Three Cars Approaching within 100m! Enhancing Distant Geometry by
Tri-Axis Voxel Scanning for Camera-based Semantic Scene Completion

Supplementary Material

A. Dataset and Metric

Dataset. We evaluate ScanSSC on SemanticKITTI [1]
and SSCBench-KITTI-360 [10] datasets. SemanticKITTI
is derived from the KITTI Odometry [3] benchmark,
consisting of 22 outdoor scenes captured by LiDAR scans
and stereo images. These 22 scenes are split into 10
training scenes, 1 validation scene, and 11 test scenes. The
ground truth voxel grids have dimensions of 256 x256x32,
with each voxel measuring (0.2m, 0.2m, 0.2m), annotated
with 21 semantic classes (19 semantics, 1 empty and 1
unknown). SSCBench-KITTI-360 is extracted from the
KITTI-360 [11], comprising 7 training scenes, 1 validation
scene, and 1 test scene. It includes 19 semantic classes (18
semantics and 1 free).

Metric. Following standard practices in related works [0,
7,9, 17], we use the mean Intersection over Union (mloU)
to assess the overall performance of semantic scene com-
pletion (SSC) and Intersection over Union (IoU) to evaluate
the performance of semantic-agnostic scene completion.

B. More Details

Implementation Details. We train ScanSSC for 25 epochs
on 4 NVIDIA A6000 GPUs with a batch size of 4. The
AdamW optimizer [12] is used with 81 = 0.9, B2 = 0.99,
and a maximum learning rate of 3 x 10~%. For the learning
rate schedule, we employ a multi-step scheduler, reducing
the learning rate by a factor of 0.1 at the 20™ epoch.

Architectural Details. Similar to related works [2, 5, 16,
17], we employ a 2D UNet image encoder built upon a
pretrained EfficientNetB7 [15]. Following previous stereo-
based methods [6, 9, 17], we utilize the MobileStere-
oNet [14] as the depth estimator. In the viewing transfor-
mation, we adopt the depth network from CGFormer [17],
which modifies the BEVDepth [8]. There are 3 deformable
attention layers for cross-attention and 2 for self-attention,
with 8 sampling points per reference point in both heads.
The spatial mixing network consists of 3 stages, each with
2 residual blocks [4].

C. Computational Cost

We report the computational cost of ScanSSC compared to
CGFormer [17] in Tab. C.1. ScanSSC shows competitive
efficiency, with only a slight increase in parameters and in-
ference time. However, it achieves notable performance im-

provements, with a 0.13 increase in IoU and a 0.77 increase
in mloU on the SemanticKITTI test set, highlighting the ef-
fectiveness of our method.

Method | Params (M) Inference Time (ms) | IoU mloU
CGFormer 122 566 4441 16.63
ScanSSC 145 674 44.54 17.40
Table C.1. Comparison of computational costs with CG-

Former [17]. The inference time for a single sample of Se-
manticKITTI [1] validation set is measured on 1 NVIDIA A6000
GPU.

D. Additional Ablation Studies

We provide additional ablation studies to evaluate the ef-
fectiveness of the subcomponents of ScanSSC. Consistent
with the manuscript, all experiments are conducted on the
SemanticKITTI [1] validation set.

Ablation Study of Tri-Feature Fusion Methods. @ We
perform an ablation study to demonstrate the validity
of ScanSSC’s tri-feature fusion method by replacing it
with three alternative methods, one at a time (Tab. D.1).
‘Concat—Linear’ denotes the concatenation of the three
axis-specific features along the channel dimension, fol-
lowed by a linear layer to directly compute the output fea-
ture. ‘Average’ refers to an element-wise average of the
three features, while ‘Weighted Sum’ denotes a weighted
summation of the three features using voxel-wise learnable
parameters L € RX XY xXZ%3 We observe that the proposed
tri-feature fusion method results in a significantly higher
mloU value than the three alternative methods, demonstrat-
ing the effectiveness of voxel-wise adaptive fusion of axis-
specific features.

Method IoU mloU
Concat — Linear 45.90 16.32
Average 46.17 16.51
Weighted Sum 45.90 16.28
Tri-Feature Fusion 45.95 17.12

Table D.1. Ablation study on the tri-feature fusion method of
ScanSSC.

Loss Scaling Coefficient for Scan Loss. We conduct an
ablation study on the loss scaling coefficient of the Scan
Loss, Lscans as shown in Fig. D.1. When the coefficient is



set to 1, the highest mIoU score of 17.12 is observed, while
it decreases as the coefficient moves further from 1 overall.
We find that the training mIoU consistently increases pro-
portionally with A4, throughout the entire training. From
this result, we infer that an excessively high value of A\s.qp,
can lead to overfitting of the model, highlighting the impor-
tance of selecting an appropriate scaling coefficient.
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Figure D.1. Performance comparison by loss scaling coefficient
for Scan Loss.

Scan Loss vs. General Cross-Entropy. Since the proposed
Scan Loss is equivalent to the cross-entropy [18] of the cu-
mulatively averaged logit, incorporating it can be seen as
analogous to either modifying the distribution of the loss co-
efficient for the existing voxel-wise cross-entropy or simply
increasing its scale. Hence, we compare the performance of
ScanSSC when it is substituted with a simple coefficient ad-
justment for the voxel-wise cross-entropy loss, as shown in
Tab. D.2. For (a), to assign higher weights to distant voxels,
we first generate a bilinearly interpolated weight along each
axis, ranging from O to 1 in the corresponding near-to-far
direction, then use the average of these weights as the coef-
ficient for the existing cross-entropy loss (A;;). For (b), we
simply apply a higher scalar weight (A..) to the voxel-wise
cross-entropy loss. Here, we set A.. to 10, as the converged
loss scales of both methods are similar.

Method TIoU mloU
(a) )‘tri[*c,c 46.15 16.50
() AceLee 45.04 16.74
Lee + Lscan (Ours) 45.95 17.12

Table D.2. Performance comparison between incorporating Scan
Loss and adjusting the coefficient for voxel-wise cross-entropy
loss [18]. The other training losses remain unchanged during train-
ing.

Comparing with (a), we observe that Scan Loss sig-
nificantly enhances mloU by leveraging the semantic
distribution of previous voxels to transmit signals to the
target voxel. This demonstrates that instead of merely
assigning higher weights to distant voxels, utilizing the
semantic distribution of previous voxels to propagate

signals more effectively is a superior approach. In addition,
when compared to (b), the result demonstrates that the
simple increase in the weight of the existing cross-entropy
does not lead to performance improvement, as it results in
significantly lower IoU and mloU scores.

Ablation Study of Subsidiary Components. We conduct
additional experiments to validate the importance of the
subsidiary components, the spatial mixing network, and tri-
feature fusion. Since tri-feature fusion can not be removed
entirely, we replace it with “Concat—Linear” which is rep-
resented in Tab. D.1. As shown in Tab. D.3, the spatial mix-
ing network and tri-feature fusion contribute to performance
improvement, demonstrating that enhancing regional spa-
tial patterns and adaptively fusing features are effective.

Method | Spatial-mixing net. Tri-feature fusion | IoU mloU
(@) 4491 15.90
(b) v 4590 16.32
(c) v 45.08 16.11

ScanSSC v v 4595 17.12

Table D.3. Ablation study on the subsidiary components of the
ScanSSC.

Ablation Study of Using Tri-Axes Features. To demon-
strate the validity of using features from all three axes, we
visualize and compare the results obtained using features
from each axis with those obtained through ScanSSC.
The results obtained using each axis individually are
represented as ‘Depth Only,” ‘Width Only,” and ‘Height
Only, and are shown in Fig. D.2. Overall, ScanSSC,
which utilizes features from all three axes, demonstrates
significantly more plausible results. Using features from
only a single axis tends to result in inaccurate predictions
for distant vehicles, side road areas, and occluded objects.
In contrast, ScanSSC, which combines features from all
three axes, achieves significantly more reliable and accu-
rate predictions. We hypothesize that this improvement
arises from the complementary nature of features from
each axis, which together enable a more comprehensive
understanding of the entire scene.

E. Analysis

Quantitative Result for Distant Geometry. This study
aims to improve the overall reconstruction in distant re-
gions. To support this, quantitative analysis results are pre-
sented in Tab.2 of the manuscript. Additionally, for a more
detailed analysis, Tab. E.1 provides group-wise mloU for
distant 1/2 regions along each axis (1/4 on both sides for
the width axis), following the categorization from the offi-
cial SemanticKITTI [1] website.

This result highlights ScanSSC’s effectiveness in distant
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Figure D.2. Visualization and comparison of the results of applying the Scan Module and Scan Loss to each individual axis and ScanSSC

on the SemanticKITTI [1] validation set.

Large class group Small class group
Method Axis Ground Structure Nature Total | Vehicle Human Object Total

CGFormer | Dep.  24.87 17.66 19.57 2198 | 6.92 0.07 2.86 3.95
ScanSSC | Dep.  26.29 17.89 19.23  22.60 | 7.03 0.19 319 411
CGFormer | Wid. ~ 14.23 15.81 1651 1528 | 1.24 0.15 .35 097
ScanSSC | Wid.  16.26 14.65 1596 1595 | 1.39 0.57 149 119
CGFormer | Hgt.  29.90 23.15 25.73 2749 | 1323 2.79 6.73  8.61
ScanSSC | Hgt.  31.69 21.50 2591 28.25| 13.78 3.44 711 914

Table E.1. Per-group mloUs on the SemanticKITTI [1] validation
set.

regions, demonstrating its superior performance on both
large and small geometries, particularly outperforming
CGFormer [17] in all small class groups.

Analysis of the Non-Axis-Aligned Cases. Since the
proposed Scan Module and Scan Loss operate axis-wise,
ScanSSC is effective in most axis-aligned driving sce-
narios, as demonstrated by the qualitative results in the
manuscript. However, this raises the question of whether
ScanSSC’s operation might be less effective in non-axis-
aligned scenes. To investigate this, we conduct addi-
tional evaluations of ScanSSC in non-axis-aligned scenar-
ios. Since the SemanticKITTI benchmark dataset does not
explicitly categorize curve road scenes, we manually clas-

sify these cases. Numerically, ScanSSC significantly out-
performs CGFormer, achieving a mloU of 14.56 and an
IoU of 42.38, compared to CGFormer’s 13.77 and 41.96.
As shown in Fig. E.1, ScanSSC performs comparably over-
all without side effects. Specifically, its performance is on
par for small objects; however, it reconstructs roads signifi-
cantly better in distant regions.

Analysis of the Various Scene Conditions. We con-
duct additional analyses to demonstrate the superiority of
ScanSSC under various conditions (e.g., shadow, occlu-
sion). Since existing benchmark datasets for SSC do not
categorize various environments, we manually filter shady
and highly occluded scenarios from the RGB images of the
SemanticKITTI dataset.

As shown in Fig. E.2, in the shady scenario, ScanSSC
clearly distinguishes both nearby and distant vehicles cov-
ered by shadows, whereas CGFormer fails to do so. In addi-
tion, in the occluded scenario, ScanSSC effectively recon-
structs the right-side road obscured by nearby vehicles and
accurately identifies distant cars that are partially occluded.
These results demonstrate ScanSSC’s robustness across di-
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Figure E.1. Visualization results of the non-axis-aligned cases of CGFormer [17] and ScanSSC on the SemanticKITTI [1] validation set.
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Figure E.2. Visualization results of CGFormer [17] and ScanSSC under various conditions (e.g., shadow, occlusion) on the Se-
manticKITTI [1] validation set.

verse and challenging scenes.
F. Additional Qualitative Results

We present additional qualitative comparisons with Vox-
Former [9] and CGFormer [17], as visualized in Fig. F.1.
These results are randomly selected from the Se-
manticKITTI [1] validation set.

G. Pytorch-like Pseudocode of Scan Module
and Scan Loss

To facilitate a comprehensive understanding of the pro-
posed Scan Module and Scan Loss, we present the PyTorch-
like [13] pseudocode for each in Algorithm G.1 and Algo-
rithm G.2, respectively.
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Figure F.1. More qualitative comparison results on the SemanticKITTI [1] validation set.



Algorithm G.1 PyTorch Style Pseudocode of Scan Module.

import torch
import torch.nn as nn

class ScanModule (nn.Module) :
def _ _init__ (self, dim):
# declare axis-specific Scan Blocks
self.dep_block = ScanBlock (dim)
self.wid_block = ScanBlock (dim)
self.hgt_block = ScanBlock (dim)

def forward(self, x): Algorithm G.2 PyTorch Style Pseudocode of L4, -

X, Y, Z_, C = x.size()
x_dep = x.permute(l, 2, 0, 3).flatten(0,1)

x_wid = x.permute(0, 2, 1, 3).flatten(0,1) import torch
x_hgt = x.flatten(0,1) import torch.nn.functional as F
# axis-specific masks def ScanLoss (logit, target):
dep_attn_mask = P, X_, Y_, Z_ = logit.size()
torch.triu(torch.ones(X_, X_), diagonal=1l)==1 # back to front
dep_attn_mask([:, :X_//2] = False cum_x = torch.cumsum(logit.flip( (1)), axis=1)
# depth-axis margin region # sides to center
wid_attn_mask = torch.tril( cum_y_1 = torch.cumsum(logit([:Y_//2], axis=2)
torch.ones(Y_//2, Y_//2), diagonal=-1)== cum_y_r = torch.cumsum(logit[Y_//2:].£flip((2)), axis=2)
wid_attn_mask = torch.cat ((wid_attn_mask, cum_y = torch.cat([cum_y_1, cum_y_r], dim=2)
wid_attn_mask.flip(dim=[-1])), dim=-1) # bottom to top
wid_attn_mask = torch.cat ((wid_attn_mask, cum_z = torch.cumsum(logit, axis=3)
wid_attn_mask.flip(dims=[-2])), dim=0)
wid_attn_mask([:, Y_//4:-(Y_//4)] = False # to logit value scaling
# width-axis margin region cum_x /= torch.arange(l, X_+1)
hgt_attn_mask = cum_y /= torch.arange(l, Y_+1)
torch.tril (torch.ones (Z_), diagonal=-1)==1 cum_z /= torch.arange(l, Z_+1)
# axis-wise voxel scanning # same with logits
x_dep = self.dep_block (x_dep, dep_attn_mask) X_, Y_, Z_ = target.size()
x_wid = self.wid_block(x_wid, wid_attn_mask) target = F.one_hot (target) .permute(3,0,1,2)
x_hgt = self.hgt_block (x_hgt, hgt_attn_mask) cum_x_t = torch.cumsum(target.flip((1)), dim=1)
cum_y_1_t = torch.cumsum(target[:Y_//2], dim=2)
x_dep = cum_y_r_t = torch.cumsum(target[Y_//2:].£flip((2)),
x_dep.reshape(Y_, Z_, X_, C).permute(2, 0, 1, 3) dim=2)
x_wid = cum_y_t = torch.cat([cum_y_1 t, cum_y_r t], axis=2)

x_wid.reshape(X_, Z_, Y_, C).permute(0, 2, 1, 3) cum_z_t = torch.cumsum(target, dim=3)
x_hgt = x_hgt.reshape(X_, Y_, Z_, C)
cum_x_t /= torch.arange(l, X_+1)
return x_dep, x_wid, x_hgt cum_y_t /= torch.arange(l, Y_+1)
cum_z_t /= torch.arange(l, Z_+1)
class ScanBlock (nn.Module) :

def _ init__ (self, dim): L_scan_x = F.cross_entropy(cum_x, cum_x_t,
self.norml = nn.LayerNorm(dim) reduction="mean')
self.masked_sa = nn.MultiheadAttention (dim) L_scan_y = F.cross_entropy(cum_y, cum_y_t,
self.norm2 = nn.LayerNorm (dim) reduction="mean')
self.ffl = nn.Linear (dim, dimx2) L_scan_z = F.cross_entropy(cum_z, cum_z_t,
self.activation = nn.RelLU() reduction="mean')
self.ff2 = nn.Linear (dimx2, dim) L_scan = L_scan_x + L_scan_y + L_scan_z

def forward(self, x, attn_mask): return L_scan

B, L_, C = x.size()

# Masked Self-Attention

x_norml = self.norml (x)

x = x + self.masked_sa(x_norml, x_norml, x_norml,
attn_mask = attn_mask)

# Feed Forward Network
x_norm2 = self.norm2 (x)

x = x + self.ff2(self.activation(self.ffl (x_norm2)))

return x
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