
Supplementary Materials
FreeScene: Mixed Graph Diffusion for 3D Scene Synthesis from Free Prompts

Tongyuan Bai1 Wangyuanfan Bai1 Dong Chen1 Tieru Wu1,3 Manyi Li2 Rui Ma1,3*

1School of Artificial Intelligence, Jilin University
2School of Software, Shandong University

3Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, MOE, China

A. Implementation Details
A.1. Data Processing

Edge Matrix Construction. In this paper, we define ten
types of spatial relationships and a ‘None’ type, similar to
InstructScene, including: ‘Left of’, ‘Right of’, ‘In front of’,
‘Behind’, ‘Closely left of’, ‘Closely right of’, ‘Closely in
front of’, ‘Closely behind’, ‘Above’, ‘Below’ and ‘None’.
Additionally, based on the dataset, we defined different cat-
egory list tailored to different room types as shown in Figure
1. Upon receiving the triplet list output from the Graph De-
signer, we construct a specialized symmetric matrix where
each pair of symmetric positions stores opposite spatial re-
lationships, such as ‘Left of’ and ‘Right of’.

Bedroom: [0:'armchair', 1:'bookshelf', 2:'cabinet', 3:'ceiling_lamp', 4:'chair', 
5:'children_cabinet’, 6:'coffee_table', 7:'desk', 8:'double_bed’, 9:'dressing_chair', 
10:'dressing_table', 11:'kids_bed', 12:'nightstand’, 13:'pendant_lamp', 14:'shelf', 
15:'single_bed', 16:'sofa', 17:'stool', 18:'table', 19:'tv_stand', 20:'wardrobe']

Living&Dining Room: [0:'armchair', 1:'bookshelf', 2:'cabinet', 3:'ceiling_lamp', 
4:'chaise_longue_sofa', 5:'chinese_chair’, 6:'coffee_table', 7:'console_table', 
8:'corner_side_table', 9:'desk', 10:'dining_chair', 11:'dining_table’, 
12:'l_shaped_sofa’, 13:'lazy_sofa’, 14:'lounge_chair', 15:'loveseat_sofa', 
16:'multi_seat_sofa', 17:'pendant_lamp', 18:'round_end_table', 19:'shelf', 20:'stool', 
21: 'tv_stand', 22:'wardrobe', 23:'wine_cabinet’]

Figure 1. Category lists for different room types.

Text Prompt Generation. We followed the methodology
of InstructScene to generate text prompts for each scene,
which include spatial relations extracted from the 3DFront
dataset and object captions obtained using BLIP. Finally,
1∼2 of these relationships are randomly selected and re-
fined using ChatGPT.

A.2. Model Details

Training Strategies. We employ a network containing five
Transformer blocks with 8-head 512-dimensional attention
and a dropout rate of 0.1. In order to improve the ro-
bustness of the training process, we employ a probabilistic

*Corresponding author

approach to selectively fix certain variables. Specifically,
we assign a 0.2 probability to nullify the text input (for
classifier-free guidance), a 0.2 probability to preserve the
input graph (steering the model to predict noise that aligns
with the graph), and a 0.1 probability to generate only the
edges while keeping the other features fixed. The remain-
ing 0.5 probability is dedicated to denoising all the vari-
ables. The models are trained using the AdamW optimizer
for 500,000 iterations with a batch size of 128, a learning
rate of 1e-4, and a weight decay of 0.02. All experiments
are conducted on a single NVIDIA A40 48GB GPU.

Response with One-shot CoT Prompt

1. **Viewpoint Determination**: The given image is a front-view colored image of a bedroom.

2. **Object Identification**:

- **Object 0**: Double bed, category 8

- **Object 1**: Dressing table, category 10

- **Object 2**: Dressing chair, category 9

- **Object 3**: Nightstand, category 12

- **Object 4**: Pendant lamp, category 13

- **Object 5**: Wardrobe (added per user request), category 20

3. **DFS Traversal**:

- Node0 (root) = Double bed (object 0) → childlist: Dressing table (object 1), Nightstand (object 3), Wardrobe (object 5)

- Node1(child of Node0) = Dressing table (object 1) → childlist: Dressing chair (object 2)

- Node2(child of Node0) = Nightstand (object 3) → childlist: Pendant lamp (object 4)

4. **Relationship Extraction**:

- **Dressing table (object 1)** **is left of (relationship 1)** **Double bed (object 0)** → [1, 1, 0]

- **Dressing chair (object 2)** **is closely in front of (relationship 4)** **Dressing table (object 1)** → [2, 4, 1]

- **Nightstand (object 3)** **is right of (relationship 6)** **Double bed (object 0)** → [3, 6, 0]

- **Pendant lamp (object 4)** **is above (relationship 0)** **Nightstand (object 3)** → [4, 0, 3]

- **Wardrobe (object 5)** **is right of (relationship 6)** **Double bed (object 0)** → [5, 6, 0]

5. **Final Output**:
'''
Object List: [0:8, 1:10, 2:9, 3:12, 4:13, 5:20]

Spatial Relationship Triplets: [[1, 1, 0], [2, 4, 1], [3, 6, 0], [4, 0, 3], [5, 6, 0]]

Description: There is a wooden double bed with a dark dressing table on its left and a nightstand on its right. A wardrobe

is added to the right of the bed. The dressing table has a dark dressing chair closely in front of it, and a pendant lamp

hangs above the nightstand.
'''

Response with One-shot Prompt
'''
Object List: [0:8, 1:10, 2:12, 3:13, 4:20] → lack the dressing chair

Spatial Relationship Triplets: [[1, 1, 0], [2, 2, 0], [3, 2, 0], [4, 6, 0]]

Description: There is a light wooden double bed closely left of a dark-colored dressing table with a mirror, a wooden

nightstand in front of the double bed, a sleek pendant lamp in front of the double bed, and a white wardrobe on the right

of the double bed.
'''

Add a wardrobe to 
the right of the bed

Correct

Incorrect

Figure 2. A comparison of the results between one-shot CoT
prompts and one-shot prompts on a specific example.

A.3. Prompt Templates

In Figure 3, we provide the one-shot Chain-of-Thought
(CoT) prompt utilized by the Graph Designer, illustrated

1



Rank\Method FreeScene MG-DiT InstructScene
Top1% 57.10 24.52 18.39
Top2% 87.74 63.23 49.03

Table 1. The user study involving 31 participants to evaluate 10
sets of scenes generated by three methods and focused on two key
aspects: text-scene consistency and scene plausibility. For each
result, we provided a top-down view and a randomly selected per-
spective. Participants were asked to rank the outputs from the three
methods based on the given criteria, from best to worst. We sub-
sequently analyzed and calculated the probability of each method
being ranked as Top1 and Top2 across all evaluations.

with the example of a bedroom. For room types such as
dining room and living room, the prompt template can be
effortlessly adapted by substituting the category list with the
corresponding range.

B. Additional Results
B.1. Evaluation on One-Shot CoT Prompts

In Figure 2, we also present a comparison of the graph ex-
traction results on an image-text pair using one-shot CoT
prompts and one-shot prompts. It is clearly demonstrated
that one-shot CoT prompts significantly enhance the perfor-
mance of the Graph Designer through stepwise guidance,
particularly in the accuracy of spatial relationships, making
the graph extraction process more reliable.

B.2. More Qualitative Results

In this section, we present additional qualitative results for
text-to-scene, graph-to-scene, completion, and stylization
tasks, which are showcased in Figures 4, 5, 6, and 7, respec-
tively. All qualitative results are rendered using Blender’s
Python API.

B.3. User Study

To further evaluate these methods, we conducted a user
study comparing InstructScene, MG-DiT, and full version
of FreeScene. As shown in Table 1, FreeScene demon-
strates clear advantages over other methods



You are an experienced 3D room designer. Now you are given a reference picture or a piece of user text or both, and you need to extract the main objects and their
spatial relationships in the picture and user text. Note that all available object class indices and names should in the following list: [0:'armchair', 1:'bookshelf',
2:'cabinet', 3:'ceiling_lamp', 4:'chair', 5:'children_cabinet',6:'coffee_table', 7:'desk', 8:'double_bed', 9:'dressing_chair', 10:'dressing_table', 11:'kids_bed',
12:'nightstand',13:'pendant_lamp', 14:'shelf', 15:'single_bed', 16:'sofa', 17:'stool', 18:'table', 19:'tv_stand', 20:'wardrobe'], and all the spatial relationship class indices
and names should in the following list: [0:'above', 1:'left of', 2:'in front of',3:'closely left of', 4:'closely in front of', 5:'below', 6:'right of', 7:'behind', 8:'closely right
of', 9:'closely behind'].
The user text is: { user text }, the user image is: { base64_image }

In the subsequent explanations, every [object_name] refers to the category name of a specified object within the given range, and every [class_index] represents the
class index corresponding to the object's category name. Every [color and texture] refers to the color and texture of the object. Based on the object's color and
texture in the colored image, you can incorporate these adjectives into the final description, and please adjust them according to the user's prompt. If the input image
is a sketch or a diagram without any color, please apply the colors and textures specified by the user's text. If no colors and textures are provided by the user text, do
not include descriptive adjectives in the description. Your answer should encompass three parts:
1. The first part is the main objects list consists of all the object indices and class indices.
e.g. [0:8, 1:12, 2:7], that means the object zero is a object with class index 8, and so on.
2. The second part is the spatial relationship triplets list e.g. [[0, 6, 1], [2, 6, 0]]. Note that for every triplet such as [0, 6, 1], each of its elements sequentially
represents the object index, predicate(relationship index), and the subject index. This means the object zero is right of the object one (relation 6). Be sure not to
interchange the object and subject order; otherwise, the inverse relationship should be used.
3. The third part is the simple description of the room. e.g. "there is a [color and texture] [obj_name] on the left of a [color and texture] [obj_name], and a [color
and texture] [obj_name] on the right of the [color and texture] [obj_name]".
You can derive your answer following these steps.
1. Assuming the given image is either top-view or front-view, please determine the viewpoint of the input image to ascertain its orientation, and please recgonize if
the picture is a colored image, sketch or a diagram.
2. Identify all the objects in the image and the user text that match the specified object list, categorizing them by type. You can list every object you find as
following, note that you have to take the object in user text into account as well:
eg : object 0: [obj_name], catogory 12; object 1: [obj_name], category 12; object 2: [obj_name], category 8;... Please ensure that objects outside of the specified
object list are not extracted, even if they are present in the picture.
3. Define that an object node is a main object surrounded by its several child objects, such as a bed surrounded by nightstands and wordrobe, or a table surrounded
by chairs. You should start from the most essential object as root node to identify its child objects, then recursively start from some of the child objects which have
their own child objects, and so on, until all objects in the last step have been traversed. You can use the DFS (Depth-First Search) algorithm to traverse the object
hierarchy. This implies that any subsequent node n > 0 must serve as child objects to a preceding node. such as :
- Node0(root) = The [obj_name] (object 0) → child_list: [obj_name] (object 1), [obj_name] (object 2), ...
- Node1(child of Node0) = The [obj_name] (object 1) → child_list: [obj_name] (object 3), ...
4. Extract the relationships between the root node objects and their surrounding child items, as well as the relationships between the subsequent node objects and
their own child objects, representing these relationships using the previously mentioned triples. You can list every triplet you find as following.
eg: object 0 nightstand is left of (relationship 1) the object 1 [obj_name], triple: [0, 1, 1]; ...
5. Finally, organize the final output according to the specified format. Here is an reasonable example:

[BEGIN]
1. **Viewpoint Calibration**: The given image is a front-view colored image of a bedroom.
2. **Object Extraction**:
- **Object 0**: [obj_name], category [class_index]
- **Object 1**: [obj_name], category [class_index]
- **Object 2**: [obj_name], category [class_index]
- **Object 3**: [obj_name], category [class_index]
...

3. **DFS Traversal**:
- Node0(root) = [obj_name] (object 0) → childlist: [obj_name] (object 1), [obj_name] (object 2) ...
- Node1(child of Node0) = [obj_name] (object 1) → childlist: [obj_name] (object 3) ...
...

4. **Relationship Extraction**:
- **[obj_name] (object 1)** **is left of (relationship 1)** **[obj_name] (object 0)** → [1, 1, 0]
- **[obj_name] (object 2)** **is in front of (relationship 2)** **[obj_name] (object 0)** → [2, 2, 0]
- **[obj_name] (object 3)** **is in front of (relationship 2)** **[obj_name] (object 1)** → [3, 2, 1]
...

5. **Final Output:**:
'''
object list: [0:class_index, 1:class_index, 2:class_index, 3:class_index]
spatial relationship triplets: [[1, 1, 0], [2, 2, 0], [3, 2, 1]]
description: there is a [color and texture] [obj_name] on the left of a [color and texture] [obj_name], a [color and texture] [obj_name] in front of the [obj_name], and
a [color and texture] [obj_name] in front of the [obj_name].
'''
[END]

Your response should be formatted exactly according to the template provided between the [BEGIN] and [END] tags. You can use the provided template as a guide,
and fill in the blanks in each step by step. Please make sure to include all the necessary information and follow the format strictly. Note that if the picture/diagram
is a top view, in the 2D image/diagram, 'above' should correspond to 'behind' or 'closely behind', and 'below' should correspond to 'in front of' or 'closely in front of',
and There is no relationship between 'above' and 'below’. And in the 'diagram', the determination of whether A is in front of, behind, to the left, or to the right of B
is based on which edge of B's rectangle A is closest to.

Figure 3. One-shot CoT prompt template for bedroom.



Place two chairs on either
s ide o f a dining_ tab le .
Position a TV_stand to the
left of the table, with a sofa
situated behind the TV stand.

There is a coffee_table
together with a TV stand
placed in front of a sofa,
and a cabinet positioned to
the left of the TV_stand.

There is a nightstand on
either side of a white bed,
and a wardrobe is positioned
in front of the bed.

In
st

ru
ct

S
ce

n
e

O
u

rs
O

u
rs

 +
 G

D
D

if
fu

S
ce

n
e

A
T

IS
S

T
ex

t 
 P

ro
m

p
ts

Figure 4. Qualitative comparisons on text-to-scene generation.



Double_bed

Tv_stand

Desk

Nightstand

closely right above

Pendant_lampCabinet

front

above
Pendant_lamp

closely leftleft

Chair
closely front

Corner_side_table

Multi_seat_sofa

Corner_side_table

Coffe_table

behind

front

left

Armchair

front

behind

Armchair

Coffe_table
right

above

Pendant_lamp

Loveseat_sofa

Coffee_table

Tv_stand

behind

front

Pendant_lamp

above

Dining_table

closely front

left

Dining_chair×2

closely behindabove

Pendant_lamp

Dining_chair×2Cabinet

left

InstrcutScene OursScene Graphs

Figure 5. Qualitative comparisons on graph-to-scene generation.



In
st

ru
ct

S
ce

n
e

O
u

rs
P

ar
ti

al
  S

ce
n

es
D

if
fu

S
ce

n
e

A
T

IS
S

Figure 6. Qualitative comparisons on completion. Note that, in this task, the main goal is to complete the scene by considering the given
objects in the input partial scene and the floor size is automatically adapted to the boundary of the updated scene.



Origin Scenes InstructScene Ours Text Prompts

Make the room in brown style.

Make the room in gray style.

Make the room in brown style.

Make the room in white style.

Figure 7. Qualitative comparisons on stylization.


	. Implementation Details
	. Data Processing
	. Model Details
	. Prompt Templates

	. Additional Results
	. Evaluation on One-Shot CoT Prompts
	. More Qualitative Results
	. User Study


