
Gradient-Guided Annealing for Domain Generalization

Supplementary Material

The following materials are provided in this supplemen-
tary file:
• An extended literature review discussion, helpful for nav-

igating the Domain Generalization literature under the scope
of computer vision.

• A computational analysis regarding the application of GGA.
• Detailed results for each dataset domain and algorithm,

presented in Table 2 of the main text, along with extra
experiments on the ColoredMNIST and RotatedMNIST
datasets.

A. Extended Literature Review
Domain Generalization (DG) [46] is arguably one of the
most difficult and fundamental problems of Machine Learn-
ing (ML) today. Unsurprisingly, a vast number of researchers
have poured effort into advancing the field, where findings
have been applied to various areas, such as Natural Lan-
guage Processing [22], Reinforcement Learning [29], Health-
care and Medicine [3, 15], Time-Series forecasting [16],
Fault Diagnosis [56] and, of course, Computer Vision [46].
Even though not covering the entire field of DG, this sec-
tion aims to present a taxonomy of the general DG method-
ologies developed in CV, for producing robust models that
can generalize to previously unseen data, and attempts to
assist potential readers navigate the past literature, while
also categorizing our proposed method among its predeces-
sors. Domain Generalization methods can be categorized
into three major groups, depending on their operation dur-
ing the process of model training, namely: (a) Data Manip-
ulation, (b) Representation Learning and, (c) Learning Al-
gorithm. Furthermore, as mentioned in the main text, DG
algorithms can either leverage domain labels during train-
ing (multi-source), or completely disregard the knowledge
of existing domain shifts in their training data and handle
them as a single distribution (single-source).

Data Manipulation. As its name suggests, methods in-
cluded in this group focus on either perturbing existing sam-
ples (data augmentation) or creating novel ones (data gen-
eration), in order to regularize the training of machine learn-
ing models, avoid overfitting and improve their generaliz-
ability. The basic idea in data manipulation methodologies
is to simulate domain shift by creating diverse data sam-
ples, which can in turn mimic the entirety of distributions
present in the input space. Regarding data augmentation,
most popular techniques include traditional image transfor-
mations, such as random flip, rotation and color distortion.
Even though these augmentations can be randomly applied
during training, without needing domain labels, it has been

shown that their selection significantly affects model perfor-
mance. For example, the authors of [44] define novel aug-
mentation rules that push the perturbed images to diverge as
much as possible from the original ones. Additionally, im-
age augmentations prove effective towards overcoming do-
main shifts in medical image classification [35, 54], where
transformations can replicate shifts caused by the use of
different devices. On the other hand, multiple data aug-
mentation methods were also inspired by adversarial attacks
and use adversarial gradients to distort the input images
[37, 45], or use randomly initialized convolutional networks
for transforming samples [13]. These techniques act as reg-
ularizers during model training, allowing them to learn gen-
eralizable image representations. The generation of novel
data domains is also a well researched area in the data ma-
nipulation group. In addition to using domain gradients for
synthesizing novel domains [39], several methods took ad-
vantage of style transfer [20] and either map the styles of
images to that existing source domains [8] or create novel
styles [52]. On a similar note, mixing the styles of training
images by conventional methods [50, 58] or with the gener-
ative models [47] also proves beneficial.

Representation Learning. This group of methods is ar-
guably the most prominent in DG and has been the central
focus of ML [6]. Following the formulation in the main text,
given a labeling function h that maps input observations x
to their labels y, we can decompose it into h = f ◦ g, where
g is a parametric function that learns representations of x
and f is the classifier function. The goal of representation
learning can be summarized as follows:

min
f,g

Ex,yℓ(f(g(x;θ)), y) + λℓreg (1)

where ℓ the loss function to be minimized and ℓreg a reg-
ularizer. Methods included in this group, focus on learn-
ing a robust and generalizable representation learning func-
tion g. The algorithms included in this group can be fur-
ther categorized into three sub-groups. Feature disentan-
glement [53] methods intend to extract disentangled fea-
ture vectors from samples, where each dimension can be
linked to a subset of data generating factors. The main
idea is to produce a model that extracts a representation that
can be further decomposed into domain-specific, domain-
invariant, and class-specific features. To that end, the au-
thors of [36] present CSD, which jointly learns a domain-
invariant and domain-specific component in the final em-
bedding and enables the extraction of disentangled repre-
sentations, whereas the authors of [11] propose learning do-
main specific masks during training to improve model ro-
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bustness. Generative models have also been proposed in
the disentangled representation learning literature for DG,
with variational autoencoders (VAEs) and GANs [12] being
utilized for learning distinct latent subspaces for class- and
domain-specific features [23]. Another promising category
of methods aiming to produce disentangled representations
is that of Causality-Inspired algorithms. In causal represen-
tation learning, a domain shift can be thought of as an inter-
vention, subsequentially leading the development of models
that aim to uncover the true causal data generating factors.
Naturally, the prediction of a model should not be affected
by interventions on spuriously correlated but irrelevant fea-
tures, such as the background, color or style of the image.
Under this causal consideration, the authors of [32] propose
a structural causal model in order to model within-class
variations and leverage the fact that inputs across domains
should have the same representation, given that they derive
from the same object. Similar to disentangled representa-
tions, there have been proposed methods in the literature
that focus on completely disregarding domain-relevant from
the final feature vectors, deriving solely domain-invariant
representations. Based on the initial findings of [5], numer-
ous works have presented algorithms that aim to minimize
the representation differences across multiple source do-
mains within a specific feature space, ensuring they become
domain invariant, ultimately enabling the trained model to
effectively generalize to previously unseen domains. In one
of the most notable previous works in this category, Ar-
jovsky et al. [1] enforce the optimal classifier on top of
the representation space to be the same across domains and
simultaneously minimize the loss across distributions. The
above idea of Invariant Risk Minimization (IRM) has been
extended to several other works. For example, the authors
of [26] propose minimizing the variance of source-domain
risks, by minimizing their extrapolated risk, while the au-
thors of [55] propose adapting to domain shift and produc-
ing invariant representations. Finally, an alternative route
towards learning generalized representations is via regular-
ization strategies. The most representative group of meth-
ods in this category is Gradient-Based operations, which
utilize gradient information during model training. In [21],
the authors propose learning robust representations by dis-
carding the most dominant gradients in each training iter-
ation under the assumption that they are correlated with
domain-specific features present in the source data. Another
popular strategy is to seek for flat minima [10, 18] in the loss
landscape of neural networks during training, assuming that
models that converge to flat minima exhibit increased gener-
alization capabilities [48, 59]. What’s more, Shi et al. [40]
hypothesized that gradients among domains should match
and proposed an approximation of a loss inducing the max-
imization of the gradient inner product during training. Our
method (GGA) can be categorized in this group of gradient

operations, as it considers the similarity of domain gradi-
ents in the early iterations of model training and seeks for
sets in the parameter space with increased gradient align-
ment, before continuing the optimization procedure.

Learning Algorithm. In addition to manipulating the
input space or feature extractor, DG methods were also re-
searched under the scope of alternative ML learning paradigms,
such as ensemble, meta, domain-adversarial, self-supervised
and reinforcement learning. In this section we present the
most exemplary works in each category. Ensemble-Learning
in DG initially combined several copies of the same net-
work, each of which is trained on a specific domain [14, 57].
Alternatively, instead of using several networks, [51] pro-
posed sharing shallow layers among CNNs. During infer-
ence, the final prediction is produced by either simple [57]
or weighted averaging [49]. In Meta-Learning for DG, Li
et al. [29] propose MLDG and split the source domains
into meta-train and meta-test splits to mimic the effects of
domain shift during training. Similarly, [2] proposes learn-
ing a meta regularizer for the classifier, while MAML [17]
was proposed for improved parameter initialization. An-
other approach is that of Adversarial Learning (AL). In the
context of DG, the aim of adversarial learning is to train a
classifier to distinguish between source domains [33] and
ultimately learn domain-agnostic features from the samples
that can be generalized to unseen data [31]. Other learn-
ing paradigms such as Self-Supervised learning have also
been explored in DG, which leverages unlabeled data sam-
ples to derive generalized representations. Notably, the au-
thors of [9] introduce a self-supervised jigsaw-solving puz-
zle task to push the model to learn robust representations.
Furthermore, contrastive learning has also been shown to
improve model performance. Specifically, SelfReg [24] uti-
lizes self-supervised contrastive losses to bring latent repre-
sentations of same-class samples closer. Similarly, the au-
thors of [4] introduce a contrastive loss for representations
extracted from intermediate layers of the network. Finally,
Reinforcement learning has also been applied in the context
of DG. Indicatively, previous works have explored random-
izing the environments of an RL agent for transferring them
to real-world scenarios [28, 42], whereas [27] researches the
combination of RL with contrastive learning.

B. Computational Analyis
B.1. Experiment Infrastructure
Each and every experiment is conducted on a cluster con-
taining 4 × 40GB NVIDIA A100 GPU cards, split into 8
20GB virtual MIG devices and 1 × 24GB NVIDIA RTX
A5000 GPU card, via a SLURM workload manager.
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B.2. Complexity Analysis
Each GGA training iteration includes computing model gra-
dients S · na times for each training step, where S is the
number of source domains and na is the number of search
steps. These GGA training iterations only take place in the
early stages of training and for a small percentage of the
total training iterations (2% in our experiments). The rest
of the iterations are vanilla ERM. Furthermore, inference is
not affected by the application of GGA during training.

C. Full Experimental Results
In this section, we show detailed results of Table 2 in the
main text. The results marked by †, ‡ are copied from Gulra-
jani and Lopez-Paz [19] and Wang et al. [48], respectively.
Standard errors for the baseline methods are reported from
three trials, if available from past literature. In green and
red, we highlight the performance boost and decrease of
applying GGA on top of each algorithm respectively, av-
eraged over three trials. In addition, we also present de-
tailed results for the DomainNet benchmark, without how-
ever including results for the combination of GGA with the
baseline algorithms, due to computational restrictions. We
also include experiments for the ColoredMNIST and Rotat-
edMNIST datasets, where we reproduced the results for all
baselines and report the average results over 5 runs. The
below tables are better read in color.

When applying GGA to existing methods, the only dif-
ference regarding the baseline algorithm training is that “Al-
gorithm 1” (i.e. GGA) is applied instead of the method’s up-
date rules for the duration of the annealing process (training
steps As to Ae). The total epochs and method hyperparam-
eters remain the same throughout training.
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Table 1. Out-of-domain accuracies (%) on PACS.

Algorithm A C P S Avg

IRM† [1] 84.8±1.3 (−3.6) 76.4±1.1 (+0.7) 96.7±0.6 (−0.3) 76.1±1.0 (−2.8) 83.5 (−1.5)
ERM‡ [43] 85.7 ±0.6 77.1 ±0.8 97.4 ±0.4 76.6 ±0.7 84.2
GroupDRO‡ [38] 83.5±0.9 (+3.6) 79.1±0.6 (+2.0) 96.7±0.7 (+0.5) 78.3±2.0 (−0.5) 84.4 (+1.4)
MTL‡[7] 87.5±0.8 (+1.3) 77.1±0.5 (+2.5) 96.4±0.8 (−0.8) 77.3±1.8 (+0.7) 84.6 (+0.9)
Mixup† [50] 86.1±0.5 (+1.2) 78.9±0.8 (−0.1) 97.6±0.1 (−0.4) 75.8±1.8 (+4.1) 84.6 (+1.2)
MMD‡ [30] 86.1±1.4 (+0.8) 79.4±0.9 (+0.5) 96.6±0.2 (−0.6) 76.5±0.5 (+3.7) 84.7 (+0.8)
VREx‡ [25] 86.0±1.6 (+0.2) 79.1±0.6 (−0.9) 96.9±0.5 (−0.1) 77.7±1.7 (+2.3) 84.9 (+0.5)
MLDG† [29] 85.5±1.4 (+1.1) 80.1±1.7 (+0.9) 97.4±0.3 (−0.9) 76.6±1.1 (+1.6) 84.9 (+0.7)
ARM‡ [55] 86.8±0.6 (−1.9) 76.8±0.5 (+4.7) 97.4±0.3 (−1.1) 79.3±1.2 (+0.4) 85.1 (+0.5)
Mixstyle‡ [58] 86.8±0.5 (+1.1) 79.0±1.4 (−0.3) 96.6±0.1 (−1.1) 78.5±2.3 (+1.4) 85.2 (+0.3)
CORAL† [41] 88.3±0.2 (−0.6) 80.0±0.5 (+1.3) 97.5±0.3 (+0.6) 78.8±1.3 (+1.5) 86.2 (+0.7)
SagNet† [34] 87.4±0.2 (−2.3) 80.7±0.5 (+1.0) 97.1±0.1 (−0.9) 80.0±1.0 (−1.8) 86.3 (−1.0)

RSC† [21] 85.4±0.9 (−1.8) 79.7±0.5 (+2.9) 97.6±0.9 (−1.0) 78.2±1.0 (+0.3) 85.2 (+0.1)
SAM ‡[18] 85.6±2.1 (+1.1) 80.9±1.2 (−0.8) 97.0±0.4 (−0.2) 79.6±1.6 (+1.2) 85.8 (+0.6)
GSAM ‡ [59] 86.9±0.1 (−0.4) 80.4±0.2 (+0.7) 97.5±0.0 (−1.1) 78.7±0.8 (+2.5) 85.9 (+0.4)
SAGM ‡ [48] 87.4±0.2 (+1.2) 80.2±0.3 (+1.1) 98.0±0.2 (−1.0) 80.8±0.6 (−0.4) 86.6 (+0.2)

GGA (ours) 88.8±0.2 80.1±0.3 97.3±0.2 81.2±0.5 87.3

Table 2. Out-of-domain accuracies (%) on VLCS.

Algorithm C L S V Avg

GroupDRO‡ [38] 97.3±0.3 (+1.4) 63.4±0.9 (+1.7) 69.5±0.8 (+2.0) 76.7±0.7 (−2.9) 76.7 (+0.6)
MLDG† [29] 97.4±0.2 (+1.6) 65.2±0.7 (−0.4) 71.0±1.4 (+3.0) 75.3±1.0 (+0.9) 77.2 (+1.3)
MTL‡[7] 97.8±0.4 (+0.3) 64.3±0.3 (+1.8) 71.5±0.7 (+4.1) 75.3±1.7 (+1.6) 77.2 (+2.0)
ERM‡ [43] 98.0 ±0.3 64.7 ±1.2 71.4 ±1.2 75.2 ±1.6 77.3
Mixup† [50] 98.3±0.6 (+0.8) 64.8±1.0 (+1.7) 72.1±0.5 (+1.0) 74.3±0.8 (+3.6) 77.4 (+1.8)
MMD‡ [30] 97.7±0.1 (−0.9) 64.0±1.1 (+1.4) 72.8±0.2 (+1.4) 75.3±3.3 (+3.5) 77.5 (+1.3)
ARM‡ [55] 98.7±0.2 (−0.2) 63.6±0.7 (+2.2) 71.3±1.2 (+0.3) 76.7±0.6 (+1.4) 77.6 (+0.9)
SagNet† [34] 97.9±0.4 (−0.2) 64.5±0.5 (+1.7) 71.4±1.3 (+0.8) 77.5±0.5 (+1.4) 77.8 (+0.9)
Mixstyle‡ [58] 98.6±0.3 (−0.1) 64.5±1.1 (+1.9) 72.6±0.5 (+0.4) 75.7±1.7 (+0.4) 77.9 (+0.6)
VREx‡ [25] 98.4±0.3 (−0.9) 64.4±1.4 (+1.9) 74.1±0.4 (−1.7) 76.2±1.3 (+1.0) 78.3 (+0.1)
IRM† [1] 98.6±0.1 (−0.3) 64.9±0.9 (−3.5) 73.4±0.6 (+1.7) 77.3±0.9 (−1.5) 78.6 (−0.9)
CORAL† [41] 98.3±0.3 (+0.9) 66.1±0.6 (+1.8) 73.4±0.3 (−1.8) 77.5±1.0 (−2.1) 78.8 (−0.4)

RSC† [21] 97.9±0.1 (+0.6) 62.5±0.7 (+0.3) 72.3±1.2 (+0.4) 75.6±0.8 (−0.8) 77.1 (+0.2)
GSAM ‡ [59] 98.7±0.3 (+0.5) 64.9±0.2 (+0.5) 74.3±0.0 (+1.2) 78.5±0.8 (+1.8) 79.1 (+1.0)
SAM ‡[18] 99.1±0.2 (−0.2) 65.0±1.0 (+1.8) 73.7±1.0 (−0.2) 79.8±0.1 (+1.5) 79.4 (+0.7)
SAGM ‡ [48] 99.0±0.2 (−0.4) 65.2±0.4 (+0.5) 75.1±0.3 (−1.1) 80.7±0.8 (−0.2) 80.0 (−0.3)

GGA (ours) 99.1±0.2 67.5±0.6 75.1±0.3 78.0±0.1 79.9

4



Table 3. Out-of-domain accuracies (%) on OfficeHome.

Algorithm A C P R Avg

Mixstyle‡ [58] 51.1±0.3 (+0.3) 53.2±0.4 (+0.7) 68.2±0.7 (+0.4) 69.2±0.6 (+0.6) 60.4 (+0.5)
IRM† [1] 58.9±2.3 (−3.5) 52.2±1.6 (−2.1) 72.1±2.9 (−1.7) 74.0±2.5 (−1.0) 64.3 (−2.1)
ARM‡ [55] 58.9±0.8 (+2.7) 51.0±0.5 (−0.3) 74.1±0.1 (+2.1) 75.2±0.3 (+3.4) 64.8 (+2.1)
GroupDRO‡ [38] 60.4±0.7 (+3.8) 52.7±1.0 (+1.2) 75.0±0.7 (+1.3) 76.0±0.7 (+2.2) 66.0 (+2.2)
MMD‡ [30] 60.4±0.2 (+3.1) 53.3±0.3 (−0.2) 74.3±0.1 (+3.1) 77.4±0.6 (+0.7) 66.4 (+1.6)
MTL‡[7] 61.5±0.7 (+0.8) 52.4±0.6 (−0.3) 74.9±0.4 (+1.0) 76.8±0.4 (+1.2) 66.4 (+0.4)
VREx‡ [25] 60.7±0.9 (+1.9) 53.0±0.9 (+0.8) 75.3±0.1 (+0.6) 76.6±0.5 (+0.2) 66.4 (+0.9)
ERM‡ [43] 63.1 ±0.3 51.9 ±0.4 77.2 ±0.5 78.1 ±0.2 67.6
MLDG† [29] 61.5±0.9 (+2.4) 53.2±0.6 (+0.2) 75.0±1.2 (+1.8) 77.5±0.4 (+0.6) 66.8 (+1.2)
Mixup† [50] 62.4±0.8 (+1.5) 54.8±0.6 (−1.7) 76.9±0.3 (+1.9) 78.3±0.2 (+0.4) 68.1 (+1.2)
SagNet† [34] 63.4±0.2 (+1.0) 54.8±0.4 (−1.9) 75.8±0.4 (+1.4) 78.3±0.3 (+0.7) 68.1 (+0.3)
CORAL† [41] 65.3±0.3 (+0.3) 54.4±0.6 (+0.2) 76.5±0.3 (−0.7) 78.4±1.0 (+1.0) 68.7 (+0.2)

RSC† [21] 60.7±1.4 (−1.1) 51.4±0.3 (+0.0) 74.8±1.1 (+0.6) 75.1±1.3 (+0.5) 65.5 (+0.0)
GSAM ‡ [59] 64.9±0.1 (−0.6) 55.2±0.2 (+1.1) 77.8±0.0 (+0.4) 79.2±0.2 (+0.3) 69.3 (+0.3)
SAM ‡[18] 64.5±0.3 (+0.7) 56.5±0.2 (+0.3) 77.4±0.1 (+1.0) 79.8±0.4 (+0.4) 69.6 (+0.6)
SAGM ‡ [48] 65.4±0.4 (−0.9) 57.0±0.3 (−0.8) 78.0±0.3 (+0.4) 80.0±0.2 (−1.1) 70.1 (−0.6)

GGA (ours) 64.3±0.1 54.4±0.2 76.5±0.3 78.9±0.2 68.5

Table 4. Out-of-domain accuracies (%) on TerraIncognita.

Algorithm L100 L38 L43 L46 Avg

MMD‡ [30] 41.9±3.0 (+9.7) 34.8±1.0 (+9.8) 57.0±1.9 (+0.5) 35.2±1.8 (+5.9) 42.2 (+6.3)
GroupDRO‡ [38] 41.2±0.7 (−1.8) 38.6±2.1 (+9.4) 56.7±0.9 (±0.0) 36.4±2.1 (−1.6) 43.2 (+1.7)
Mixstyle‡ [58] 54.3±1.1 (−2.9) 34.1±1.1 (+8.8) 55.9±1.1 (−2.8) 31.7±2.1 (+2.9) 44.0 (+1.1)
ARM‡ [55] 49.3±0.7 (−3.0) 38.3±0.7 (+4.2) 55.8±0.8 (+2.0) 38.7±1.3 (−0.2) 45.5 (+0.8)
MTL‡[7] 49.3±1.2 (−5.9) 39.6±6.3 (+3.6) 55.6±1.1 (+2.1) 37.8±0.8 (+2.6) 45.6 (+0.9)
ERM‡ [43] 49.8 ±4.4 42.1 ±1.4 56.9 ±1.8 35.7 ±3.9 46.1
VREx‡ [25] 48.2±4.3 (+3.1) 41.7±1.3 (+0.7) 56.8±0.8 (+2.0) 38.7±3.1 (−0.4) 46.4 (+1.3)
IRM† [1] 54.6±1.3 (−4.3) 39.8±1.9 (−3.4) 56.2±1.8 (−3.8) 39.6±0.8 (−4.1) 47.6 (−3.9)
CORAL† [41] 51.6±2.4 (+3.1) 42.2±1.0 (−1.2) 57.0±1.0 (+1.1) 39.8±2.9 (−1.8) 47.6 (+0.3)
MLDG† [29] 54.2±3.0 (−2.5) 44.3±1.1 (+1.4) 55.6±0.3 (+5.1) 36.9±2.2 (+0.6) 47.8 (+1.2)
Mixup† [50] 59.6±2.0 (1.2) 42.2±1.4 (+7.6) 55.9±0.8 (+1.2) 33.9±1.4 (−0.9) 47.9 (+2.1)
SagNet† [34] 53.0±2.0 (+2.3) 43.0±1.4 (+0.2) 57.9±0.8 (−2.6) 40.4±1.4 (+2.9) 48.6 (+0.4)

SAM ‡[18] 46.3±1.0 (+3.3) 38.4±2.4 (+5.2) 54.0±1.0 (+1.9) 34.5±0.8 (−0.1) 43.3 (+2.6)
RSC† [21] 50.2±2.2 (−0.8) 39.2±1.4 (+1.0) 56.3±1.4 (+0.8) 40.8±0.6 (+0.2) 46.6 (+0.2)
GSAM ‡ [59] 50.8±0.1 (+3.8) 39.3±0.2 (+0.6) 59.6±0.0 (−2.2) 38.2±0.8 (+0.4) 47.0 (+0.6)
SAGM ‡ [48] 54.8±1.3 (±0.0) 41.4±0.8 (+6.3) 57.7±0.6 (−1.1) 41.3±0.4 (−5.5) 48.8 (−0.1)

GGA (ours) 55.9±0.1 45.5±0.1 59.7±0.1 41.5±0.1 50.6
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Table 5. Out-of-domain accuracies (%) on DomainNet.

Algorithm clip info paint quick real sketch Avg

MMD† [30] 32.1 ±13.3 11.0 ±4.6 26.8 ±11.3 8.7 ±2.1 32.7 ±13.8 28.9 ±11.9 23.4
GroupDRO† [38] 47.2 ±0.5 17.5 ±0.4 33.8 ±0.5 9.3 ±0.3 51.6 ±0.4 40.1 ±0.6 33.3
VREx† [25] 47.3 ±3.5 16.0 ±1.5 35.8 ±4.6 10.9 ±0.3 49.6 ±4.9 42.0 ±3.0 33.6
IRM† [1] 48.5 ±2.8 15.0 ±1.5 38.3 ±4.3 10.9 ±0.5 48.2 ±5.2 42.3 ±3.1 33.9
Mixstyle‡ [58] 51.9 ±0.4 13.3 ±0.2 37.0 ±0.5 12.3 ±0.1 46.1 ±0.3 43.4 ±0.4 34.0
ARM† [55] 49.7 ±0.3 16.3 ±0.5 40.9 ±1.1 9.4 ±0.1 53.4 ±0.4 43.5 ±0.4 35.5
Mixup‡ [50] 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2
SagNet† [34] 57.7 ±0.3 19.0 ±0.2 45.3 ±0.3 12.7 ±0.5 58.1 ±0.5 48.8 ±0.2 40.3
MTL† [7] 57.9 ±0.5 18.5 ±0.4 46.0 ±0.1 12.5 ±0.1 59.5 ±0.3 49.2 ±0.1 40.6
MLDG† [29] 59.1 ±0.2 19.1 ±0.3 45.8 ±0.7 13.4 ±0.3 59.6 ±0.2 50.2 ±0.4 41.2
CORAL† [41] 59.2 ±0.1 19.7 ±0.2 46.6 ±0.3 13.4 ±0.4 59.8 ±0.2 50.1 ±0.6 41.5
ERM‡ [43] 63.0 ±0.2 21.2 ±0.2 50.1 ±0.4 13.9 ±0.5 63.7 ±0.2 52.0 ±0.5 43.8

RSC† [21] 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
SAM‡ [18] 64.5±0.3 20.7±0.2 50.2±0.1 15.1±0.3 62.6±0.2 52.7±0.3 44.3
GSAM ‡ [59] 64.2±0.3 20.8±0.2 50.9±0.0 14.4±0.8 63.5±0.2 53.9±0.2 44.6
SAGM ‡ [48] 64.9±0.2 21.1±0.3 51.5±0.2 14.8±0.2 64.1±0.2 53.6±0.2 45.0

GGA (ours) 64.0±0.2 22.2±0.3 51.7±0.1 14.3±0.2 64.1±0.4 54.3±0.3 45.2

Table 6. Out-of-domain accuracies (%) on ColoredMNIST (left) and RotatedMNIST (right).

Algorithm 0.1 0.2 0.9 Avg 0 15 30 45 60 75 Avg

IRM‡ [1] 56.8±4.5 63.5±2.7 10.2±0.2 43.5 95.5±0.4 98.7±0.2 98.7±0.1 98.5±0.3 98.7±0.1 96.1±0.1 97.7
MLDG [29] 71.5±0.6 73.0±0.1 10.1±0.2 51.5 94.7±0.7 98.8±0.1 98.8±0.1 98.8±0.1 98.7±0.1 95.9±0.4 97.6
MTL [7] 71.3±0.6 72.9±0.2 10.2±0.1 51.5 94.6±1.1 98.6±0.2 98.8±0.1 98.7±0.1 98.7±0.3 95.3±0.7 97.4
Mixup [50] 71.5±0.8 73.2±0.3 10.2±0.2 51.6 94.9±0.5 98.8±0.1 98.8±0.2 98.8±0.1 98.8±0.1 95.7±0.5 97.6
SagNet [34] 72.0±0.5 72.8±0.5 9.9±0.3 51.6 95.5±0.3 98.9±0.1 99.0±0.1 98.8±0.2 98.8±0.1 95.9±0.4 97.8
ERM [43] 71.8±0.9 73.3±0.4 9.9±0.3 51.7 95.1±0.6 98.7±0.2 98.7±0.2 98.7±0.2 98.8±0.1 95.6±0.4 97.6
ARM [55] 74.5±3.8 71.1±1.8 9.9±0.3 51.8 95.1±1.1 98.8±0.2 98.8±0.1 98.8±0.1 98.8±0.1 96±0.6 97.7
CORAL [41] 72.3±0.7 72.8±0.4 10.5±0.3 51.8 95.6±0.3 98.9±0.1 98.9±0.1 99.0±0.0 98.9±0.1 96.1±0.3 97.9
Fish [40] 71.7±0.5 73.2±0.5 10.4±0.2 51.8 95.3±0.6 98.9±0.1 98.9±0.2 98.9±0.1 98.9±0.1 95.6±0.6 97.7
GroupDRO [38] 72.6±0.6 73.5±0.4 9.9±0.2 52.0 95.9±0.6 98.7±0.2 98.6±0.1 98.7±0.1 98.7±0.1 96.0±0.2 97.8
VREx [25] 72.9±0.3 72.9±0.4 10.3±0.6 52.0 95.7±0.6 98.9±0.2 98.7±0.1 98.9±0.2 98.9±0.1 95.8±0.4 97.8

SAM [18] 71.1±0.5 73.3±0.4 10.1±0.3 51.5 95.7±0.2 99.0±0.1 98.9±0.1 98.9±0.1 98.9±0.1 96.2±0.4 97.9
GSAM [59] 71.8±0.3 73.2±0.2 9.9±0.2 51.6 94.9±0.1 98.9±0.1 98.9±0.2 99.0±0.2 98.8±0.1 96.0±0.1 97.7
RSC [21] 72.5±0.3 72.4±0.6 10.2±0.5 51.7 94.2±1.1 98.6±0.1 98.7±0.2 98.6±0.2 98.7±0.2 95.7±0.7 97.4
SAGM [48] 71.5±0.8 73.6±0.5 10.6±0.6 51.9 95.4±0.4 98.9±0.1 98.9±0.1 98.9±0.1 98.9±0.1 95.9±0.5 97.8

GGA (ours) 71.2±0.7 73.1±0.6 11.5±0.4 51.9 95.1±0.8 99.0±0.1 99.0±0.3 98.8±0.1 98.8±0.2 96.1±0.4 97.8
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