across LVU dataset’s all content understanding
categories.
Effect of increasing the number of irrelevant frames. To
further evaluate the impact of irrelevant frames on perfor-
mance, we conducted experiments using the same randomly
sampled subset of the LVU dataset’s content-understanding
videos as before. We maintained the original video length
while introducing out-of-distribution (OOD) frames to ex-
tend the total duration of the video. We added OOD frames
under four duration setups: 1.5 minutes, 3 minutes, 6 min-
utes and 9 minutes. These OOD frames were inserted in

1Youtube link of OOD sample.
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Figure 9. Sample frames from original video with irrelevant frames synthetically introduced to it for evaluating the effectiveness
of the task-aware feature modulator. Here, the top sample shows the frozen frames setup and the bottom sample shows the OOD frames
setups. The red and blue boxes respectively denote the frozen and OOD frames.
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Figure 10. Ablation of different feature modulation methods on LVU dataset. Here, left y axis shows accuracy drop (∆) between original
and frozen/OOD frames and right y axis shows accuracy of original, frozen and OOD frames. Across all categories the attention mechanism
bridges the performance gap more effectively than CLIP scoring while consistently getting high accuracy showing the effectiveness of the
selected feature modulation method.
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Figure 11. Effect of increasing the number of irrelevant
frames. Here, y-axis denotes performance with irrelevant (OOD)
frames inserted in different variations and x-axis denotes duration
of OOD video where 0 denotes no OOD frames being inserted,
e.g. original video.

three variations: at the beginning, at the end, and in the
middle of the video.

As shown in Figure 11, the performance drop saturates
even with an increasing number of OOD frames. This in-
dicates that our feature modulator effectively filters out ir-
relevant information, thus helping HierarQ to maintain high
performance despite the increased irrelevant video length.
Furthermore, the position of OOD frames (beginning, mid-
dle, or end) shows neither significant nor conclusive im-
pact on performance, demonstrating the robustness of our
framework in modeling long-term temporal relationships ir-
respective of the position of irrelevant frames.

Effect of number of layers in the feature modulator. To
assess the impact of varying the number of cross-attention
layers in the task-aware two-stream feature modulators, we
present the ablation results in Figure 12. The results indi-
cate that increasing the number of layers initially improves
performance, as more layers can model nuanced relation-
ships effectively. Performance peaks at 2 layers for both
LVU and Breakfast datasets, suggesting this is the optimal
point for capturing task-relevant interactions without over-
fitting. Beyond 2 layers, performance plateaus and declines
after 4 layers due to overfitting and diminishing returns, es-
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Figure 12. Effect of number of layers in the feature modula-
tors. Here, the marker size denotes the number of parameters.

Table 13. Performance comparison of different LLMs. Here
we report the top-1 accuracy for LVU and Breakfast and global
accuracy for MovieChat-1k.

LLM Size LVU Breakfast MovieChat-1k
FlanT5-XL 3B 66.0 95.2 86.7
LLaMA-2 7B 67.3 97.1 87.2

Vicuna 7B 67.9 97.4 87.5

pecially as parameter count increases. The choice between
2 and 4 layers presents a trade-off: while 4 layers offer a
marginal improvement on LVU, the linear increase in pa-
rameter count makes this configuration less efficient. There-
fore, we adopt the 2-layer architecture as it strikes the best
balance between performance and computational efficiency.
Choice of LLM. Our model supports various LLM ar-
chitectures. To identify the best performer, we evaluated
three popular LLMs: FlanT5-XL [15], LLaMA-2 [68], and
Vicuna-7B [90]. As shown in Table 13, Vicuna-7B achieves
slightly better performance than the others.
Robustness of entity guided feature modulator. Entities
are extracted using POS tagging (NN, NNS, NNP, NNPS)
with Python’s NLTK library, covering all common and
proper nouns. HierarQ uses long-term relationship mod-
eling to focus on relevant entities. In tasks like video cap-
tioning, generic nouns (e.g., “video”) serve as entities, en-
abling the entity-guided feature modulator to process the
entire video (Figure 13). If no entities are present, the mod-
ulator returns raw frame features to the short-term memory
bank ensuring adaptability. For multiple non-distinguishing
entities (Figure 12 in supplementary), the modulator pro-
cesses all, while HierarQ prioritizes relevant relationships
using the scene stream and long-term memory.
Motivation for a two stream architecture. The main
motivation of the two-stream approach is to capture fine-
grained entity details within a short context window sep-
arately from the broader scene-level understanding. The
two streams complement each other (Table 6) by prevent-
ing key-information loss and effective extended temporal

relationship modeling. Since actions are inherently tied
to entities, the entity stream captures not only the entities
but also their interactions within its focus window, and the
scene stream situates those interactions in a global context.
While a verb-focused stream is an interesting idea, testing
its inclusion resulted in similar performance (0.53% drop
on MSRVTT-QA) to the two-stream architecture.

For medium to long-context understanding, key infor-
mation may be scattered across time and at risk of being
lost due to memory constraints. While the scene-stream is
based on the full prompt and captures global context, it risks
losing crucial short-term entity-level details over extended
time. The entity-stream mitigates this by providing entity-
specific information within a shorter temporal window as
a complementary signal (Table 6). Moreover, since it only
focuses on entities in a short context, it is not over-crowded
by other irrelevant information that might be present within
that window. This balanced representation of local and
global information enhances understanding.

C. Qualitative Analysis
In Figure 14, we present a qualitative comparison of Hier-
arQ and MA-LMM on the long-video question answering
task using the MovieChat-1k dataset, which is the longest
dataset among our benchmarks. The results highlight Hier-
arQ’s superior task-aware video understanding capabilities
over MA-LMM. The two-stream task-aware feature mod-
ulator enables effective entity- and scene-level understand-
ing through its dual-stream design with dedicated memory
banks which further supports HierarQ to effectively model
the temporal relationship between short and long-term con-
texts.

For example, in the animal counting task, the entity-
guided feature modulator along with the short-term mem-
ory bank helps track entity-specific details (e.g. “animals”)
across frames, while the prompt-guided feature modulator
along with the long-term memory bank ensures continuity
and accurate aggregation of historical information, enabling
HierarQ to provide the correct answer. Similarly, the in-
terplay between the entity- and scene-level Q-Formers in-
side the HierarQ allows nuanced reasoning, as seen in the
“man in the boat” scenario, where HierarQ effectively mod-
els temporal relationships and historical context to deduce
the correct outcome.

In contrast, MA-LMM lacks task-awareness and treats
all frames equally, relying on coarse memory compression
that leads to errors in tasks requiring detailed and contextual
understanding. Even in tasks requiring whole-video analy-
sis, such as identifying the presence of animals or stars, Hi-
erarQ excels by leveraging its task-aware design and supe-
rior historical information retaining capability with the help
of two level of memory banks and hierarchical Q-formers.
HierarQ demonstrates a superior ability to understand the
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Q: What does the
video describe?

Ans: Two teams
are playing a
football game.

Figure 13. Qualitative analysis of video captioning on MSRVTT. Here, generic nouns (e.g., “video”) serve as entity and thus the entity
guided feature modulator highlights the entire video.

Question: The main character is
man or woman? 

 HierarQ: man    MA-LMM: woman

Question: Where does the man in
the boat finally go?

HierarQ: through a door
MA-LMM: outside

Question: Is it day or night? 
Question: Are there more than

five kinds of animals? 

  HierarQ: Yes       MA-LMM: No HierarQ: day    MA-LMM:night

Question: Are there any animals? Question: Do stars appear?

HierarQ: No     MA-LMM: YesHierarQ: Yes      MA-LMM: No 

Figure 14. Qualitative analysis of long-video question answering on MovieChat-1k. Here, HierarQ adaptively focuses on task-relevant
video segments, achieving a task-aware, comprehensive understanding. Color-coded frames are shown to demonstrate how entity-focused
information complements the broader prompt-relevant context, enhancing overall video relevance and understanding.

video by analyzing it holistically, effectively identifying
semi-rare events such as the appearance of the whale, which
occurs only a few times. In contrast, MA-LMM might

be missing out that information due to coarse compression
across longer timeline without task awareness. Addition-
ally, HierarQ accurately detects the absence of stars, avoid-
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Ans: 6
  GT: 8  

Q: How many
people does
each team
have?

Ans: 2
  GT: 3  

Q: How many
people are
sitting in a

line?

Figure 15. Qualitative results of failure cases on ActivityNet-QA.

ing the potential bias in MA-LMM that associates the pres-
ence of Earth with stars due to its focus on the planet’s view
from space. By leveraging task-aware modulation, a hierar-
chical Q-Former, and memory integration, our framework
dynamically models both short- and long-term temporal re-
lationships, enabling a more accurate and comprehensive
understanding of videos.

On the contrary, Figure 15 highlights HierarQ’s mispre-
dictions due to ambiguous spatial arrangements.

D. Additional Implementation Details

Table 14 outlines the architectural details of our framework.
The hidden size of the feature modulators is aligned with the
ViT’s hidden size to ensure compatibility. Similarly, the ad-
ditional attention submodules in the Scene-level Q-Former
of HierarQ maintain the same number of attention heads
and hidden size as the previous layers for consistency.

Table 15 provides the hyperparameter details of the train-
ing setup. Across all experiments, we employ cosine learn-
ing rate decay, and the frozen ViT and LLM components are
converted to FP16 precision to optimize performance. For
evaluation, we adhere to standard protocols across datasets
following [23]. We use 100 frames as input for all datasets.
The train-test split for all dataset is presented in Table 16.
One sample prompt for GPT-3.5-assisted evaluation is il-
lustrated in Figure 16) which is used in long-video QA task
evaluation.

E. Future Work

Future work could focus on developing dynamic memory
management strategies that prioritize frames and scenes
based on task relevance. By introducing adaptive mem-
ory update mechanisms, it would be possible to selectively
compress or discard less relevant information, optimizing
memory usage while maintaining performance. For exam-
ple, task-aware memory filters could assess the importance
of incoming features and dynamically decide whether to
store or discard them, allowing the model to concentrate
on the most critical temporal or spatial details. To further
improve scalability and reduce inference time, processing

Table 14. Architectural details.

Hyper-parameters
Task-aware Feature Modulator
Entity-guided Prompt-guided

# of layers 2 2
# of attention heads 8 8
Hidden size 1408 1408

Hyper-parameters
HierarQ

Entity-level Scene-level
# of layers 12 12
# of attention sub-modules 2 4
# of attention heads 12 12
Hidden size 768 768
Cross attention frequency 2 2
# of output query tokens 32 32
Memory bank length 10 10

Table 15. Hyper-parameters for training.

Hyper-parameters Value
Patch size 14× 14
Frame resolution 224× 224
Training epoch 20
Batch size 32
Learning rate 1e-5
Weight decay 0.05
AdamW β [0.9, 0.999]
LoRA rank 32
Beam size 5

videos in smaller chunks and modeling inter-chunk rela-
tionships through advanced techniques such as hierarchical
attention or transformer-based methods could be explored.
These enhancements would aim to improve the efficiency
and effectiveness of video analysis tasks across various do-
mains.
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  openai.ChatCompletion.create(
         model = "gpt-3.5-turbo",
         message = [
        {
           "role": "system",
           "content": 
            "You are an intelligent chatbot designed for evaluating the correctness of generative 
      outputs for question-answer pairs."
      "Your taks is to compare the predicted answer with the correct answer and determine 
      if they match meaningfully. Here's how you can accomplish the task:" 
      "-------"
      "## INSTRUCTIONS:"
      " - Focus on the meaningful match between the predicted answer and the correct     
      answer. \n"
      " - Consider synonyms and paraphrases as valid matches. \n"
      " - Evaluate the correctness of the prediction compared to the answer."
        },
        {
           "role": "user",
           "content":
             "Please evaluate the following video-based question-answer pair: \n\n"
     f"Question: {question}\n"
     f"Correct Answer: {answer}\n"
     f"Predicted Answer: {pred}\n"
      "Provide your evaluation only as a yes/no and score where the score is an integer
      value between 0 and 5, with 5 indicating the highest meaningful match. "
      "Please generate the response in the form of a Python distionary string with keys 
      'pred' and 'score', where value of 'pred' is a string of 'yes' or 'no' and value 
      of 'score' is an INTEGER, not STRING."
      "DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python
      dictionary string."
      "For example, your response should look like this: {'pred': 'yes', 'score': 4.8}."
        }
    ]    
  )

Figure 16. Prompt for GPT 3.5 assisted evaluation for the long-video question answering task.
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Table 16. Dataset statistics. Here QA pairs denote question-
answer pair only applicable for video question answering task.

Dataset Split # Videos # QA pair
Task: Video Understanding

LVU
train 6927 -

validation 1477 -
test 1394 -

Breakfast train 8451 -
test 2816 -

COIN train 9030 -
test 2797 -

Task: Video Question Answering

MSRVTT-QA
train 6513 158581

validation 2990 12278
test 497 72821

MSVD-QA
train 1200 30933

validation 250 6415
test 520 13157

ActivityNet-QA
train 3200 32000

validation 1800 18000
test 800 8000

MovieChat-1k
train 800 10400

validation 100 1300
test 100 1300

Task: Video Captioning

MSRVTT
train 6513 -

validation 2990 -
test 497 -

MSVD
train 1200 -

validation 250 -
test 520 -

YouCook2
train 1333 -

validation 457 -
test 210 -
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