
TADFormer: Task-Adaptive Dynamic TransFormer for Efficient Multi-Task
Learning

Supplementary Material

In the supplementary material, we provide more compre-
hensive results as follows.
• More results using other backbone, pretraining dataset,

and decoders
• Analysis on computational efficiency
• TADFormer on adapter-based methods

6. More Results
6.1. TADFormer using other Backbone and Pre-

training Dataset
Extending the experiment in Fig. 8, we evaluated the per-
formance of TADFormer using larger pretraining dataset
and backbone. As shown in Fig. 9, using the larger pre-
training dataset improves performance significantly. Simi-
larly, using the larger backbone, such as Swin-B, also re-
sulted in improved performance. It is worth of noting that
the higher relative improvement is achieved when the larger
back (Swin-B) or training dataset (ImageNet-22k) are used.
These results support the effectiveness of our approach,
considering that the performance of single-task fine-tuning,
which was used to compute the relative performance im-
provement, also improves. This demonstrates that TAD-
Former is the scalable method that can effectively adapt to
backbones and pretraining datasets of varying sizes.

6.2. TADFormer using Other Decoders
We further evaluated the performance of TADFormer in
combination with other decoders. We also compared it with
the performance of MTLoRA when using the same decoder.
Various decoders commonly used in dense prediction tasks
were adopted, including HRNet [42], SegFormer [47], and
Atrous Spatial Pyramid Pooling (ASPP) [6]. The Swin-T
pretrained on ImageNet-22k was used as the encoder. As
shown in Table 3, TADFormer demontrates superior multi-
task learning performance with fewer trainable parameters
compared to MTLoRA across all decoder configurations,
confirming that our method is flexible and can be integrated
with various decoder architectures. Additionally, ASPP
shows the best performance as the decoder with the largest
number of trainable parameters, indicating that the choice
of decoder enables for an effective trade-off between the
performance and the number of trainable parameters.

7. Analysis on Computational Efficiency
Fig. 10 shows the analysis on the computational efficiency
in terms of GFLOPs and the number of trainable parameters

0

1

2

3

4

5

6

TADFormer (r=32) TADFormer (r=64)

R
el

a
ti

v
e
 I

m
p

ro
v
em

en
t 

to
 

S
in

g
le

-T
a
sk

 F
in

e 
T

u
n

in
g
 (

%
)

ImageNet-1k ImageNet-22k

(a) ImageNet-1k vs ImageNet-22k

0

1

2

3

4

5

6

7

8

TADFormer (r=32) TADFormer (r=64)

R
el

a
ti

v
e
 I

m
p

ro
v

em
en

t 
to

 

S
in

g
le

-T
a

sk
 F

in
e 

T
u

n
in

g
 (

%
)

Swin-T Swin-B

(b) Swin-T vs Swin-B

Figure 9. (a) illustrates the performance difference when using
Swin-T pretrained on ImageNet-1k and ImageNet-22k as the back-
bone of TADFormer. (b) illustrates the performance variation of
TADFormer when employing Swin-T and Swin-B, both pretrained
on ImageNet-1k.

with respect to the number of tasks. The GFLOPs for both
MTLoRA and TADFormer are directly measeured in this
experiment. Compared to MTLoRA [1], TADFormer re-
quires slightly more GFLOPs but significantly fewer train-
able parameters. This is because the TCP-operator in TAD-
Former does not require additional parameters, but instead
needs additional computation for extracting task-adapted
features, and DTF requires additional operations for param-
eter generation. While TADFormer has a marginal increase
in GFLOPs, the substantial reduction in trainable parame-
ters demonstrates its scalability and suitability for efficient
multi-task learning scenarios, especially as the number of
tasks increases. This trade-off indicates the efficiency of
TADFormer in balancing training complexity and parame-
ter optimization.



Table 3. Performance comparison with other decoders: For the encoder, we use TADFormer (r = 32) and MTLoRA (r = 32) with the
Swin-T backbone pretrained on ImageNet-22k.

Model SemSeg Human Parts Saliency Normals
∆m(%)

Trainable Param. (M)
Method Encoder Decoder (mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) Decoder / All

MTLoRA [1] Swin-T
HRNet [42] 69.44 61.08 63.24 16.47 +2.93 1.94 / 6.08

SegFormer [47] 69.59 61.13 63.74 16.62 +3.00 2.08 / 6.22
ASPP [6] 72.32 60.98 63.04 16.51 +3.83 12.44 / 16.58

TADFormer Swin-T
HRNet [42] 72.05 61.6 65.45 16.7 +4.67 1.94 / 4.78

SegFormer [47] 72.33 61.16 65.8 16.87 +4.51 2.08 / 4.91
ASPP [6] 73.66 60.37 65.27 16.43 +5.09 12.44 / 15.27

Table 4. Performance comparison with Adapter-based PEFT Methods: In the adapter-based PEFT, the input feature is down-projected
and up-projected within the adapter (d → r → d), where d is the dimension of an input feature and r is the dimension of hidden layer,
which is also called rank. In our experiments, we consider two types of projection dimensions: 1) ρ = d

r
denotes the down-projection ratio

used in the adapter, 2) r = 64 denotes a fixed down-projected channel dimension. Additionally, ‘seq’ and ‘par’ indicate the sequential and
parallel configurations of the adapter with MLP module as shown in Fig. 11. This experiment demonstrates the performance of integrating
TADFormer with two adapter-based PEFT methods: AdaptFormer and VMT-Adapter. AdaptFormer uses a shared adapter structure for
all tasks. VMT-Adapter, similar to AdaptFormer, utilizes a shared adapter but additionally incorporates task-specific scaling and shift
operations. ∗ indicates that the results were reproduced by our implementation, as there is no code available. All results were obtained
using the Swin-T pre-trained on ImageNet-1k as in Table 1.

Index Method SemSeg Human Parts Saliency Normals
∆m(%)

Trainable
(mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) Parameters (M)

S Single Task 67.21 61.93 62.35 17.97 0 112.62
M1 MTL - Tuning Decoders Only 65.09 53.48 57.46 20.69 -9.95 1.94
M2 MTL - Full Fine Tuning 67.56 60.24 65.21 16.64 +2.23 30.06

A1 AdaptFormer (seq) [7] (ρ = 4) 69.01 58.2031 63.545 18.1676 -0.63 3.64
A2 AdaptFormer (par) [7] (ρ = 4) 55.28 50.63 60.51 18.55 -10.54 3.64
A3 AdaptFormer (seq) [7] (r = 64) 68.84 57.84 63.57 18.46 -1.23 3.12
A4 AdaptFormer (par) [7] (r = 64) 55.18 50.39 60.36 18.78 -11.06 3.12

AO1 AdaptFormer+Ours (seq) (ρ = 4) 72 59.62 64.94 17.4 2.69 4.48
AO2 AdaptFormer+Ours (par) (ρ = 4) 61.41 52.93 62.88 17.57 -5.02 4.48
AO3 AdaptFormer+Ours (seq) (r = 64) 71.74 58.56 64.38 17.52 1.76 3.67
AO4 AdaptFormer+Ours (par) (r = 64) 60.37 52.18 62.46 17.83 -6.25 3.67

V1 VMT-Adapter (seq)∗ [49] (ρ = 4) 68.98 58.44 63.43 18.26 -0.71 3.65
V2 VMT-Adapter (par)∗ [49] (ρ = 4) 55.4 50.98 60.45 18.5 -10.32 3.65
V3 VMT-Adapter (seq)∗ [49] (r = 64) 68.8 58 63.59 18.42 -1.12 3.14
V4 VMT-Adapter (par)∗ [49] (r = 64) 55.25 50.32 60.38 18.76 -11.03 3.14

VO1 VMT-Adapter+Ours (seq) (ρ = 4) 71.91 59.6 64.7 17.37 +2.59 4.49
VO2 VMT-Adapter+Ours (par) (ρ = 4) 60.89 52.59 62.58 17.57 -5.48 4.49
VO3 VMT-Adapter+Ours (seq) (r = 64) 71.7 58.72 64.64 17.57 +1.85 3.68
VO4 VMT-Adapter+Ours (par) (r = 64) 59.81 51.55 62.3 17.9 -6.87 3.68

8. TADFormer on Adapter-Based Methods

Experimental Setup. To analyze the extensibility of TAD-
Former into other PEFT methods, we experimented TAD-
Former with adapter-based methods [7, 49]. The compara-
tive analysis is shown in Table 4. The first column (Index)
identifies the structures of the modules used in the exper-
iments. The AdaptFormer [7] is the adapter-based PEFT
method for single task (A1−A4). The VMT-Adapter [49]
extends the Adapter for MTL in a way that employs the
task-shared adapter, similar to AdaptFormer [7], while ex-
tracting task-specific features through task-wise scaling and

shift operations (V1−V4). The experiments of the VMT-
Adapter were conducted by our implementation, as there
is no code available. We also implemented our method
on the AdaptFormer (AO1−AO4) and the VMT-Adapter
(VO1−VO4). ‘seq’ and ‘par’ indicate the sequential and
parallel configurations of the adapter with MLP module as
shown in Fig. 11. Please refer to the caption of Table 4 for
more details on ρ and r.

An example of applying our method, TADFormer, to the
AdaptFormer [7] is descirbed in Fig. 12 (AO2 or AO4).
This design allows the TADFormer module to be integrated
into adapter-based PEFT methods, taking into account both



0

5

10

15

20

25

30

35

40

45

1 Task 2 Tasks 3 Tasks 4 Tasks

G
F

L
O

P
s

MTLoRA(r=32) TADFormer(r=32)

(a) Comparison of GFLOPs between MTLoRA (r = 32) and TADFormer
(r = 32) with respect to the number of tasks.

0

1

2

3

4

5

6

7

1 Task 2 Tasks 3 Tasks 4 Tasks

T
ra

in
ab

le
 P

ar
am

et
er

s 
(M

)

MTLoRA(r=32) TADFormer(r=32)

(b) Comparison of the number of trainable parameters between MTLoRA
(r = 32) and TADFormer (r = 32) with respect to the number of tasks.

Figure 10. Efficiency of TADFormer with different number of
tasks: The experiments were run at the rank r = 32.

task and input contexts. This architecture can be applied to
both parallel and sequential configuration of adapters and
is equally applicable to other adapter-based method such as
VMT-Adapter [49].

In the following, we compared the existing adapter-
based methods [7, 49] with our method implemented on the
adapter framework. For a fair comparison, we evaluated the
performance for the cases with the similar amount of train-
able parameters, though the results of all possible combina-
tions are provided in Table 4. Our code on the adapter-based
experiments is submitted as supplementary material.
AdaptFormer vs. AdaptFormer with Ours. For a fair
comparison in terms of the number of trainable parameters,
we compared A1, A2 and AO3, AO4 that have comparable
numbers of trainable parameters. In both comparison, TAD-
Former demonstrated higher ∆m values when integrated
into both sequential and parallel configurations. This re-
veals that the application of TADFormer to AdaptFormer
results in an overall enhancement in MTL performance.
VMT-Adapter vs. AdaptFormer with Ours. As the

VMT-Adapter [49] is an extension of the AdaptFormer [7],
we applied our method to the AdaptFormer, and then com-
pared it with VMT-Adapter. To be specific, the model pro-
posed in [49] uses the down-projection ratio of ρ = 4 (V2).
For a fair comparison in terms of the number of trainable pa-
rameters, we compared it with the AdaptFormer combined
with TADFormer using r = 64 (AO4). This makes their
number of parameters comparable. In comparison, AO4
achieves a ∆m increase of 4.07 with only an additional 0.02
M trainable parameters compared to V2. The comparison
of V1 and AO3 also shows a similar tendency. This re-
sult demonstrates that the structure of TADFormer is more
effective for multi-task learning than the scaling and shift
operations used in the VMT-Adapter.

VMT-Adapter vs. VMT-Adapter with Ours. We also
compared V1, V2 with VO3, VO4, which have compara-
ble numbers of trainable parameters, demonstrating that the
performance has notably improved with only 0.3M increase
in trainable parameters. This suggests that even when the
adapter’s down-projection channel dimension is reduced to
reduce trainable parameters, the structure of TADFormer is
capable of efficiently and effectively extracting multi-task
representations.

To sum up, these results confirm that the TADFormer can
be successfully integrated into various adapter-based meth-
ods and is the scalable multi-task PEFT method, compatible
with both LoRA and adapter-based frameworks.

Table 5. Performance comparison with fully-tuned MTL mod-
els: The fully-tuned MTL models (Swin-B) and ours (Swin-L) use
different backbones, as these SOTA models need more parameters
on the task decoders.

Method SemSeg Human Parts Saliency Normals Entire Trainable
(mIoU ↑) (mIoU ↑) (maxF ↑) (rmse ↓) Params (M) Params (M)

Taskprompter (Swin) 78.82 65.68 84.73 14.26 218 218
MLoRE (Swin) 79.97 68.19 84.89 14.42 259 259

TADFormer (Swin) 78.03 69.25 78.68 16.09 219 24

Table 6. Additional ablation study on TADFormer

Method SemSeg Human Parts Saliency Normals
∆m(%)

Trainable
(mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) Params (M)

TADFormer (r=32) 70.2 60 65.71 16.57 3.63 4.78

Without Gating 70.56 59.72 65.41 16.78 3.23 4.78
Tuning PM 70.39 60.01 65.47 16.67 3.47 6.32

9. Significance of PEFT-based MTL methods
As the model size grows, training large-scale models for
downstream tasks has become resource-intensive even with
modern GPUs. Consequently, PEFT has been actively stud-
ied to reduce training complexity, which is especially bene-
ficial in more complex MTL models where multiple tasks
run simultaneously. To clarify the performance reported



…

…

…

…

𝐴

Adapter

LayerNorm

MLP

MLP

LayerNorm

Adapter

Sequential Parallel

Figure 11. Adapter configuration: Both sequential and parallel
configurations are possible in adapter-based PEFT framework [7].

…

…

…

…

𝐴

MLP

LayerNorm

Adapter DTF

down

up

TPC-
Operator

Adapter + TADFormer

Figure 12. Overview of Adapter + TADFormer in parallel adapter
configuration

Table 7. Results for rank=4, 8, and 16

Method SemSeg Human Parts Saliency Normals
∆m(%)

Trainable
(mIoU ↑) (mIoU ↑) (mIoU ↑) (rmse ↓) Params (M)

MTLoRA+ (r=4) 68.12 57.77 63.14 17.6 -0.52 2.57
MTLoRA+ (r=8) 68.54 58.3 63.57 17.41 +0.29 3.15

MTLoRA+ (r=16) 68.28 58.7 64.323 17.034 +1.19 4.29

TADFormer (r=4) 69.22 57.97 63.77 17.54 +0.31 2.68
TADFormer (r=8) 69.46 58.42 64.22 17.32 +1.07 2.97

TADFormer (r=16) 69.79 59.27 65.04 16.91 +2.44 3.56

in Table 1, we compare our method with fully-tuned MTL
models. The fully-tuned MTL models use a larger back-
bone (ViT-L), while ours uses Swin-T. An evaluation was
conducted with a similar number of parameters as shown
in Table 5, indicating that ours achieves comparable perfor-
mance only with 24M trainable parameters.

10. Additional ablation study on TADFormer
We conducted additional ablation studies on TADFormer.
As shown in Table 6, removing the stage-wise gating mod-
ule (Sec. 3.5) led to a performance drop of 0.4%. Addi-
tionally, fine-tuning the patch merging (PM) module (Sec.
3.6) does not lead to performance gain, while increasing the
number of trainable parameters (4.78M → 6.32M).

We experimented with different ranks in TADFormer.
As shown in Table 7, TADFormer consistently outperforms
MTLoRA+ [1] with fewer or a similar number of trainable
parameters.


	More Results
	TADFormer using other Backbone and Pre-training Dataset
	TADFormer using Other Decoders

	Analysis on Computational Efficiency
	TADFormer on Adapter-Based Methods
	Significance of PEFT-based MTL methods
	Additional ablation study on TADFormer

