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In this supplement, we provide details about the Aria glasses
(App. A) and the Quest 3 headset (App. B) which were used
to record the HOT3D dataset. We also describe our procedure
for ground-truth annotation (App. C), provide additional data
statistics (App. D) and quantitative results (App. E).

A. Aria glasses
Project Aria [1] is an egocentric recording device in glasses

form-factor created by Meta. It is designed as a research tool for
egocentric machine perception and contextualized AI research,
and available to researchers across the world via projectaria.com.

A.1. Device and sensors

Project Aria is built to emulate future AR/smart glasses catering
to machine perception and egocentric AI rather than human
consumption. Aria is designed to be wearable for long periods
of time without obstructing or impeding the wearer, allowing for
natural motion even when performing highly dynamic activities,
such as playing soccer or dancing. Its total weight is 75g (a single
GoPro camera has over 150g) and fits just like a pair of glasses.

Further, the device integrates a rich sensor suite that is tightly
calibrated and time-synchronized, capturing a broad range of
modalities. For HOT3D, recording profile 15 is used, which uses
the following sensor configuration (all streams come with meta-
data such as precise timestamps and per-frame exposure times):

• One rolling-shutter RGB camera recording at 30 fps and
1408×1408px. The camera is fitted with an F-Theta fisheye
lens with a field of view (FOV) of 110◦.

• Two global-shutter monochrome cameras recording at 30 fps
and 640×480px. These cameras provide additional peripheral
vision and are fitted with F-Theta fisheye lenses with 150◦ FOV.

• Two monochrome eye-tracking cameras recording at 10 fps
and 320×240px resolution.

• Two IMUs (800 Hz and 1000 Hz respectively), a barometer
(50 fps) and a magnetometer (10 fps).

• GNSS and WiFi scanning was disabled for HOT3D.
• Audio recording was disabled for HOT3D for privacy reasons.

Figure 1. Project Aria research glasses.

Figure 2. Sensor streams recorded by the Project Aria device. Top:
RGB camera, left and right monochrome and eye cameras. Bottom:
10-second extracts from microphones, accelerometer, gyroscope,
magnetometer and barometer respectively.

A.2. Machine Perception Services (MPS)

Project Aria’s machine perception service (MPS) provides
software building blocks that simplify leveraging the different
modalities recorded. These functionalities are likely to be
available as real-time, on-device capabilities in future AR- or
smart-glasses. We use the following core functionalities currently
offered by Project Aria, and include their raw output as part of the
dataset. See [1] and the technical documentation1 for more details.

1https://facebookresearch.github.io/projectaria tools/docs/intro

1



Figure 3. Aria MPS output. Shown is output for three recordings in
a living room, office and kitchen scenario respectively (left to right).
Top: RGB view and gaze (green dot). Middle: Point cloud and estimated
egocentric camera trajectory for the full recording. Bottom: 3D view
of a specific point in time, showing the RGB camera frustum (blue),
gaze vector (green) and trajectory from the previous second (red).

Calibration. All sensors are intrinsically and extrinsically cal-
ibrated, and tiny deformations due to temperature changes or
stress applied to the glasses frame are further corrected by
time-varying online calibration from MPS.

Aria 6 DoF localization. Every recording is localized precisely
and robustly in a common, metric, gravity-aligned coordinate
frame, using a state-of-the-art VIO and SLAM algorithm. This
provides millimeter-accurate 6 DoF poses for every captured
frame and high-frequency (1 kHz) motion in-between frames.

Eye gaze. The gaze direction of the user is estimated as two
outward-facing rays anchored approximately at the wearer’s eyes,
allowing to approximately estimate not only the direction the
user is looking in, but also the depth their eyes are focused on.
We use an optional eye gaze calibration procedure, where the
mobile companion app directs the wearer to gaze at a pattern
on the phone screen while performing specific head movements.
This information was then used to generate a more accurate eye
gaze direction, personalized to the particular wearer.

Point clouds. A 3D point cloud of static scene elements is triangu-
lated from the moving Aria device, using photometric stereo over
consecutive frames or left/right SLAM camera. Points are added
causally over time, and will include points on any object that
is observed while static for several seconds. The output contains
both the 3D point clouds as well as the raw 2D observations of
every point in the camera images it was triangulated from.

A.3. Processing summary

All Aria recordings are anonymized in a very first step, using
the public EgoBlur [5] model and following Project Aria’s
responsible innovation principles.

Then, the MPS pipeline is invoked for each full Aria recording,
which are typically about 2 minutes long and include many
instances of hand-object interactions with different objects. Next,
we 7DoF-align the MPS output with the OptiTrack coordinate
frame (App. C). In total, we have processed 199 Aria recordings
with a total length of 391 minutes.

A.4. Tools and ecosystem

Documentation and open-source tooling for Aria recordings
and MPS output is available on GitHub2 and includes Python and
C++ tools to convert, load, and visualize data, as well as sample
code for common computer vision tasks.

B. Quest 3 headset
Quest 3 [4], shown in Fig. 4, is the latest production headset

from Meta for virtual- and mixed-reality experiences. For the
HOT3D data collection we used a developer version of the Quest
3 headset. This version has four global-shutter monochrome cam-
eras with fisheye lenses, 1280x1024 px image resolution, 18 PPD
(Pixels Per Degree), and records at 30 fps. Two of the cameras
are on the front side of the headset, roughly aligned with eyes,
and two on the sides. HOT3D only includes images from the two
front cameras as those capture the relevant scene part (the two side
cameras are useful for applications like SLAM). Example images
are in Fig. 5. Data from other sensors present in the consumer ver-
sion of Quest 3, including a gyroscope and an accelerometer, were
not recorded. The intrinsic and extrinsic parameters of the headset
cameras were calibrated with a ChArUco board. Both the headset
and the board were attached a set of optical markers and tracked
by the motion-capture system described in App. C, which allowed
to estimate camera-to-headset transformations. At recording time,
the headset pose was still tracked by the motion-capture system
and used to calculate per-frame camera-to-world transformations.

C. Marker-based motion capture
The poses of hands and objects were tracked using optical

markers attached on their surface. For both hands and objects we
used 3 mm markers with an adhesive layer at their bottom. Such
markers are small enough not to influence hand-object interactions.
Each hand was attached 19 markers and each object around 10.
The marker locations were then semi-automatically registered to
3D models of hands and objects obtained by custom 3D scanners.

At recording time, the optical markers were tracked by multiple
infrared OptiTrack cameras attached on a rig shown in Fig. 5
of the main paper. The intrinsic and extrinsic parameters of the
infrared cameras were calibrated before every capturing session.
Hand poses were calculated by fitting the participant’s UmeTrack

2https://github.com/facebookresearch/projectaria tools



Figure 4. Meta Quest 3 headset for virtual and mixed reality.

Figure 5. Sample images from Quest 3. Shown are synchronized im-
ages from the two front Quest 3 cameras used for the HOT3D collection.

Figure 6. Object orientation statistics. Top: 3D object models in their
canonical poses. Bottom: Distribution of azimuth and elevation angles
under which the objects are observed across the dataset. The vertical
axis is the azimuth angle [0◦, 360◦] (angle along the green axis), and
the horizontal axis is the elevation angle [−90◦, 90◦] (angle w.r.t. the
plane defined by the red and blue axes).

hand model [3] to the tracked optical markers, as in [2]. Object
poses were estimated by aligning the tracked markers to their
registered 3D locations in the model coordinate frame. To achieve
reliable tracking, it was important to ensure that the marker
constellation on each object is sufficiently distinct. Data frames
from different sources were synchronized with SMPTE timecode.

D. Object orientation statistics

When recording, we asked subjects to naturally interact with the
objects. Consequently, orientation distributions of the observed ob-
jects (Fig. 6) reveal clear object-specific pose biases, which may be
useful as prior information at inference (we see that the bowl tends
to be seen upright, the birdhouse from the front and upright, etc.).

E. Additional quantitative results
The results of 2D segmentation and 3D lifting of in-hand

objects presented in Tables 4 and 5 of the main paper were
obtained by evaluating methods on clips from both training and
test splits. To allow the community to compare their results
against our results on these two tasks, in Tables 1 and 2 we
additionally provide results obtained on clips from the training
split for which the ground-truth annotations are publicly available.
Evaluating on the training split is possible as both of these tasks
are training-free and therefore do not require any training split.
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Object in hand (mIoU ↑) for training + test / training / test split

Method Test dataset Either Left Right Both

EgoHOS [6] EgoHOS – 62.2 44.4 52.8

EgoHOS [6] HOT3D-Aria 42.6 / 43.5 / 40.1 21.0 / 21.0 / 21.3 26.3 / 25.8 / 28.2 32.5 / 33.0 / 30.5
MRCNN HOT3D-Aria 47.1 / 48.1 / 43.7 – – –

MRCNN-DA HOT3D-Aria 55.2 / 56.3 / 51.6 – – –

EgoHOS [6] HOT3D-Quest3 33.1 / 33.8 / 31.4 13.5 / 12.9 / 15.0 14.4 / 13.9 / 15.6 24.8 / 25.6 / 22.9
MRCNN HOT3D-Quest3 37.8 / 38.2 / 36.9 – – –

MRCNN-DA HOT3D-Quest3 54.7 / 54.7 / 54.8 – – –

Table 1. 2D segmentation of in-hand objects. Each cell shows the mIoU score achieved on the training + test, training, and test split, respectively.

Recall [%] ↑ for training + test / training / test split

Method Test dataset Views 5 cm 10 cm 20 cm 30 cm

HandProxy HOT3D-Aria – 0.5 / 0.5 / 0.6 13.5 / 11.6 / 20.2 90.6 / 89.9 / 93.3 98.4 / 98.0 / 99.3

Using ground-truth 2D segmentation masks:

MonoDepth HOT3D-Aria 1 14.3 / 13.4 / 17.5 30.2 / 28.8 / 34.8 53.6 / 51.7 / 60.4 69.9 / 68.2 / 76.0
StereoMatch HOT3D-Aria 3 64.4 / 65.0 / 62.6 86.2 / 86.3 / 86.0 95.5 / 95.1 / 96.8 96.9 / 96.6 / 98.3
StereoMatch HOT3D-Quest3 2 76.4 / 78.0 / 72.8 96.8 / 96.9 / 96.5 99.1 / 99.2 / 99.1 99.2 / 99.2 / 99.1

Using 2D segmentation masks predicted by MRCNN-DA:

MonoDepth HOT3D-Aria 1 11.1 / 10.6 / 12.7 23.3 / 22.4 / 26.5 43.7 / 42.6 / 47.5 58.2 / 57.5 / 60.8
StereoMatch HOT3D-Aria 3 42.6 / 43.9 / 38.4 56.4/ 57.6 / 52.2 63.6 / 64.9 / 59.1 66.0 / 67.4 / 61.2
StereoMatch HOT3D-Quest3 2 59.1 / 60.1 / 56.9 75.3 / 75.6 / 74.6 80.4 / 80.6 / 79.9 81.3 / 81.6 / 80.7

Table 2. 3D lifting of in-hand objects. Each cell shows the recall rate achieved on the training + test, training, and test split, respectively.


