AC3D: Analyzing and Improving 3D Camera Control
in Video Diffusion Transformers

Supplementary Material

We encourage the reader to inspect our visual results,
comparisons with other models and additional visualiza-
tions in the accompanying website in https://snap-—
research.github.io/ac3d.

A. Ethics Statement

As with all generative Al technologies, there is the poten-
tial for misuse by bad actors. However, we anticipate this
technology will advance creative expression, education, and
research through:

1. Enhanced creative tools enabling filmmakers and edu-
cators to achieve complex camera movements without
specialized equipment, democratizing high-quality video
production and expanding possibilities for visual story-
telling.

2. More realistic synthetic video that better simulates real
world camera behaviors, improving applications in train-
ing autonomous systems, virtual production, and educa-
tional simulations where accurate camera dynamics are
crucial.

3. Advancing our technical understanding of how camera
motion affects visual perception and generation, con-
tributing to fundamental research in computer vision,
graphics, and human visual processing.

B. Limitations

In our work, we substantially advance the quality of 3D
camera control of video diffusion models, but our analysis
and method are not free from limitations.

OOD trajectories generalization. Both our model and all
the baselines struggle to generalize to the camera trajecto-
ries, which are far away from the training distribution of
RealEstate 10K [199]. While, in general, it is an expected
behavior, it indicates that the model processes the viewpoint
conditioning information in a way that is entangled with the
main video representations. Another source of this issue is
the pre-training distribution of the base VDiT itself: natural
videos typically have simple recording trajectories and rarely
exhibit something that looks like 3D scanning. In this way,
producing OOD trajectories is not an attempt to control ex-
isting knowledge of a video model, but an attempt to induce
new knowledge into the model, which should require better
and more diverse fine-tuning data.

Motion analysis limitations. As discussed in Appendix E,
we estimate the optical flows in the latent space of
CogVideoX [168] autoencoder rather than the pixel space,
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Figure 7. Comparing the average magnitude of motion spectral vol-
umes for scenes with different motion types for CogVideoX [169].
Videos with camera motion (purple) exhibit stronger overall motion
than the videos with scene motion (orange), especially for the low-
frequency range, suggesting that the motion induced by camera
transitions is heavily biased towards low-frequency components.

because it’s the space the video DiT operates in and early
trajectory steps produce disarranged decoder’s outputs. Be-
sides (as also observed by [75]), motion spectral volumes are
sensitive to the quality of optical flow estimation. While the
key conclusions (of the camera motion being low-frequency
and kicking in very early in the diffusion trajectory) would
hold since the are evident even with a bare eye from inspect-
ing the denoising process visualization, the exact behavioral
details of motion spectral volumes might change when an
optical flow estimator is swapped or the analysis is moved
from the latent to pixel space.

Linear probing limitations. We inspect the presence of
disentangled camera information in the video DiT model of
a particular architecture and trained on particular data. For it,
we observe that the knowledge starts to arise from the 9-th
block, but for a different instance of a video model it can be
distributed across the blocks differently. Besides, we only
evaluate it on RealEstate10K [199] test-set trajectories, and
do not explore classical camera estimation datasets. Such
analysis was sufficient to draw actionable conclusions and
improve our base method, but there is vast room in making
it more rigorous. We expect that video diffusion models are
capable of revolutionizing the field of camera registration
bringing strong priors about feature correspondences under
difficult conditions, like scene motion, changing lighting and
occlusions.


https://snap-research.github.io/ac3d
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(a) A generated video at different diffusion
timesteps. The camera has already been decided
by the model even at t = 0.9 (first 10% of the
denoising process) and does not change after that.
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(b) Motion spectral volumes of VDiT’s generated videos for different diffusion timesteps (left) and their
ratio w.r.t. the motion spectral volume at ¢ = 0 (i.e., a fully denoised video).

Figure 8. How camera motion is modeled by diffusion (CogVideoX)? As visualized in Figure 4a and Figure 3, the motion induced by
camera transitions is a low-frequency type of motion. We observe that a video DiT creates low-frequency motion very early in the denoising
trajectory: Figure 4b (left) shows that even at t=0.96 (first =4% of the steps), the low-frequency motion components have already been
created, while high frequency ones do not fully unveil even till t=0.5. We found that controlling the camera pose later in the denoising
trajectory is not only unnecessary but detrimental to both scene motion and overall visual quality. Here, we provide the same analysis

conducted for CogVideox [169].

C. CogVideoX Results

We implement our method on top of CogVideoX [169] to
show generalizability. Moreover, we conduct the motion
analysis of the main paper for CogVideoX and show results
in Fig. 7 and Fig. 8. We observe a similar pattern, confirming
the generalizability of our findings.

D. Implementation details

This section describes the training and architectural details of
the base VDiT, VDiT-CC , and our downstream experiments.

D.1. VDIiT implementation details

Architecture details. Our video DiT [100] architecture fol-
lows a very similar design to the other contemporary video
DiT models (e.g., [10, 32, 102, 168, 197]. As the back-
bone, we used a transformer-based architecture of 32 DiT
blocks [100]. Each DiT block consists on a cross-attention
layer to read the text embeddings information, produced
by the T5 [108] model; a self-attention layer, and a fully-
connected network with a 4x dimensionality expansion.
Each attention layer has 32 heads and RMSNorm [183]
for queries and keys normalization. To encode positional
information, we used 3D RoPE [123] attention, where each
axis (temporal, vertical, and horizontal) had a fixed dimen-
sionality allocated for it in each attention head (we split
the dimensions in the ratio of 2:1:1 for temporal, vertical,
and horizontal axes, respectively). LayerNorm [1] is used
to normalize the activations in each DiT block. We used
CogVideoX [168] autoencoder which is a causal 3D convo-
lutional autoencoder with 4 x 8 x 8 compression rate and 16

channels for each latent token. The hidden dimensionality
of our DiT model is 4,096 and it has 11.5B parameters in
total. Similar to DiT [100], we use block modulations to
condition the video backbone on the rectified flow timestep
information, SiLU [41] activations and 2 x 2 ViT-like [26]
patchification of the input latents to reduce the sequence
size.

Training details. We train the model with the AdamW [89]
optimizer with the learning rate of 0.0001 and weight decay
of 0.01. The model was trained for 750,000 total iterations
with the cosine learning rate scheduler [90] in bfloat16. We
also incorporate the support of image animation by encoding
the first frame with the same CogVideoX encoder, adding
random gaussian noise (with the noise level sampled inde-
pendently from the video noise levels o), projecting with a
separate learnable ViT-like [26] patchification layer, repeat-
ing sequence-wise to match the video length and summing
with the video tokens. During training, we use loss normal-
ization [60]. The model is trained jointly on images and
videos of variable resolution (256, 512 and 1024), aspect
ratio (16 : 9 and 9 : 16 for videos, and 16 : 9,9 : 16 and
1 : 1 for images), and video lengths (from 17 frames to
385 frames). The video framerate was set to 24 frames per
second and we did not use variable-FPS training as contem-
porary works [93, 102] since we found it to decrease the
performance for a target framerate (at least, without fine-
tuning).

Inference details. During inference, we use the standard
rectified flow without any stochasticity. We found that 40
steps gives a good trade-off between quality and sampling



speed. We follows the same time shifting strategy as Lumina-
T2X for higher resolutions and longer video generation [32]
with time shifting of /32 for the 1024 resolution.

D.2. VDiT-CC implementation details

As being said in Section 3.2, VDiT-CC is a simple
ControlNet-like [71, 188] fine-tuning of VDiT for camera
control. We use smaller versions of the base VDiT blocks
with only a 128 hidden dimensionality and 4 attention heads.
Besides, we do not use cross-attention over the context in-
formation since we found it to severely decrease the visual
quality and camera control precision. For the Pliicker en-
coding computation, we replicate the pipeline of VD3D [6].
Our linear layer that processes them contains 4096 hidden
features and SiLU [41] non-linearity.

D.3. AC3D implementation details

We train our complete setup for 6K iterations on the joint
dataset of 65K videos from RealEstate 10K [199] and 20K
dynamic videos with static cameras (this dataset is described
in Section 3.5 and Appendix G). We train with the learning
rate of 0.0001 using the AdamW [89] optimizer with weight
decay of 0.01 and cosine learning schedule [90].

As described in Section 3.2, since the camera motion is a
low-frequency type of signal, we propose to use truncated
and biased noise schedule: both at train and inference time.
In Figure 9, we visualize three distributions: 1) the standard
one used by SD3 [28], our base VDiT, and “w/o biasing
noise” experiment (orange); 2) the biased but non-truncated
schedule used in the VDiT-CC “w/o noise truncation” abla-
tion experiment (purple), which has some unnecessary and
detrimental probability mass in the high-frequency range;
and 3) our final schedule (red).

Each ablation experiment from Section 4.3 was trained
for 6K iterations on 32 NVIDIA A100 80GB GPUs.

During training, to plug in the conditioning camera pose
for our static dataset, we were randomly sampling extrinsics
and intrinsics parameters from a RealEstate 10K dataset.

1D temporal camera encoder. VDiT-CC processes videos
in the autoencoder’s latent space with 4x temporal compres-
sion [168], raising the question of how to incorporate full-
resolution camera parameters. While camera poses could be
naively downsized (e.g., subsampled or reshaped) to match
the latent resolution, this would force small D1 T—XS blocks
to process compressed camera information. Instead, we im-
plement a sequence of causal 1D convolutions that transform
a F'x6 sequence of Pliicker coordinates for each pixel into a
(F//4) %32 representation.

E. Motion analysis details

As discussed in Section 3.3, we perform camera motion anal-
ysis of generated videos at different time steps by inspecting
their spectral volumes.
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Figure 9. Comparing rectified flow noise schedules: (orange)
vanilla standard logit-normal noise schedule proposed by [28] and
used for baseline experiments; (purple) biased but non-truncated
noise schedule; (pink) biased and truncated noise schedule.
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Figure 10. Our annotations collected for 200 randomly generated
videos from VDiT and used in our camera motion analysis in
Section 3.3.

For our analysis, we generate 200 random 121-frames
videos without time shifting [32] in the 288 x 512 resolution
with VDIT and manually annotate them for the following
labels: quality (a score from 1 to 5), scene motion strength
(a score from 1 to 5, where a score of 1 corresponds to
a completely still scene), camera motion strength (a score
from 1 to 5, where a score of 1 corresponds to a completely
stationary viewpoint), whether the camera is smooth or shaky
(a binary flag). We visualize the obtained scores in Fig. 10.
Next we discard the videos with the quality score of less
than 4, discarding 18 out of 200 videos: “broken” samples
(e.g., an artificial animation or a blank black canvas) indicate
a complete generation failure which we should exclude from
the analysis of the camera motion.



Figure 11. Frames of the generated videos by the VDiT model
(upper row) and the corresponding PCA projections of their latents
(lower row).

To analyze the spectral volumes differences between
scene and camera motion for Fig. 3, we extract three cate-
gories of videos from our dataset: 1) scene motion (videos
with scene motion, but with no camera motion); 2) camera
motion (videos with camera motion, but with no scene mo-
tion); and 3) scene and camera motion (videos with scene
motion and non-artifactory camera motion). The first cate-
gory (scene motion) was obtained by selecting the videos
with the camera motion strength of 1 (i.e., no camera move-
ment), and the scene motion strength of more or equal than
3; the second category (camera motion) was obtained by se-
lecting the videos with the camera motion strength of more
or equal than 3, and the scene motion strength of 1 (i.e., no
scene motion); the third category (scene and camera mo-
tion) was obtained by selecting the videos with the camera
and scene motion strengths of more or equal than 3 and the
smooth camera flag being true (to exclude shaky camera
movements). To analyze the spectral volumes for Fig. 4, we
took the videos which have scene or camera motion strength
of more or equal than 3.

To obtain spectral volumes, we need to obtain per-pixel
optical flow information. Since our VDiT is following the la-
tent diffusion (LDM) paradigm [ 11], we opt for performing
optical flow estimation in the latent space of the autoencoder.
There are two reasons for that: 1) we noticed that it provides
more robust flow estimation at earlier denoising timesteps
(since the decoder part of CogVideoX [168] autoencoder
does not need to operate at out-of-distribution inputs); and
2) the video model operates in this space. In this way, we
used the raw generated latents to estimate the optical flow.
Since most of the optical flow algorithms operate in a 3-
dimensional RGB space, and our latents are 16-channels,
we projected them into 3-dimensional inputs via a PCA,
computing it independently for each latent. We found that
these representations maintain very strong spatiotemporal
resemblance to the original videos, as visualized in Fig. 11.

Following [75], we use PyFlow [99] coarse-to-fine optical
flow estimation to obtain more robust results. We attempted
to use Farneback [29] optical flow estimation, but observed
that it is less accurate and does align less with our visual
evaluation of the results. 121-frames 288 x 512-resolution
videos correspond to 31 latent frames of 36 x 64 resolution.
For each 6-th latent frame, we estimate its flow with respect
to each of the 24 subsequent frames. Next, we perform Fast

Fourier transform for x and y spatial coordinates indepen-
dently, compute the amplitudes and average them spatially
for each video.

F. Linear probing details

In Section 3.4, we perform linear probing of VDiT for cam-
era pose knowledge. For this, we use 1,000 videos of 49
frames and the 144 x 256 resolution from the test set of
RealEstate 10K [199] and extract their internal representa-
tions of our VDiT model under various noise levels. We use
the noise levels o; of [é, %, %, ey %, 1]. The hidden dimen-
sionality of our VDiT model is 4, 096 and to reduce the mem-
ory requirements and speed up linear probing we project each
video representations into 512 dimensionality using PCA.
This results in latent representations of 512 x 13 x 18 x 32 for
each block, each video and each timestep. To construct the
training features for the linear regression model, we extract
the (spatially) middle vector of shape 512 x 13 and perform
spatial average pooling to obtain a context representation of
512 x 13. We then unroll and concatenate them to obtain
the final training representation of dimensionality 13, 312.
We split our 1,000 videos into training and test sets as 900
and 100 and then train a ridge linear regression with the reg-
ularization weight of 25,000. Our target variable covers the
extrinsics parameters of the viewpoints, which are provided
by RE10K. We extract rotation angles and translations from
the extrinsic matrices and normalize them with respect to the
first frame. Then, we compute the rotation and translation
errors on the held-out set of 100 videos using the evaluation
pipeline of CameraCitrl [39]. Since we have 8§ noise values
and 32 VDiT blocks, this resulted into 256 linear regression
models in total. It was taking ~5 minutes of CPU time to
train each model, and their training was parallelizable across
different cores.

G. Dataset construction details

As describe in Section 3.5, we construct a dataset of videos
with scene motion but recorded from stationary cameras.
One might attempt to build such a dataset in an automated
way by estimating the optical flow and checking whether
there is non-zero motion in the middle region of the frame,
and no motion on the borders. However, this would not
work well for a myriad of corner cases, which is why we
opted for manual construction. For this, we annotated 110K
internal videos for the presence of camera and the presence
of scene motion. Each video has a duration of 5 — 30 seconds
and covers various diverse categories of scenes: humans,
animals, landscapes, food and other types. Out of these
videos, 20K videos turned out to be the necessary ones: with
scene motion, but completely static scenes. We proceeded
to use them as our training data without further processing.
As being discussed in Appendix D, we augmented their



camera information artifically by using random extrinsics
from RealEstate10K [199].

H. Scaling bias

Classical feature-based camera estimation [ 114, 115] outputs
camera trajectories with arbitrary scale, as it does not possess
any priors about the absolute size of objects in the scene. For
example, a house might appear identical to a small object
like an apple when viewed from the appropriate distance,
making it impossible to determine absolute scale from visual
features alone. This lack of scale awareness complicates pre-
cise user control over camera trajectories: while the model
can determine the camera’s direction, it remains unaware of

the magnitude of each movement, as demonstrated in Sec. 4.

Ideally, all camera trajectories should be aligned to a consis-

tent reference scale. A natural reference would be a metric

scale, now achievable due to recent advances in metric depth
estimation [172]. We propose a method to rescale camera
trajectories across all data using the following steps:

1. Obtain 3D points from the COLMAP output and render
the COLMAP depth Dg from these points for each frame.

2. Estimate the metric depth D/, for each frame using a
pre-trained zero-shot metric depth estimator [172].

3. Calculate the re-scaling parameter A by solving the op-
timization problem \ = arg miny Eror ‘)\D(J; - Df,
where F' is the total number of frames.

4. Set the camera translation vector fc to j\tc.
In Sec. 4.3, we show that training with properly scaled cam-
eras does not lead to visual quality degradation (even improv-
ing it slightly), and, as we demonstrate in our supplementary
visuals, makes the camera control more predictable and less
frustrating for a user by allowing to control the magnitudes
of camera transitions.

)

I. Additional Related Work

Due to space constraints, we summarize related 3D and an
extended list of 4D works in the appendix.

3D generation. Early efforts in 3D generation focused on
training models for single object categories, extending GANs
to 3D by incorporating neural renderers as an inductive
bias [3, 13, 24, 97, 116]. As the field progressed, CLIP-
based supervision [107] enabled more flexible and diverse
3D asset generation, supporting both text-based generation
and editing [19, 35, 53, 55, 113, 142]. Recent advances in
diffusion models further enhance generation quality by re-
placing CLIP with Score Distillation Sampling (SDS) for su-
pervision [20, 40, 61, 66, 74, 77,78, 86, 103, 124, 143, 148,
170, 178]. To improve the structural coherence of 3D scenes,
several approaches generate multiple views of a scene for
consistency [30, 34, 47, 63, 80, 83, 84, 117, 133, 140].
Alternatively, iterative inpainting has been explored as a
technique for scene generation [46, 118]. Recent works

also focus on lifting 2D images to 3D representations,
employing methods like NeRF [95], 3D Gaussian Splat-
ting [62], or meshes in combination with diffusion mod-
els [14, 36, 87, 88, 105, 128, 131, 134, 141, 174]. Other
studies explore fast, feed-forward 3D generation techniques
that directly predict 3D models from input images or text [38,
48, 56, 70, 104, 129, 130, 132, 135, 156, 162, 163, 184].
These methods, however, are limited to synthesizing static
scenes, in contrast to our approach.

4D generation. There has been significant progress in 4D
generation, i.e., dynamic 3D scene generation. These works
often rely on input text prompts or images to guide the
generation. Since the early advancements in large-scale
generative models for this task [120], significant strides
have been made in improving both the visual and mo-
tion quality of generated scenes [5, 33, 57, 58, 69, 81,
94, 109, 165, 179, 190, 196]. While many of these meth-
ods are conditioned on text input, other approaches fo-
cus on converting 2D images or videos into dynamic 3D
scenes [12, 23, 31, 33, 67, 72, 73, 76, 81, 98, 109, 110, 126,
137, 138, 147, 154, 157, 167, 173, 182, 187, 193, 196]. Re-
cently, several works [52, 79, 189] investigate physics priors
in 4D generation pipelines. Other works [15, 125, 186] en-
hance motion controllability with template-based methods.
Another line of work [4, 11, 159, 175, 181, 200] focuses
on compositional and interactive 4D generation. Another
strand of research extends 3D GANSs into the 4D domain
by training on 2D video data [2, 164]. However, the quality
of these methods is often constrained by the limited nature
of the datasets, which typically focus on single object cate-
gories. Moreover, the majority of these approaches tackle
object-centric generation. As a result, they typically neglect
background elements, and their visual fidelity falls short
when compared to the high photorealism achieved by state-
of-the-art video generation models, such as those employed
in our approach.

Motion-controlled video generation. Orthogonal to
camera-controlled video generation methods, another line
of work investigates object trajectory control [144, 146, 153,
171, 191, 198]. More recently, several methods [54, 91, 96,
106, 166, 176] focus on object trajectory control without
relying on additional external data or additional model fine-
tuning.

J. User Study

In the user study, we engage 10 professional labelers, each

of whom evaluates 100 different video pairs. The labelers

are asked to choose between two videos based on several

preference metrics:

* Camera Alignment (CA): How well the camera trajectory
follows the reference video.

* Motion Quality (MQ): Which video has larger and more
natural motion.



e Text Alignment (TA): Which video better aligns with the
provided reference text prompt.

* Visual Quality (VQ): Which video has a higher overall
visual quality.

* Overall Preference (Overall): Which generated video the
user would prefer for this task.
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