8. Appendix

8.1. Proof of Linear Translation Invariance of the
Softmax Function

We now prove in detail that the softmax function is invari-
ant under linear translation. Specifically, we will show that
if the input vector to the softmax function is linearly shifted
by a constant, the output remains unchanged.

Lety = (y1,92,---,Yn) € R™ be a real-valued vector.
The softmax function applied to y produces a vector Y =
(Y1,Ys,...,Y,,) where each component Y; is given by:

eYi

DI

Let ¢ € R be a constant, and consider the translated vector
y =(y1+¢,ya+c¢,...,yn + c). We aim to prove that the
softmax of the translated vector y’ is equal to the softmax
of the original vector y. For the translated vector y’, the
softmax output is:

Y = €19

, eYi +c
V= —— 32
DV .
We can simplify the expression by factoring out e from
both the numerator and denominator:

i pC
Y/ = e (33)
Djor€¥ie
Since e is a common factor in both the numerator and
the denominator, it cancels out:
eYi
Vi=c— =Y (34)
)y j=1€%

This expression is exactly the definition of s;, the softmax
component of the original vector z. Since Y/ = Y; for all
1, we conclude that the softmax function is invariant under
translation. That is, if we translate the input vector y by
adding a constant c to each element, the softmax output
remains unchanged, which is:

softmax(y’ =y + ¢) = softmax(y) (35)

With such Linear Translation Invariance of the Softmax
Function, we can maximize the Lo norm of logits output
lly]|2 and its variance o(y) simultaneously to place the fin-
gerprint samples close to the steep decision boundary for
optimizing the fingerprint samples’ sensitivity with respect
to model tampering.

8.2. Detaled explanation on optimization efficiency

Different from [13]], we do not directly optimize Eq.5
and Eq.13 as (1) Using Eq.5 and Eq.13 as the loss func-
tion requires computing the second derivative during back-
propagation optimization because calculating the loss func-
tion Eq.5 and Eq.13 involves first-order derivatives. This

significantly reduces optimization efficiency. (2) In exist-
ing deep learning frameworks (e.g., PyTorch and Tensor-
Flow), directly optimizing Eq.13 would cause the program
to work serially, preventing the parallel optimization of
a batch of fingerprint samples . This is because, in Py-
Torch and TensorFlow, logits vector of a batch sample X,
fW, X) = [YzysYasy " » Y, |, cannot directly compute
the gradient with respect to parameter W; instead, operation
f(W, X).sum() is needed. Thus, if Eq.13 is used as the
loss function, the gradients of different fingerprint samples
in a batch would be the same in the input space, which is
clearly incorrect. This would further reduce optimization
efficiency.

8.3. Results on ImageNet

Tab[3|summarizes the tampering detection results on Ima-
geNet. Note that due to bit-flipping causing the model to fail
in properly classifying any inputs, the relationship between
the detection rate and K is no longer stable for both IBSF
and SDBE.

8.4. Results on Smoothed Model

Since our SDBF leverages the steep decision boundary
of a classification model, a natural question is whether our
SDBEF is applicable to the smoothed model. To answer
this, we use two models smoothed with an SOTA adversar-
ial training(AT) method pre-trained by [32]] on CIFARI10,
which is WRN-28-10 and WRN-70-16, to explore whether
our SDBEF is applicable to such smoothed models. TabH]
summarizes the information on these two models, including
clean accuracy, robust accuracy under auto-attack [5]], and
the total number of parameters.

We evaluate the impact of adversarial training(AT) on
both detection performance and optimization efficiency of
SBDEF. The results are shown in Fig[§|and Fig[9] We find that
although AT slightly increased the optimization time cost of
SDBF and slightly reduced its performance when K = 2,
SDBF remains efficient and effective when K is larger. This
is an interesting yet reasonable phenomenon.

An intuitive explanation is that the decision bound-
ary between any two classes and the decision boundary
among K (K > 3) classes are two distinct regions based
on Def.4.1. While adversarial training smooths the deci-
sion boundary between any two classes, including the true
class and adversarial target class (non-true class) of x (mean-
ing K = 2 in this paper), it does not explicitly enforce
the smoothing of the intersecting decision boundary of
K (K > 3) classes, making the smoothness of K (K > 3)-
class decision boundary might not be as pronounced as that
of any two classes (K = 2). Notably, this characteristic of

Table 3. Tamper detection rate (%) with M = 1 probe on ImageNet. For fine-tuning(FT), "Last" specifies only fine-tuning the last layer,
with numbers indicating the learning rate exponent (e.g., 10~°). The *On-Learning’ refers to online learning.

Method FTrast-5 | Backdoor | T-Attack | Unlearning | Quantization | Different Arch. | Pruning | On-Learning | Bit-fliping
SSF 354 67.1 50.2 43.1 81.2 82.6 72.2 56.8 91.2
MiSentry 84.9 89.8 89.5 86.6 92.5 93.8 91.3 88.3 923
PublicCheck 42,5 824 65.2 59.4 88.3 84.5 79.6 55.9 92.8
K=2 56.3 84.9 75.6 63.8 90.4 87.1 85.5 66.1 91.1
K=4 68.9 88.2 833 71.3 89.1 89.3 91.5 78.8 90.4
IBSF K=6 79.4 90.3 89.9 79.5 90.4 92.2 91.9 86.9 923
K =38 86.6 90.9 90.4 86.8 91.1 93.6 92.4 89.3 92.1
K =10 88.7 91.2 91.5 89.2 91.3 94.8 93.3 90.5 93.9
K=2 62.1 88.7 81.5 76.4 90.5 91.2 89.4 73.9 92.8
K=14 832 90.4 87.1 852 92.6 92.8 92.8 85.1 91.5
SDBF(ours) | K =6 87.5 91.6 89.6 90.3 92.8 94.1 94.2 89.9 91.9
K=38 89.5 91.9 90.5 91.2 93.5 94.4 94.3 91.8 93.7
K =10 91.4 93.3 92.7 93.9 94.7 96.1 95.4 93.5 94.2
70 T 70
B==="" - ==
o __==== S ;::::—
S 601 PP i < 0 2%
Q ¢’;’ 8 ’:”
= P < g
o~ 50_ ' R — ;r
g w’ § 501 /'I
2 g = Y
+ L4 = 2/,
8401 7 : 3 o .
2 gl e -#- WRN-28-10 With AT 2404 -#- WRN-70-16 With AT
A ws -#-- WRN-28-10 Without AT | ° "’ --#- WRN-70-16 Without AT
301 o o
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
K K
(2) WRN-28-10 (b) WRN-70-16

Figure 8. (a) Tampering detection rates of WRN-28-10 on CIFAR10 using a single fingerprint sample for K ranging from 2 to 10 to detect
fine-tuning the last layer with 10~° learning rate. (b) Tampering detection rates of WRN-70-16 on CIFAR10 using a single fingerprint
sample for K ranging from 2 to 10 to detect fine-tuning the last layer with 10~ learning rate.

2.551 A

-#- WRN-28-10 With AT o
-#- WRN-28-10 Without AT 45"
2.50 1 o

3.851 -
3.80 oeeofgpmz=EEE R

3751w

2.45
3.701 # :
J -#- WRN-70-16 With AT

2409 -~ 3.659 -#-- WRN-70-16 Without AT

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Average Time Cost (in seconds)
\
\
\
|
\
\
\
Average Time Cost (in seconds)

(a) WRN-28-10 (b) WRN-70-16

Figure 9. (a) Average time cost (in seconds) of WRN-28-10 on CIFAR10 using a single fingerprint sample for K ranging from 2 to 10 to
detect fine-tuning the last layer with 10~° learning rate. (b) Average time cost (in seconds) of WRN-70-16 on CIFAR10 using a single
fingerprint sample for K ranging from 2 to 10 to detect fine-tuning the last layer with 10" learning rate.

Table 4. Clean accuracy, robust accuracy, and number of parameters adversarial training does not negatively impact its robust-
on CIFARIO. ness to adversarial examples since each adversarial example
has a true label and a target label (non-true label). However,
this creates an opportunity for SDBF to be applicable, es-

Model Clean Acc Robust Acc # of params
WRN-28-10 92.44% 67.31% 20M
WRN-70-16 93.25% 70.69% 50M

pecially when K > 3, where it remains both effective and
efficient.

In this paper, we have preliminarily investigated whether
SDBEF can be applied to smoothed models. The question
of how adversarial training precisely smooths the decision

boundaries of classes is left for future work. Overall, SDBF
is applicable to both models trained with standard methods
and those smoothed using current state-of-the-art adversarial
training techniques.

	. Appendix
	. Proof of Linear Translation Invariance of the Softmax Function
	. Detaled explanation on optimization efficiency
	. Results on ImageNet
	. Results on Smoothed Model

