
A Regularization-Guided Equivariant Approach for Image Restoration

Supplementary Material

1. Beneficial of Equivariance for IR
The benefits of equivariance have actually been validated in
image restoration (IR) tasks. A classical example is the con-
volutional neural network (CNN), which has been shown to
outperform fully connected networks in IR tasks. One of
the fundamental reasons lies in its reasonable implementa-
tion of translation equivariance. In other words, the transla-
tion symmetry prior of images is well captured. Since IR is
often ill-posed and suffers from information insufficiency,
embedding translation symmetry prior knowledge is natu-
rally beneficial.

For the rotation equivariance involved in this paper, it
can further capture the rotation symmetry prior in images.
Similar to the benefits of translation equivariance in CNNs,
the reasonable utilization of rotation equivariance can also
enhance performance in IR tasks. Previous works, such as
in [1] (Fig.1), have shown that rotational symmetry in local
features is a fundamental characteristic present in nearly all
types of images. Since IR tasks are highly correlated to the
representation of local features, the exploration of rotation
equivariance is important for IR tasks. For instance, data
augmentation through random rotation has been proven to
boost performance in almost all IR tasks. Additionally, ro-
tation equivariant CNNs often outperform standard CNNs
in IR tasks, as evidenced by [1, 3] and our experiments.

Previous works [1, 3] have provided two intuitive rea-
sons why rotation equivariance benefits IR. First, incor-
porating rotation equivariance improves the preservation
of nonlocal orientational similarity, which ensures a more
faithful recovery of local image features. This is clearly
demonstrated by a comparative observation of the enlarged
view of the plate’s rim in Fig.1(b) and (c). Second, rota-
tion equivariance aids in better preserving local isotropic
symmetry during high-resolution recovery, as clearly shown
by the comparison of the enlarged view of the phone in
Fig.1(b) and (c). This property ensures that features with
similar characteristics in all directions, such as repetitive
textures and isotropic patterns, can be reconstructed con-
sistently without introducing directional artifacts.

2. Features Visualizations
In this section, we provide additional visualizations of fea-
ture maps produced by different frameworks, as shown in
Fig.2. From left to right, the feature maps are visualized
from shallow layer to deep layer. It can be observed that
the equivariant constraints imposed by the proposed method
align more effectively with the intrinsic symmetry of the
data, both in shallow and deep layers. In contrast, the data

augmentation strategy does not effectively supervise the in-
termediate layers of the CNN network. As a result, when
the input is rotated 90 degrees, the feature map exhibits
unpredictable changes. Consequently, when a circular pat-
tern is input, the CNN’s feature map fails to preserve the
circular symmetry. This could undermine performance in
image restoration tasks. For strictly equivariant networks
(EQ-CNN [3]), the feature maps show a perfectly symmet-
ric pattern, but the features are no longer circular. Specifi-
cally, due to the strict enforcement of rotational symmetry at
specific angles, the feature maps are constrained to exhibit
four distinct directions, resulting in an inaccuracy represen-
tation of the underlying patterns. In conclusion, the pro-
posed method applies more reasonable rotation-equivariant
supervision to the intermediate layers, enabling the network
to capture the proper image symmetry priors directly from
the data.

3. Error analysis

In this section, we further discuss and analyze the equivari-
ant error and reconstruction error of the models. As shown
in Fig.3, for the equivariant error (left), standard convolu-
tional networks (CNN) fail to capture the rotational equiv-
ariance in the data, leading to notable equivariant errors in
the trained model. Conversely, strictly equivariant networks
(EQ-CNN) eliminate these errors for specific strict rota-
tions, such as 90 degrees. The proposed method (EQ-Reg),
however, significantly reduces the equivariant error after
training, effectively demonstrating that the model learns the
rotational symmetry present in the data. For the reconstruc-
tion error (right) between the restoration results of different
models and the ground truth, both CNN without rotation
equivariance and strict rotation equivariant networks(EQ-
CNN) exhibit reconstruction errors that cannot be ignored.
However, the proposed method in this paper effectively
learns the rotation symmetry inherent in the data, while also
achieving results closer to the ground truth.

4. More Experimental Results

4.1. Image SR
We compare the proposed method with classical rotation
equivariant methods, including GCNN, E2-CNN and PDO-
eConv using SOTA network RDN. We replace the original
convolutions in RDN with the competing convolutions re-
spectively. The training set consists of 800 images from the
DIV2K dataset. For testing, we use four standard bench-
mark datasets. All experiments are performed under a bicu-
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Figure 1. Illustration of the output feature map obtained by standard CNN and rotation equivariant CNN(EQ-CNN) [1].

bic degradation model. The results are shown in Table 1.

Table 1. PSNR/SSIM of competing methods for RDN with x4 SR.

Method Urban100 BSD100 Set14 Set5

RDN 26.27/0.795 27.63/0.746 28.70/0.790 32.30/0.899
RDN-gcnn 26.15/0.792 27.63/0.746 28.66/0.789 32.26/0.899
RDN-e2cnn 26.06/0.789 27.59/0.744 28.61/0.787 32.09/0.897
RDN-pdoe 24.37/0.723 26.85/0.721 27.42/0.759 30.42/0.864
RDN-reg 26.35/0.797 27.66/0.747 28.71/0.791 32.26/0.899

4.2. Image Denoising
We designed simulation denoising experiments. The
competing methods include DnCNN, Swin-Conv UNet
(SCUNet), EDSR and classical rotation equivariant meth-
ods. All methods are trained with 800 samples from DIV2K
dataset, and the simulated Gaussian noise has a standard de-
viation of 50. The results are shown in Table 2.
Table 2. PSNR/SSIM of competing methods on image denoising.

Method Urban100 BSD100 Set14 Set5

DnCNN 28.71/0.844 28.96/0.796 29.01/0.790 30.95/0.857
SCUNet 30.50/0.889 29.55/0.818 29.96/0.816 31.79/0.881
EDSR 30.57/0.888 29.56/0.817 29.86/0.811 31.84/0.881

EDSR-gcnn 30.75/0.891 29.60/0.820 29.89/0.811 31.91/0.881
EDSR-e2cnn 30.66/0.889 29.58/0.818 29.79/0.809 31.90/0.882
EDSR-pdoe 29.55/0.863 29.19/0.800 29.50/0.803 31.47/0.870
EDSR-reg 30.77/0.891 29.61/0.820 29.98/0.814 31.92/0.883

4.3. Generalization Results in Metal Artifact Re-
duction

To demonstrate the generalization capabilities of the pro-
posed method, we evaluate it on another public dataset,
CLINIC-metal [2]. As illustrated in Fig. 4-6, the proposed
method surpasses both the baseline and strictly equivari-
ant methods in removing shading and streaking artifacts,
while more accurately reconstructing human tissue struc-
tures. These results provide a compelling visual validation
of the advantages of the proposed method in the generaliza-
tion ability.

4.4. Image Inpainting Visualizations
In this section, we present additional visual results for the
image inpainting task. As shown in Fig.7, increasing the in-

tensity of Poisson noise progressively disrupts the inherent
symmetries in the image. Under these conditions, recovery
results using strictly equivariant networks become subopti-
mal, as they enforce rigid equivariant constraints which fail
to align with the image’s actual symmetry characteristics.
In contrast, the proposed method demonstrates superior per-
formance by effectively removing noise and restoring intri-
cate image details.

4.5. Single Image Rain removal Visualizations
In this section, we present additional visual results for the
Single Image Rain removal task. As shown in Figure 8, the
rain removal model based on convolutional sparse coding
often mistakenly identifies white stripes and grids as rain
stripes, but the proposed method can effectively overcome
this shortcoming.
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Figure 2. The feature map in the network from shallow layer to deep layer of the trained neural network for CNN+Data Aug., EQ-CNN[3],
and the proposed EQ-Reg.
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Figure 3. Illustration of (left) rotation equivariant errors(
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∣∣ for image I and network Φ) and (right) reconstruction
errors.
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Figure 4. Generalization results on a real clinical metal-affected CT image from CLINIC-metal [2]. The red pixels stand for metallic
implants, which are segmented with the thresholding of 2500 HU.



OSCNet OSCNet- fconv

Input OSCNet- regOSCNet- gcnn

OSCNet- e2cnn

OSCNet- pdoe

Figure 5. Generalization results on a real clinical metal-affected CT image from CLINIC-metal [2]. The red pixels stand for metallic
implants, which are segmented with the thresholding of 2500 HU.
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Figure 6. Generalization results on a real clinical metal-affected CT image from CLINIC-metal [2]. The red pixels stand for metallic
implants, which are segmented with the thresholding of 2500 HU.
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Figure 7. Inpainting reconstructions on test images with Poisson noise (from top to bottom: γ = 0.01, 0.1) and 30% mask rate. PSNR
values are shown in the top right corner of the images.
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Figure 8. The 1st column: a typical ground truth sample in Rain100L [4] dataset (upper) and its ground truth rain layer (lower). The
2nd − 14th columns: derained results (upper) and extracted rain layers (lower) by all competing methods
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