Spectral Informed Mamba for Robust Point Cloud Processing
Supplementary Material

Ali Bahri * Moslem Yazdanpanah
Milad Cheraghalikhani
Farzad Beizaee

Gustavo Adolfo Vargas Hakim
Ismail Ben Ayed

Sahar Dastani
David Osowiechi
Christian Desrosiers

Mehrdad Noori

LIVIA, ETS Montréal, Canada
International Laboratory on Learning Systems (ILLS)

1. Computational Efficiency, Runtime, and
Memory Usage

In this section, we conducted a comprehensive analysis re-
garding the computational efficiency, runtime, and memory
usage of our Surface-Aware Spectral Traversing (SAST) ap-
proach. The focus of these experiments is to assess the over-
head introduced by our SAST in comparison to the Point-
Mamba backbone.

Our SAST strategy employs SciPy’s sparse eigen-solver
(function eigs implementing the implicitly restarted
Arnoldi algorithm) to compute the first eigenvectors of the
graph Laplacian. As highlighted in the main paper, this op-
eration is not expensive since the size of this matrix depends
on the number of patches which is much less than the orig-
inal number of points (128 vs.2048). Additionally, even
when increasing the number of patches (tokens), the com-
putational overhead of this step is limited due to three rea-
sons: i) the Laplacian matrix is very sparse as we only con-
sider the K nearest neighbors of each patch (K ~ 20), ii)
we only compute the first k£ eigenvectors (k ~ 5 in our ex-
periments), and iii) this computation is done only once for
each point cloud in a pre-processing step.

Memory Usage: As shown in Fig. 1, the memory usage
of our SAST strategy (black line) is significantly lower than
the memory usage of the Point-Mamba backbone (red line).
When increasing the number of patches along the x-axis,
our strategy based on a sparse eigen-solver does not require
substantially more memory compared to the backbone. The
star in this figure shows the used number of tokens in down-
stream tasks.

Runtime: Our SAST strategy, which can be implemented
in the data loader and ran in parallel on CPU, is also fast.
As can be seen in Fig. 2, the runtime of SAST scales well
when increasing the number of patches (tokens), and only

*Correspondence to ali.bahri.1 @ens.etsmtl.ca

a small amount of runtime is added in training or inference
for the token length of 128 used in our main experiments
(yellow star).

FLOPS: Fig. 3 presents the relationship between FLOPS
and token length for both the Point-Mamba backbone and
our SAST method. Compared to running the Point-Mamba
back, our SAST demonstrates a more gradual increase in
FLOPS due to the use of sparse computations and the low
number of eigenvectors involved. Once again, this shows
the limited overhead of incorporating SAST, even as token
length increases.

2. Additional Ablation Study

The Effect of HLT on Classification: In this section, we
investigate the effect of the Hierarchical Local Traversing
(HLT) strategy on the classification task. The results for
HLT on the ObjectNN dataset are shown in Tab. 2. As ob-
served, the HLT strategy underperforms compared to SAST
across all three settings (OBJ-BG, OBJ-ONLY, and PB-
T50-RS), regardless of whether the model is trained from
scratch or pretrained.

This performance gap highlights the limitations of the
HLT strategy in tasks requiring global understanding, such
as classification. Specifically, HLT processes high-level in-
formation from all eigenvectors simultaneously in a single
traversal order (forward and backward), which is effective
for segmentation tasks but may lead to insufficiently distinct
feature representations for global classification. In contrast,
SAST processes information from different eigenvectors in
separate traversals, enabling better representation of high-
level structures critical for classification tasks.

Number of Eigenvectors in HLT: Tab. 2 evaluates the
impact of varying the number of eigenvectors in our pro-
posed HLT strategy on part segmentation performance us-
ing the ShapeNetPart dataset, considering both training
from scratch and training from pretrained weights.

mailto:ali.bahri.1@ens.etsmtl.ca

Memory (MB)

FLOPS (M)

Memory Usage Over Tokens Length

16384.000
4096.000
1024.000
256.000
64.000
16.000

4.000 —— Point-Mamba Backbone

—— SAST
1.000 Used Token Length
27 28 29 210 211 212 213 214 215

Tokens Length

Figure 1. Memory Usage Over Tokens Length. Both axes are scaled by log, for better visualization.

Runtime Over Tokens Length

—— SAST
Used Token Length

1.000

Time (s)

0.500

27 28 29 210 211 212
Tokens Length

Figure 2. Runtime Over Tokens Length. Both axes are scaled by log,, for better visualization.

FLOPS Over Tokens Length

32768.000 /////

4096.000
512.000
64.000
8.000

1.000 —— Point-Mamba Backbone

0.125 SASE
Used Token Length
57 28 29 210 211 212

Tokens Length

Figure 3. FLOPS Over Tokens Length. The horizontal axis is scaled by log, for better visualization.

Table 1. Object classification on ScanObjectNN. Accuracy (%) is
reported.

Methods Backbone OBJ-BG OBJ-ONLY PB-T50-RS
Training from scratch
Ours (HLT) Mamba 90.87 90.53 86.22
Ours (SAST) Mamba 92.25 91.39 87.30
Training from pretrained
Ours (HLT) Mamba 92.94 91.42 87.52
Ours (SAST) Mamba 94.32 91.91 89.10

In both scenarios, the segmentation accuracy, measured
by the mean Intersection over Union (mloU), demonstrates
that the number of eigenvectors directly influences perfor-
mance. The accuracy peaks at four eigenvectors, achieving
85.9% (scratch) and 86.1% (pretrained), as this setting pro-
vides an optimal balance for spatial encoding.

When the number of eigenvectors is low, the model fails
to partition points accurately, resulting in unrelated points
being grouped into the same segment. Conversely, when the
number of eigenvectors is high, the performance decreases
slightly due to redundancy and noise. Higher-order eigen-
vectors encode finer details or localized variations, which
may not align with meaningful segmentation. This can lead
to overfitting or confusion between closely related parts.

Table 2. Part segmentation on ShapeNetPart.

Methods Param. (M) Eigenvectors mloU
Training from scratch
Ours (HLT) 12.3 3 85.6
Ours (HLT) 12.3 4 85.9
Ours (HLT) 12.3 5 85.9
Ours (HLT) 12.3 6 85.8
Training from pretrained
Ours (HLT) 12.3 3 85.8
Ours (HLT) 12.3 4 86.1
Ours (HLT) 12.3 5 86.0
Ours (HLT) 12.3 6 85.8

3. Additional Visualization

Segmentation Results. Fig. 4 provides results for six ob-
ject categories (“Airplane,” “Bag,” “Car,” “Chair,” “Motor-
bike,” and “Guitar) obtained by our HLT method. In this
figure, each point is color-coded based on its class label.
The comparison between the ground truth (GT) and the
predicted segmentation demonstrates the outstanding per-
formance of our method, as well as its ability to capture
fine-grained details.

Dataset Challenges and Ground Truth Anomalies in

ShapeNetPart. The ShapeNetPart dataset is widely rec-
ognized as a challenging benchmark for 3D point cloud
segmentation. Upon further investigation of the dataset,
we observed certain inconsistencies and inaccuracies in the
provided GT annotations. As illustrated in Fig. 5, our
method exhibits a visually better segmentation than the
ground truth.

Such discrepancies in the ground truth highlight poten-
tial limitations in the dataset itself, which poses a chal-
lenge for both training and evaluation. This phenomenon
also provides an explanation for the observation that recent
state-of-the-art methods (as listed in Table 2 of the main
paper) achieve similar mIOU performance on this dataset,
with only marginal improvements. The inherent noise and
errors in the ground truth annotations make it difficult for
methods to demonstrate significant gains in segmentation
quality.

Despite these challenges, our method still achieves com-
petitive performance while maintaining robust predictions
that align closely with the underlying geometric features of
the objects.

Reconstruction Results. Fig. 6 showcases the reconstruc-
tion capability of Masked Autoencoders (MAESs) on point
cloud data using the ShapeNet dataset. The figure consists
of three columns for each sample, illustrating the progres-
sion from the input point cloud to the final reconstructed
result.

The first column, “Input Point Cloud”, represents the
original point cloud data, providing a complete view of
the object before any masking or processing. This serves
as a reference for evaluating the quality of the reconstruc-
tion. The second column, displays the same point cloud
after a portion of the data has been masked out. The visible
points indicate the sparse information available to the model
during the reconstruction phase.The third column, “Recon-
structed Point Cloud”, demonstrates the MAE’s ability to
predict and restore the masked regions, resulting in a nearly
complete reconstruction that aligns closely with the original
structure.

These results underline the effectiveness of MAEs in
capturing and reconstructing geometric details from incom-
plete data, making them well-suited for extracting meaning-
ful features.

. o
Predicted u«amw.ﬂ%‘;m %%

Airplane Bag Car Chair Motorbike Guitar

Figure 4. The qualitative results of part segmentation of our HLT method on ShapeNetPart dataset

Predicted -

Figure 5. An example illustrating inconsistencies in the ground truth (GT) annotations. The predicted segmentation (right) is geometrically
more accurate and consistent compared to the GT (left).

Input Masked

Reconstructed Input Masked
Point Cloud Point Cloud Point Cloud Point Cloud Point Cloud
”)_%%qk %\. :é R

ot

«
5

o

a
Pt

Figure 6. Reconstruction results on the ShapeNet dataset

Reconstructed
Point Cloud

	Computational Efficiency, Runtime, and Memory Usage
	Additional Ablation Study
	Additional Visualization

