
R2C: Mapping Room to Chessboard to Unlock LLM As
Low-Level Action Planner

Supplementary Material

The supplemental material is organized as follows:
• Experimental details of real-world deployment and open-

vocabulary tasks in Sec. 1.
• Additional failure case studies in Sec. 2.
• Additional experiments on fine-grained chessboards in

Sec. 3.
• Model implementation details in Sec. 4.
• Model inference visualizations in Sec. 5.

1. Experimental Details
1.1. Real-World Deployment
We deploy the R2C-GPT-4 model on LoCoBot, a popular
open-source mobile robot based on Kobuki and equipped
with a RealSense D435i camera. We build a 6m×6m office
scene with various objects in the laboratory. Due to the sig-
nificant differences between the camera parameters of the
robot and those of the AI2THOR simulator, directly using
the RGB-D images captured by the robot’s camera for 3D
point cloud generation results in significant loss of environ-
mental information, which poses challenges for low-level
planning of the R2C models. Therefore, following [7], we
use handheld scanning with a Microsoft Azure Kinect DK
camera to obtain relatively complete 3D point clouds for
downstream tasks. The results are shown in Fig. 1. We then
apply an off-the-shelf 3D semantic segmentation model,
SAI3D [8], to process semantic mapping. The chessboard
construction process remains the same as in the main exper-
iments. Finally, we obtain a 22× 23 chessboard with a grid
size of 0.25m.

We choose three types of open-vocabulary tasks for eval-
uation, including: 1) Go to the middle of the shelf and
box, 2) Circle around the bookshelf, and 3) Go to a chair
and back. The initial position of the robot is random. The
robot’s step length, action space are all set to be the same as
the settings in the main experiments. We show third-view
trajectories and the corresponding chessboards in Fig. 2.
The results indicate that our R2C-GPT-4 model demon-
strates strong generalization not only to novel tasks but also
to unseen scenes, fully showcasing the potential of applying
our methods to real-world scenarios.

1.2. Open-Vocabulary Tasks
Tasks in benchmarks like ALFRED are typically limited to
specific objectives, such as “find a specific object” or “in-
teract with a specific object”, which can be easily grounded
without spatial reasoning. In contrast, real-world scenar-

Task/Room Size 7 × 7 5 × 9 5 × 11 Overall

Specific Object 60.0 60.0 80.0 66.7
Specific Location 100.0 60.0 60.0 73.3
Nearest Corner 40.0 40.0 80.0 53.3
Center Between 100.0 80.0 60.0 80.0
Overall 75.0 60.0 70.0 68.3

Table 1. Performance of R2C-GPT-4 on open-vocabulary tasks.

ios involve high-level spatial reasoning, with human in-
structions referencing abstract concepts like “the center of a
room” or “the nearest corner”. To address this, we design an
open-vocabulary mini benchmark that challenge embodied
planners by incorporating such abstract spatial concepts.

1.2.1. Benchmark Construction
We utilize GPT-4 to construct a mini evaluation benchmark.
First, we prompt GPT-4 to randomly generate rooms of
varying sizes (7 × 7, 5 × 9, and 5 × 11) with diverse lay-
outs. Each room contains objects of different types: table,
chair, armchair, sofa, bed, and desk. The sizes of the objects
vary, and the layouts are designed to resemble realistic room
structures with adequate walking space. For each room size,
five unique layouts are generated, resulting in a total of 15
distinct rooms. All generated rooms are shown in Fig. 3.
Based on these rooms, we then prompt GPT-4 to gener-
ate four types of tasks for each room. These tasks simu-
late common embodied tasks encountered in daily life while
requiring both generalized spatial concepts understanding
ability and various spatial reasoning ability combing spe-
cific environmental states.

1) Find Specific Object (Specific Object): Tasks in-
volve identifying a particular object among multiple identi-
cal ones. These tasks evaluate the model’s spatial grounding
ability.

2) Find Specific Location (Specific Location): Tasks in-
clude abstract spatial concepts such as “center” and “cor-
ner”, designed to assess the model’s global spatial under-
standing ability.

3) Go to the Nearest Corner (Nearest Corner): Tasks
require the model to identify the nearest corner based on
the distance estimation.

4) Go to the Center Between Two Objects (Center Be-
tween): Tasks require calculating the midpoint between two
objects, which test precise arithmetic spatial reasoning.

To ensure accuracy, we manually evaluate task comple-
tion. The game rules are similar to those of the main exper-

Figure 1. 3D point cloud of the room.

T1: Go to the middle of the shelf and box.

T2: Circle around the bookshelf.

T3: Go to a chair and back.

Figure 2. Third-view trajectories and chessboard visualizations of the real-world experiments.

Figure 3. Generated rooms in three sizes (7× 7, 5× 9, and 5× 11), each with five different layouts.

iments. However, due to the smaller chessboard size, tasks
are considered successful if they are completed within 50
steps and with no more than two collisions.

1.2.2. Detailed Result Analysis

Sec. 1.2.1 presents the detailed experimental results for all
tasks of GPT-4 (90◦), measured by task success rate across

different room layouts. As shown in Sec. 1.2.1, our R2C-
based LLM can generalize well across different tasks and
rooms. Overall, it performs relatively strong spatial rea-
soning and path planning, achieving 68.3% success rate.
The model performs best in smaller, square rooms (7 × 7),
achieving a success rate of 75%, while rooms with other as-
pect ratios exhibit similar performance levels. This suggests
that the LLM has the potential to handle various room lay-
outs effectively. Tasks involving distance estimation, like
“Nearest Corner”, have the lowest success rates, indicating
difficulties in abstract spatial reasoning. On the other hand,
the “Center Between” task demonstrates relatively high per-
formance, showcasing the model’s ability to calculate pre-
cise distances between two objects.

On the contrary, the above tasks pose significant chal-
lenges for traditional models [4, 5] or current high-level
LLM-based planners [1, 6], as these tasks require a combi-
nation of both high-level semantic understanding and low-
level spatial reasoning and action planning abilities. On one
hand, only LLMs are capable of generalizing to abstract
spatial semantics, such as “the center of a room”, “the near-
est corner”, or “the center between objects”. Traditional
models [4, 5] can only obtain policies of these tasks after
having observed corresponding trajectories. On the other
hand, while current LLM-based planners [1, 6] understand
these abstract spatial semantics, they lack access to specific
environmental states, such as the precise spatial states of ob-
jects in the environment. They rely solely on limited object
descriptions from caption models, which are insufficient for
directly guiding a low-level planner to reach a target loca-
tion.

Fig. 6 illustrates a case study of GPT-4’s open vocabu-
lary experiment, where the task “Move to the nearest corner
in the room” is completed successfully in 5 steps. GPT-4
is guided to first analyze the state and generate a Chain-
of-Thought Decision (CoT-D), followed by determining
the optimal move. Finally, GPT-4 independently decides
whether to terminate the task. We highlight the different
sub-tasks within the CoT-D using distinct colors in GPT-4’s
responses. As shown in its responses, GPT-4 accurately in-
terprets the semantics of “corner” and correctly identifies
the nearest one. During the “Selection Analysis”, it eval-
uates each possible move on the chessboard, including the
occupation, e.g., (2,5) is occupied by the table, making the
move impossible; and the distance, e.g., the shortest path to
a corner. Then it ultimately selects the optimal position for
the next step.

2. Failure Case Studies
We further analyze the failure cases of R2C by categorizing
them into segmentation, language processing, object explo-
ration, interaction. It explores how these issues affect the
model’s performance. By examining the impact of each

22.1

21.7

18.2

16.7

46.5

40.3

13.2

21.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

U
nseen

Seen

Segmentation Failure Language Processing Failure
Object Not Found Interaction Failure

Figure 4. Failure Types. The percentage of different failure types
of R2C on the validation set in ALFRED.

failure mode, the study identifies key bottlenecks, such as
segmentation and language processing. Below is a sum-
mary of the key failure modes identified in the R2C-Mistral-
7B on ALFRED seen and unseen validation sets.

• Segmentation Failure: The system struggles to correctly
segment objects, making it hard to identify or interact
with them. This is a key bottleneck in visual perception,
particularly due to the domain gap between the simulator
and real-world scenes.

• Language Processing Failure (High-Level Planning
Failure): Failures occur when the system misinterprets
language instructions, often because of the ambiguity in
natural language. For example, it may confuse object cat-
egories like desk lamps and floor lamps, causing cascad-
ing errors.

• Object Not Found: The system often cannot locate small
or poorly visible objects, especially from certain view-
points, which challenges low-level planning and is wors-
ened by limited segmentation and field of view.

• Interaction Failure: This happens when the system can-
not interact with objects, either due to them being out of
view, too far away, or poorly segmented. It can also occur
when the target object is inside a closed receptacle, like a
drawer or a cabinet.

The proportion of different types of errors is shown in
Fig. 4. Among them, “Segmentation Failure” and “Ob-
ject Not Found” are the two main error types. “Object Not
Found” and “Interaction Failure” are partly due to the lim-
itations of the simulator but also stem from low-level plan-
ning issues within R2C. Due to the fact that ALFRED is a
long-horizon planning task, the accumulation of these dif-
ferent types of errors will pose significant challenges to the
model, resulting in a low success rate of the current model.

3. Additional Experiments: More Fine-grained
Chessboard

We further conduct experiments with the grid’s size set to
be 0.1m. Then the chessboard becomes more fine-grained
(160× 160). We use the R2C-Mistral-7B model trained on
64×64 chessboard data to infer with such more fine-grained

chessboard (zero-shot). To simulate the cluttered setting,
we select a kitchen with messy objects. The visualized
chessboards and agent’s trajactories are shown in Fig. 5. We
find that the model can easily generalize to this more fine-
grained chessboard. Our model successfully completes the
task with 111 steps. Note that the target object, an apple, is
relatively small, but its position is accurately represented on
the chessboard.

4. Implementation Details
We provide additional model implementation details, in-
cluding model settings and the pseudocode of the R2C
framework. We also compare the computational cost of our
models with two representative methods.

4.1. Model Settings
In all our GPT-4 experiments, we use the official API with-
out any in-context examples. The specific model we used
is gpt-4-turbo-2024-04-09. The hyperparameters for the
Chain-of-Thought fine-tuning of Mistral-7B are detailed in
Tab. 2. We use Mistral-7B-Instruct-v0.2 as the base model
and perform full parameter fine-tuning. The learning rate is
set to 2e-5. During training, the batch size per device is 32,
while for inference, it is reduced to 1.

Hyper-parameter Values

base model Mistral-7B-Instruct-v0.2
fine-tune mode full fine-tune
deep speed ds z3
cutoff length 3000
preprocessing num workers 16
per device train batch size 32
per device eval batch size 1
gradient accumulation steps 1
lr scheduler type cosine
logging steps 10
warmup steps 375
save steps 500
eval steps 500
evaluation strategy steps
learning rate 2e-5
num train epochs 1.0
max samples 1000000
val set ratio 0.01
ddp timeout 1800000

Table 2. Hyper-parameters in Chain-of-Thought fine-tuning of
Mistral-7B.

4.2. Pseudocode of R2C Framework
The pseudocode for the complete R2C framework is pro-
vided in Algorithm 1.

Algorithm 1 Room to Chessboard Planning Framework

1: Input: Instruction L, Game rules R, Initial chessboard
information U0,

2: Initial position u0

3: Output: Sequence of coordinates [ut = (xt, yt)] and
action sequence a

4: Initialize current position (x0, y0) based on u0

5: Initialize history steps Q0 = []
6: t← 0, k ← 1, errors← 0
7: High-Level Planning (HLP):
8: Parse instruction L to generate sequence of sub-

goals G = [G1, G2, ..., GK], where Gk =
(Actionk, Objectk)

9: while t < T and k ≤ K and errors < E do
10: Get current subgoal Gk = (Actionk, Objectk)
11: Low-Level Planning (LLP):
12: Get new observations: ot = {Irgb, Idpt}
13: Update chessboard: Ut = F (ot, Gk)
14: if Actionk is navigation then
15: ut = π(P (Gk,Ut, R,Qt))
16: Convert ut = (xt, yt) to executable actions
17: a = {a1, a2, ..., an} in Anav

18: Execute actions a
19: t← t+ n
20: if Move to (xt, yt) is successful then
21: Q.append((xt, yt))
22: else
23: errors← errors+ 1
24: end if
25: if Objectk is visible in Ut then
26: k ← k+1 ▷ Move to next subgoal if visible
27: end if
28: else if Actionk is interaction then
29: Execute predefined low-level interaction actions
30: a = {a1, a2, ..., an} in Aint

31: t← t+ n
32: k ← k + 1 ▷ Directly move to next subgoal
33: end if
34: end while

4.3. Comparison of the Computational Cost
We provide a comparison of the computational cost among
the R2C models, the traditional baseline FILM [4], and the
LLM-based baseline, LLM-P [6]. Note that inference speed
refers to the time required for each model call, while infer-
ence frequency refers to the average number of times the
model is called per episode.

As shown in Tab. 3, though the textualized chessboard is
relatively long, we only keep the task-related object coordi-
nates and remove the unexplored coordinates. The prompt
length of R2C in each turn is about 1k tokens, which is sim-
ilar to the LLM-P. The proposed CoT-D mainly affects the

Step 25 Step 59 Step 75

Figure 5. Cluttered setting demo. The chessboard size is 160 × 160. The task is “Get an apple from the sink and heat it up in the
microwave”. The blue dashed line represents the trajectory.

Model FILM [4] LLM-P (GPT) [6] R2C-GPT-4 R2C-Mistral-7B

Input Prompt Length (tokens) / ∼1k ∼1k ∼1k
Output Seq. Length (tokens) / ∼20 ∼1.5k ∼1.5k
Training Data / Examples (ep) 21k 100 0 21k
Training Time (GPU*Day) 1.5[3090] / / 4[A100]
Inference Speed (s/times) 357[3090] 5 12 0.53 (100 processes) / 3.79 (1 process)
Inference Freq. (times per ep) 1 <10 ∼50 ∼50

Table 3. Comparison of computational cost across different models.

length of the output of LLMs. Therefore, the inference time
will become relatively longer. However, since LLM-P can
only generate high-level plans, besides the inference time
of GPT, its inference time depends on the motion planning
model, HLSM [2], which is not short either, see the infer-
ence speed of FILM [4] (357s).

Besides, the training data we used is similar to FILM. We
just split the complete episode data into single steps to train
the model’s single-step prediction ability. Since the number
of parameters is much larger than traditional models, the
training time of R2C is greater than FILM. However, FILM
has 4 sub-models to train. The combination of each sub-
models will also bring significant time costs.

As for the inference cost, the average inference time for
FILM is about 357 seconds per episode, as it generates the
entire action sequence for the episode in at once. In con-
trast, our R2C-Mistral-7B performs single-step reasoning,
outputting the next target coordinate at each step. The av-
erage inference time for an episode is comparable between
FILM and R2C-Mistral-7B (357s vs. 8×50s = 400s). Note
that the model and the task can be run in parallel using
the vLLM [3] speed-up technique (multi-process) to real-
ize much faster inference. Using 4 A40 GPUs and running
tasks in parallel (100 process) can speed up the single step

inference time to 0.53s.

5. Model Inference Examples
We present inference examples for both GPT-4 and the
open-source Mistral-7B models, each containing high-level
and low-level plannings. Zero-shot R2C-GPT-4: Fig. 7 and
Fig. 8 in the task “Look at a mug in lamp light.” Fine-tuned
R2C-Mistral-7B: Fig. 9 and Fig. 10 in the task “Turn on a
lamp while holding a baseball bat.”

References
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-

otar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can,
not as i say: Grounding language in robotic affordances. arXiv
preprint arXiv:2204.01691, 2022. 3

[2] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and
Yoav Artzi. A persistent spatial semantic representation for
high-level natural language instruction execution. In Confer-
ence on Robot Learning, pages 706–717. PMLR, 2022. 5

[3] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for
large language model serving with pagedattention. In Pro-
ceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023. 5

[4] So Yeon Min, Devendra Singh Chaplot, Pradeep Ravikumar,
Yonatan Bisk, and Ruslan Salakhutdinov. Film: Following in-
structions in language with modular methods. arXiv preprint
arXiv:2110.07342, 2021. 3, 4, 5

[5] Alexander Pashevich, Cordelia Schmid, and Chen Sun.
Episodic transformer for vision-and-language navigation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15942–15952, 2021. 3

[6] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M
Sadler, Wei-Lun Chao, and Yu Su. Llm-planner: Few-shot
grounded planning for embodied agents with large language
models. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2998–3009, 2023. 3, 4,
5

[7] Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir
Navab, and Federico Tombari. Scenegraphfusion: Incremen-
tal 3d scene graph prediction from rgb-d sequences. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7515–7525, 2021. 1

[8] Yingda Yin, Yuzheng Liu, Yang Xiao, Daniel Cohen-Or, Jing-
wei Huang, and Baoquan Chen. Sai3d: Segment any instance
in 3d scenes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3292–3302,
2024. 1

Figure 6. Case study of GPT-4’s open-vocabulary experiment. Task: Move to the nearest corner in the room.

Please translate the subgoal instruction into subgoal expression like (GotoLocation,["Soapbar"]).
Each subgoal can be translated to ONLY ONE subgoal expression!For example, if you have 5 subgoal, you should only output 5 subgoal expression!
Please ONLY use the following subgoal verb:
['GotoLocation','PickupObject','PutObject','CoolObject','HeatObject','CleanObject','SliceObject','ToggleObject']
When the task means clean something, use CleanObject instead of ToggleObject something like faucet
When the task means heat or cook something, use HeatObject instead of PutObject into microwave etc.

Your task is Look at a mug in lamp light.
And the subgoal instruction are : ['Go to the desk in front of you, then look up to the shelves.', 'Pick up the mug from the shelf.', 'Look down to the lamp on
the desk.', 'Turn on the lamp.']
Please ONLY use the following object name:
['Sink Basin', 'Arm Chair', 'Bathtub Basin', 'Bed', 'Cabinet', 'Cart', 'Coffee Machine', 'Coffee Table', 'Counter Top', 'Desk', 'Dining Table', 'Drawer', 'Dresser',
'Fridge', 'Garbage Can', 'Microwave', 'Ottoman', 'Safe', 'Shelf', 'Side Table', 'Sofa', 'Stove Burner', 'TV Stand', 'Toilet', 'Faucet', 'Floor Lamp', 'None', 'Mug', 'Desk
Lamp']
ONLY answer with DIRECTLY like the example below , notice that an subgoal except PutObject only have one object and this example's task is "put a cooked
slice of bread on to the counter":

(GotoLocation,["Countertop"])|(PickupObject,["Knife"])|(GotoLocation,["Bread"])|(SliceObject,["Bread"])|(GoToLocation,["Drawer"])|(PutObject,["Knife","D
rawer])|(GoToLocation,["Dining Table"])|(PickupObject,["Bread"])|(GoToLocation,["Countertop"])|(PutObject,["Bread","Microwave"])|("HeatObject",["Brea
d"])|(GoToLocation,["Countertop"])|(PutObject,["Bread","Countertop"])

GPT Response:
(GotoLocation,["Shelf"])|(PickupObject,["Mug"])|(GotoLocation,["Desk Lamp"])|(ToggleObject,["Desk Lamp"])

Figure 7. GPT-4’s high-level planning prompt and answer.

On a 64*64 block chessboard, the rules of the game are as follows:
Establish a coordinate system with the top left grid as (1,1). Each block can be represented by coordinates.
For instance, the block in the 3rd row and 5th column is denoted as (3,5). its right is (3,6), its left is (3,4), its up is (2,5), its down is (4,5).
spatial relation:[left,right,up,down,leftup,rightup,leftdown,rightdown]
In the chessboard, there are the following objects: Bed: [[14, 29], [14, 30], [14, 31], [14, 32], [14, 33], [14, 34], [14, 35], [14, 36], [14, 37], [14, 38], [14, 39],
[14, 40], [14, 41], [14, 42], [14, 43], [15, 29], [15, 30], [15, 31], [15, 32], [15, 33], [15, 34], [15, 35], [15, 36], [15, 37], [15, 38], [15, 39], [15, 40], [15, 41], [15,
42], [15, 43], [16, 29], [16, 30], [16, 31], [16, 32], [16, 33], [16, 34]]
Unexplore: [[16, 40], [16, 41], [16, 42], [16, 43], [17, 40], [17, 41], [17, 42], [17, 43], [18, 40], [18, 41], [18, 42], [18, 43], [19, 40], [19, 41], [19, 42], [19, 43],
[20, 40], [20, 41], [20, 42], [20, 43], [21, 41], [21, 42], [21, 43], [22, 40], [22, 41]]
Explore: [[21, 40], [23, 32], [23, 33], [23, 34], [23, 35], [23, 36], [23, 37], [23, 38], [23, 39], [24, 30], [24, 31], [24, 32], [24, 33], [24, 34], [24, 35], [24, 36], [24,
37], [24, 38], [25, 30], [25, 31], [25, 32], [25, 33], [25, 34], [25, 35], [25, 36], [25, 37]]
Obstacle: [[24, 29], [25, 29], [26, 29], [27, 29], [28, 29], [29, 29], [29, 36], [30, 29], [30, 36], [33, 31], [33, 32], [33, 33], [33, 34], [33, 35], [33, 36], [34, 32], [34,
33], [34, 34], [34, 35]]
Desk: [[27, 39], [27, 40], [28, 38], [28, 39], [28, 40], [29, 37], [29, 38], [29, 39], [29, 40], [30, 37], [30, 38], [31, 37], [31, 38], [32, 37], [32, 38], [33, 37], [33, 38],
[33, 39], [34, 36], [34, 37], [34, 38], [34, 39], [34, 40]]
Shelf: [[30, 39], [30, 40], [31, 29], [31, 30], [31, 39], [32, 29], [32, 30], [33, 29], [33, 30], [33, 40], [34, 29], [34, 30]]
Mug: [[31, 40], [32, 39], [32, 40]]
Agent: [[32, 33]]

The movememt is forbidden on the object block.
You can only move 1 block at a time.
Your task is [['GotoLocation', ['shelf']], ['PickupObject', ['mug']], ['GotoLocation', ['desklamp']], ['ToggleObject', ['desklamp']], ['NoOp', []]]
Your subgoal is (GotoLocation, [mug])
Your position is at [32, 33]
Your available position is [[31, 33], [32, 32], [32, 34]]
Tell me what position you would move. You should first tell me your reason ,which first FIRST analyze the spatial relation between target position(if you
see the subgoal object, else you should explore the room as far as you can) and your position, NEXT analyze each available position(the spatial relation
between your position and it AND if it makes you near the target), and judge whether the sub-goal is finished.
ALL you OUTPUT is below, DO NOT use code block or other format:
{

"reason": "...",
"next_position": "(x, y)",
"subgoal_done": "True/False"

}

GPT Response:
{

"reason": "The subgoal is to go to the location of the mug. The coordinates for the mugs are at [31, 40], [32, 39], and [32, 40]. Currently, the agent is
at location [32, 33]. The shortest path initially appears to be moving directly to the right from the agent's current position in order to approach one of the
mug positions most directly. Moving right from [32, 33] leads to [32, 34], moving closer in the vertical lane to the target mug coordinates ([32, 39] and [32,
40]). From [32, 34], the agent can then potentially proceed further right in subsequent moves to reach [32, 39] or [32, 40]. Moving left to [32, 32] or up to
[31, 33] would not progress towards the mug’s location efficiently as these moves do not reduce the vertical distance to the target mug coordinates.",

"next_position": "(32, 34)",
"subgoal_done": "False"

}

Figure 8. GPT-4’s low-level planning prompt and answer.

You are an indoor agent.
Please divide the TASK into some sub-steps according to the DESCRIPTION.
Each sub-step MUST be expressed in the form of (Action, [Object]), where Action is one of (GotoLocation, PickupObject, PutObject, CoolObject,
HeatObject, CleanObject, SliceObject, ToggleObject, NoOp), and Object refers to one or more objects related to the Action.
TASK: Turn on a lamp while holding a baseball bat.
DESCRIPTION: ['walk forwards a bit towards the baseball bat', 'grab the baseball bat leading against the wall', 'turn and walk over to the right side of the
computer desk', 'turn on the lamp on the computer desk']

R2C-Mistral-7B Response:
[('GotoLocation', ['baseballbat']), ('PickupObject', ['baseballbat']), ('GotoLocation', ['desklamp']), ('ToggleObject', ['desklamp']), ('NoOp', [])]

Figure 9. Mistral’s high-level planning prompt and answer.

On a 64*64 block chessboard, the rules of the game are as follows:
Establish a coordinate system with the top left grid as (1,1). Each block can be represented by coordinates.
for instance, the block in the 5th column and 3rd row is denoted as (5,3).
In the chessboard, there are the following explored objects: obstacle: [[27, 28], [27, 29], [27, 30], [27, 31], [27, 32], [27, 33], [27, 34], [27, 35], [27, 36], [27,
37], [28, 26], [28, 30], [28, 31], [28, 32], [28, 33], [28, 34], [28, 35], [28, 36], [28, 37], [28, 39], [28, 40], [28, 41], [28, 42], [29, 26], [30, 44], [31, 29], [31, 44],
[32, 43], [32, 44], [33, 42], [33, 43], [33, 44], [34, 42], [34, 43], [34, 44], [35, 42], [35, 43], [35, 44], [36, 44], [37, 43], [37, 44], [38, 42], [38, 43], [38, 44], [39,
44], [41, 35], [41, 36]]
garbagecan: [[27, 43], [27, 44], [28, 43], [28, 44], [29, 43], [29, 44]]
desk: [[28, 27], [29, 27], [29, 29], [30, 26], [30, 27], [30, 28], [30, 29], [31, 26], [31, 27], [31, 28], [32, 26], [32, 28], [32, 29], [33, 26], [33, 28], [33, 29], [34, 29]]
baseballbat: [[28, 28], [29, 28]]
desklamp: [[32, 27], [33, 27]]
sidetable: [[34, 26], [34, 27]]
drawer: [[34, 28], [39, 35], [39, 36], [39, 37], [39, 38], [40, 38]]
bed: [[35, 26], [35, 27], [35, 28], [35, 29], [35, 30], [35, 31], [35, 32], [35, 33], [35, 34], [36, 26], [36, 27], [36, 28], [36, 29], [36, 30], [36, 31], [36, 32], [36, 33],
[36, 34], [37, 26], [37, 27], [37, 29], [37, 30], [37, 31], [37, 32], [37, 33], [37, 34], [38, 28], [38, 29], [38, 30], [38, 31], [38, 32], [38, 33], [38, 34], [39, 28], [39,
29], [39, 30], [39, 31], [39, 32], [39, 33], [39, 34]]
shelf: [[38, 41], [39, 41], [39, 42], [39, 43], [40, 42], [40, 43]]
dresser: [[40, 34], [40, 35], [40, 36], [40, 37], [41, 37], [41, 38], [42, 37]].
The movement is forbidden on the object block.
You can only move 1 block at a time.
Task: (GotoLocation, [baseballbat])
Current Position: [32, 31]
History Trajectory: [[32, 32], [32, 33]]
Please select your next position from [[31, 31], [33, 31], [32, 30], [32, 32]].
Please analyze the options and choose the best one to finish the task.

R2C-Mistral-7B Response:
Based on the given information, the current position of the agent is [32, 31], and the target is baseballbat, which is located at [[28, 28], [29, 28]].
There are 4 options for the agent to move towards the target position. Now, let's analyze the options given:
[31, 31]: This position is at the above of the agent. With this step, the agent approaches closer to the target position.
[33, 31]: This position is at the below of the agent. This action will distance the agent from the target position.
[32, 30]: This position is at the on the left side of the agent. This action will distance the agent from the target position.
[32, 32]: This position is at the on the right side of the agent. This move takes the agent away from the target position.
Based on the analysis above, the best option for the agent to move towards the target position is [31, 31]. Therefore, the answer is:
Next position: [31, 31]

Figure 10. Mistral’s low-level planning prompt and answer.

	Experimental Details
	Real-World Deployment
	Open-Vocabulary Tasks
	Benchmark Construction
	Detailed Result Analysis

	Failure Case Studies
	Additional Experiments: More Fine-grained Chessboard
	Implementation Details
	Model Settings
	Pseudocode of R2C Framework
	Comparison of the Computational Cost

	Model Inference Examples

