
A. Theoretical Analysis
A.1. Is it always possible to distinguish between

Generated content and real images?
The recent work explores the detection of AI-generated con-
tent by analyzing the AUROC for any detector  D . It lever-
ages Le Cam’s lemma [22, 45], which states that for any
distributions  G and  H , given an observation  s , the mini-
mum sum of Type-I and Type-II error probabilities in test-
ing whether  s \sim G   or  s \sim H   is equal to  1 - d_{\text {TV}}(G, H)  ,
where  d_{\text {TV}}  denotes the total variation distance between the
two distributions. This result can be interpreted as:

 \label {ROC_upper} \text {TPR}_{\gamma } \leq \min \{\text {FPR}_{\gamma } + d_{\text {TV}}(G, H),1\},      (5)

where TPRγ ∈ [0, 1]. The upper bound in equation 5 is
leveraged in one of the recent work [36] to derive AUROC
upper bound AUC ≤ 1

2 + dTV(G,H) − dTV(G,H)2

2 which
holds for any D. This upper bound led to the claim of
impossibility results for reliable detection of AI-Generated
content when dTV(G,H) is approaching 0. The upper
bound in equation 5 is also interpreted as either certain real
images will be detected falsely as AI-generated content will
not be detected reliably when dTV(G,H) is small. How-
ever, as discussed in Sec. 3, the Likelihood-Gap Hypothesis
guarantees that the difference between the two distributions
is significant enough (dTV(G,H) or dKL(G,H) is greater
than some positive gap). This implies it is always possible
to distinguish between real and machines.

A.2. Principled Choice of K
In Sec. 3, we propose the Likelihood-Gap Hypothesis,
which posits that the expected log-likelihood of the machine
generation process  G exceeds that of the human genera-
tion process  H by a positive gap,  \Delta > 0  . To exploit this
difference between the distributions, we introduce a dis-
tance function  D(Y, Y')    that quantifies the similarity be-
tween two images  Y and  Y' . This distance function can
also be interpreted as a kernel function used in kernel den-
sity estimation.

By re-prompting the masked pixels, we can evalu-
ate how closely the remaining pixels  Y_0  align with the
machine-generated distribution: D̂(Y0, {Yk}k∈[K]) :=
1
K

∑K
k=1 D(Y0, Yk), where K is the number of times of re-

prompting.
Similar to the kernel density estimation, we can use this

quantity and some threshold to determine whether to accept
or reject that S ∼ G. Under certain assumptions, this esti-
mator enjoys n−1/2-consistency via Hoeffding’s argument.
In the following, we provide a formal argument.

Assumption 1 Suppose we have a given human-generated
content [X,Y0] ∈ supp(h) and a machine-generated re-
maining pixels Ỹ0, consider the random variable D(Y0, Y

′)

and where Y ′ is sampled by re-prompting given X , that is
Y ′ ∼ G(·|X). We assume D(Y0, Y

′) and D(Ỹ0, Y
′) are σ-

sub-Gaussian. We also assume that the distance gap is sig-
nificant: EY ′∼G[D(Y0, Y

′)|X] − EY ′∼G[D(Ỹ0, Y
′)|X] >

∆.

From this assumption, we can derive that it suffices to
re-prompt Ω

(σ log(1/δ)
∆2

)
times.

Proof Note that E [D̂] = E [D] and the distribution is sub-
Gaussian. By Hoeffding’s inequality, we have that with
probability at least 1− δ,  \bigg | \frac {1}{K} \sum _{k=1}^{K} D(Y_0, Y_k) - \mathcal {E}_{Y' \sim G}[ D(Y_0, Y') | X] \bigg | & \le \sqrt {\frac {\sigma \log (\delta / 2)}{K}}.




   










Similarly, we have that with probability at least 1− δ,  \bigg | \frac {1}{K} \sum _{k=1}^{K} D(\tilde {Y}_0, Y_k) - \mathcal {E}_{Y' \sim G}[ D(\tilde {Y}_0, Y') | X] \bigg | & \le \sqrt {\frac {\sigma \log (\delta / 2)}{K}}.




     










By the union bound, we have that with probability 1 − 2δ,

  & \frac {1}{K} \sum _{k=1}^{K} D(Y_0, Y_k) - \frac {1}{K} \sum _{k=1}^{K} D(Y_0, Y_k) \\ & > \frac {1}{K} \sum _{k=1}^{K} D(Y_0, Y_k) - \mathcal {E}_{Y' \sim G}[ D(\tilde {Y}_0, Y') | X] \\&\quad \quad - \frac {1}{K} \sum _{k=1}^{K} D(\tilde {Y}_0, Y_k) + \mathcal {E}_{Y' \sim G}[ D(\tilde {Y}_0, Y') | X] + \Delta \\ & \ge \Delta - 2 \sqrt {\frac {\sigma \log (\delta / 2)}{K}}.
























    









      
 

 







If we set K = Ω
(σ log(1/δ)

∆2

)
, then there is a gap between the real

distance and the machine’s distance.

B. More Details of Scoring Function δ

In this section, we provide additional details about scoring
function δ including PSNR, SSIM, L1 distance and L2 dis-
tance. Let  \mathbf {I} \in \mathbb {R}^{h \times w \times c}   be the original image, where  h and
 w are the height and width, respectively, and  c is the num-
ber of channels. Let  \mathbf {I}' \in \mathbb {R}^{h \times w \times c}    be the recovered image.
Let  \text {MAX}  denote the maximum possible pixel value (e.g.,
 255  for 8-bit images).
Peak Signal-to-Noise Ratio (PSNR) measures the ratio be-
tween the maximum possible value of a pixel and the power
of the distortion (i.e., Mean Squared Error) between the
original and reconstructed images. The Mean Squared Error
(MSE) defined as follows:

  \text {MSE}(\mathbf {I}, \mathbf {I}') = \frac {1}{h \times w \times c} \sum _{i=1}^{h} \sum _{j=1}^{w} \sum _{k=1}^{c} \left ( \mathbf {I}(i, j, k) - \mathbf {I}'(i, j, k) \right )^2.  
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Figure 6. Examples of hard cases for distinction in human evaluations.

The PSNR formula: PSNR(I, I′) = 10 · log10
(

MAX2

MSE(I,I′)

)
,

a higher PSNR value indicates a smaller difference between
the images, implying better recovery.
Structural Similarity Index (SSIM) is designed to mea-
sure perceptual differences between two images, taking into
account luminance, contrast, and structural information.
The formula is: SSIM(I, I′) = (2µIµI′+C1)(2σII′+C2)

(µ2
I+µ2

I′+C1)(σ2
I+σ2

I′+C2)
,

where \mu _{\mathbf {I}}  and  \mu _{\mathbf {I}'}  are the means of  \mathbf {I} and  \mathbf {I}' .  \sigma _{\mathbf {I}}^2 
 and  \sigma _{\mathbf {I}'}^2 

 are
the variances of  \mathbf {I} and  \mathbf {I}' .  \sigma _{\mathbf {I} \mathbf {I}'}  is the covariance between
 \mathbf {I} and  \mathbf {I}' .  C_1  and  C_2  are small constants to stabilize the
division. The SSIM values range from -1 to 1, where 1
indicates a perfect match.
L1 distance measures the absolute differ-
ence between corresponding pixels of origi-
nal and reconstructed images: L1(I, I

′) =
1

h×w×c

∑h
i=1

∑w
j=1

∑c
k=1 |I(i, j, k)− I′(i, j, k)|, where a

lower L1 value indicates a smaller difference between the
images.
L2 distance measures the squared difference
between the corresponding pixels of the orig-
inal and reconstructed images: L2(I, I

′) =
1

h×w×c

∑h
i=1

∑w
j=1

∑c
k=1 (I(i, j, k)− I′(i, j, k))

2
,

where a lower L2 value indicates a smaller difference
between the images. L2 distance is related to PSNR as it
forms the basis of its calculation.

C. Additional Experimental details
We provide a detailed description of the datasets and model
used in this work:
Stable Diffusion [33] is a text-to-image model based on
diffusion techniques. Originating from latent diffusion, its
model and weights have been publicly released. Stable Dif-
fusion was trained on pairs of images and captions from
LAION-5B[38], an open large-scale dataset for training
image-text models.
Guided Diffusion [12] is a diffusion model that uses gradi-
ents from a classifier to guide the denoising process during
image synthesis. This approach has proven effective for im-
age generation, surpassing GANs in terms of fidelity while
maintaining broad distribution coverage.
GLIDE [27] is a text-guided diffusion model designed for

Figure 7. Example of different masks.

photorealistic image generation and editing. It employs
classifier-free guidance to enhance image quality while
maintaining fidelity to text prompts.
LDM [33] apply diffusion processes in the latent space
of pretrained autoencoders rather than directly in high-
dimensional pixel space. This approach significantly re-
duces computational costs while retaining high-quality im-
age synthesis.
DALL-E [30] is an advanced generative model developed
by OpenAI for text-to-image synthesis. It creates highly
detailed and imaginative images from natural language de-
scriptions, demonstrating strong performance in generating
diverse and realistic visuals while enabling creative appli-
cations in content generation and design.
DALL-E 3 [3] is the latest version of OpenAI’s text-to-
image generative model, offering significant improvements
in fidelity, creativity, and alignment with text prompts. It
sets a new standard in text-to-image synthesis.
Hardware and software. Our framework was imple-
mented using PyTorch 2.3.1. Experiments are performed
using the RTX A6000.

D. Visualization of Different Masks
This work supports flexibility with various types of masks.
Figure 7 illustrates some examples of different masks.

E. Hard Examples for Distinguishing
Table 6 demonstrates examples where human struggle to ac-
curately differentiate real from AI-generated images.
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