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Supplementary Material

Here, we provide additional content to complement our
main paper. It includes more details of the method regard-
ing the diffusion denoiser in Section 6.1, and the algorithm
in Section 6.2. We then provide additional results comple-
menting our experiments. Specifically, we provide results
using other metrics in Section 7.1, bring an expanded set
of qualitative results in Section 7.2, demonstrate the bound
sizes per timestep in Section 7.3 and analyze the bounds
with adversarial attacks in Section 7.4.

6. Further details of the method
Here, we provide more details about the methodology of
the paper. We first elaborate on the diffusion denoiser, then
provide an algorithm for the method.

6.1. Diffusion denoiser
For the denoiser architecture, we used a simple model com-
prising four residual 1D convolution layers and two linear
layers with ReLU activation functions and dropout. This
model was then trained using the diffusion approach de-
scribed below.

At training time, given each input data x0, our diffusion
model selects a step t and then adds Gaussian noise with
zero mean and a pre-defined variance to the input to create
a noisier version x1. This process is repeated for t steps
resulting in a noisy xt:

q(xt|xt−1) = xt−1 +N (xt;
√

1− βtxt−1, βtI),

where q denotes the forward process, and βt is the variance
of the noise at step t, determined by a scheduler. We utilize
a linear noise scheduler in our denoiser. The network learns
to reverse the diffusion process and recover the clean signal
by predicting the cumulative noise added to xt.

At inference time, the model starts with a noisy input tra-
jectory xt. The step t is estimated according to the given
σ and the scheduler, and then model iteratively predicts
the less noisy signal, reducing the noise step-by-step to get
xt−1, xt−2, · · · until it obtains x0. This is achieved by sub-
tracting the additive noise learned during training from the
output of the previous step, ultimately recovering the origi-
nal signal.

6.2. Algorithm
Algorithm 1 provides a high-level overview of our method.
For an explanation of the notation used, refer to Section 3
of the paper.

Note that rescaling factors are applied at each step to match the ex-
pected variance of the diffusion model.

Algorithm 1 Smoothed Trajectory Prediction and its Certi-
fied Bounds

1: Input: Input trajectory X , number of Monte-Carlo
samples n, number of predictions k, aggregation oper-
ator A, trajectory predictor g, denoiser h, certification
radius R, hyperparameter σ, lower bounds {lj}, upper
bounds {uj}

2: Output: Certified trajectory prediction f̃(X), the cer-
tified bounds

3: procedure
4: Initialize an empty list arr to store predictions
5: for i = 1 to n do
6: ϵi ∼ N (0, σ2I) ▷ Acquire a sample from the

Gaussian distribution
7: Xi ← X + ϵi ▷ Generate perturbed inputs
8: f(Xi) = g(h(Xi)) ▷ Process through denoiser

h and predictor g
9: if A==Mean then

10: Clamp the j-th coordinate of f(.) within
[lj , uj ] ▷ Adaptive clamping

11: end if
12: Append fk(Xi) to arr ▷ Certify k modes
13: end for
14: Y ← A(arr) ▷ Aggregate the predictions with

point-wise mean or median
15: if A == Mean then ▷ Bounds for mean
16: Compute LB and UB on Y from Equation (1),

given R, {lj}, {uj}
17: else ▷ Bounds for median
18: Compute LB and UB on Y from Equation (2),

given R
19: end if
20: return Y , LB, UB ▷ Return prediction and

certified bounds
21: end procedure

7. Additional results
7.1. Results using ADE, ABD and Certified-ADE
In Section 4 of the paper, we mainly reported results in
terms of FDE, FBD, and Certified-FDE due to space con-
straints. Here we provide the results in terms of ADE, ABD,
and Certified-ADE in Figure 5 and Figure 6.

7.2. More qualitative results
We showed a scenario in the main paper where we showcase
the impact of an adversarial attack and imperfect observa-
tion on the performance of the predictor. Here, we provide



Figure 5. ADE against ABD for median and mean aggregations, respectively. The results are for different smoothed predictors and equally
spaced σ within [0.08, 0.4]. The bottom left indicates the best performance. The conclusions are similar to the main paper.

Figure 6. ADE against Certified-ADE. The results are for dif-
ferent smoothed predictors with median aggregation function and
equally spaced σ within [0.08, 0.4]. The bottom left indicates the
best performance. The conclusions are similar to the main paper.

more scenarios in Figure 7. These results demonstrate that
the models are vulnerable to different input noises, and cer-
tification can provide guaranteed robustness.

In Figure 8, we show qualitative results of EqMotion and
smoothed EqMotion. We generate multiple noisy inputs by
adding random noise with a magnitude less than 0.1 to an
input trajectory and visualize the models’ predictions. As
evidenced, the original predictor yields highly variable out-
puts, however, the smoothed predictor predicts within the
certified bounds. It is important to note that the certified
bounds are functions of the input; consequently, they are

larger in some scenarios and smaller in others.
Figure 9 presents qualitative results across varying σ in

the smoothed function. It demonstrates the trade-off be-
tween accuracy and the bound size. As the sigma value
increases, the perturbation overwhelms the original input,
resulting in a signal whose median aligns closely with the
noise median, which is zero. Therefore, the bounds be-
come tighter, but the accuracy drops. Among the various
smoothing functions depicted, the one with σ = 0.16 ap-
pears to maintain a better balance, offering sufficiently tight
bounds without significantly compromising accuracy, while
the function with σ = 0.32 demonstrates relatively lower
accuracy.

7.3. Certified bound per timestep
Until now, we have reported the final and average certified
bounds. However, each prediction timestep has a differ-
ent bound. Figure 10 shows the bounds for each timestep.
As expected, later timesteps have larger bounds, correlating
with their potentially greater variations.

7.4. Analyzing the bounds with adversarial attacks
Additionally, we conduct two experiments on a subset of
Trajnet++ dataset to further investigate the certified bounds
presented in the paper.

We first compare the Certified-FDE of Smoothed Eq-
Motion to those of the original EqMotion model. Remind
that Certified-FDE is the guaranteed worst-case FDE hap-
pening given input deviations (we use worst-case FDE and
Certified-FDE interchangeably in this subsection). How-
ever, there is no guarantee for the worst-case FDE of the
original model. In order to determine a lower-bound for the
worst-case FDE of the original model, we employ an adver-



Figure 7. Comparing the performance of the original predictor (on the top) and the smoothed predictor (on the bottom). The red trajectories
depict original observations, the blue trajectories represent predictions with imperfect observations coming from detection and tracking
algorithms on real-world data, and the gray ones show the predictions given adversaries.

sarial attack. Note that it is a lower-bound since our attack
is one potential attack and not necessarily the strongest pos-
sible attack, and the worst-case FDE could potentially be
higher with other adversarial attack approaches. We em-
ploy the PGD attack [41], constrain the L2 norm of pertur-
bations to 0.1, similar to the value of R in our main experi-
ments, and use a subset of trajnet++ dataset. The objective
is to find perturbations that would increase the FDE for the
EqMotion model. This attack demonstrated that applying
adversarial perturbations could raise the FDE of EqMotion
from 1.12 to 1.73. On the other hand, the Certified-FDE for
the Smoothed EqMotion is 1.87. This shows that while a
lower-bound for the worst-case FDE of the original model
is 1.73, the guaranteed worst-case FDE for the Smoothed
predictor is 1.87 which is within the same range but guaran-
teed. This means that any attack to the smoothed predictor,
as long as it adheres to the L2 norm constraint, will result
in outputs that fall within the guaranteed worst-case FDE.
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Figure 8. Qualitative results of the original predictor compared with the smoothed predictor. The red trajectories depict clean inputs and
the corresponding predictions, and the gray trajectories represent noisy inputs and predictions. The left part showcases the outputs of
the original predictor, revealing unbounded predictions. In contrast, the right part demonstrates the outputs of the smoothed predictor,
underscoring our ability to certify bounds on predicted outputs.
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Figure 9. Qualitative results of our model for different values of σ.
It shows the outputs of the smoothed EqMotion for one randomly
selected data sample in the dataset.The ground-truth predictions
are depicted in green, while the observation and the model’s pre-
dictions are in red. The figure shows that increasing σ tightens the
bound at the cost of dropping the accuracy.
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Figure 10. Certified bound per timestep. We report the distance of
the farthest point in the certified bound to the predicted trajectory
for different timesteps as the bound diameter. Smoothed EqMotion
with σ = 0.2 is employed for this experiment. It shows that later
timesteps have higher bounds due to their larger output variation.


	Further details of the method
	Diffusion denoiser
	Algorithm

	Additional results
	Results using ADE, ABD and Certified-ADE
	More qualitative results
	Certified bound per timestep
	Analyzing the bounds with adversarial attacks


