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In this supplementary material, we first present detailed
implementation aspects in Section A. More experimental
details are shown in Section B. We show more comparisons
in the Sec. C. Additionally, we include a short video summa-
rizing the method with video results, and an offline webpage
for interactive visualization of our whole results and compar-
isons.

A. Implementation Details
For the fine-grained front and back layer masks, we an-
notate the maximum depth of the front layer in monocular
depth [10] of each view. The pixels are selected into the front
layer if their depth is smaller than the annotated maximum
depth. We build Free360 upon the 2DGS [3] framework. We
follow the version implemented in the StableNormal [11].
We use default settings in dense stereo reconstruction mod-
els [7, 9] and use the filtered point cloud by predicted con-
fidence map. We transform the world origin to the center
of the scene, which is determined by the center depth of the
first image. Besides, we rescale the cameras to fit within a
sphere of radius 2.

In reconstruction bootstrap optimization, we downsam-
ple the point cloud of the front layer before initializing its
Gaussian primitives. We initialize the front layer’s Gaussian
primitives using its point cloud and train for 10,000 iterations
based on the loss defined in Eq. (1). We enable densification
from the 166-th iteration to 5000-th iteration.

In the iterative fusion of reconstruction and generation,
we define the unknown cameras in two ways. First, we
interpolate the poses between input sparse views in the cubic
spline interpolator. Second way is to define a target camera
pose by jittering the position of an input camera pose while
orienting its rotation to face the world origin, and interpolate
the poses between the target pose and closet input pose. We
empirically define 300 to 400 unknown camera poses in total
from these two ways. We use ViewCrafter [12] to generate
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the 25 frames each time with the resolution 1024×576.
In uncertainty-aware training, we set the maximum L1

difference β between conditions and generations as 0.2. We
train the Gaussian primitives of the front layer and back layer
using Eq. (3) in 10000 iterations without densification. All
experiments are conducted on an NVIDIA RTX 6000 GPU.

B. Experimental Details
B.1. Dataset
We double the official downsample factor used by 3DGS [4]
in Mip-NerF 360 [1]. For Tanks and Temples [6], we use
the processed data from PixelGS [13] and downsample the
images by factor 2. To evaluate the metrics between ren-
dered images and ground-truth images, we follow the In-
stantSplat [2] to align the estimated poses from stereo recon-
struction model [7, 9] to the ground-truth poses. Initially, a
coarse alignment is obtained through rigid point registration
between the estimated and ground-truth camera positions
at the training viewpoints. Subsequently, for each rendered
image, we fix the Gaussian primitives, and a test-time op-
timization is performed on the camera pose by minimizing
the L1 difference between the rendered and ground-truth im-
ages. This optimization is executed for 500 iterations using
the Adam optimizer [5], with a learning rate of 0.0003 for
position and 0.0001 for rotation.

B.2. Baselines
All compared methods use the same camera poses and point
clouds from dense stereo reconstruction [7, 9]. Since Ze-
roNVS [8] and ViewCrafter [12] are agnostic to the re-
construction backbone, we adopt the same 2DGS back-
bone [3, 11] for both methods to ensure a fair and rigorous
comparison. In geometry evaluation, the same 2DGS [3, 11]
backbone is used as the baseline. For low-overlapped sparse
views of the unbounded scene, ViewCrafter [12] needs to
iteratively generate novel views within a small region, uti-
lize Dust3R on generated views to recover the scene’s point
cloud, and subsequently repeat to generate the next portion
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Figure A. Comparison on Mip-NeRF 360◦ [1] Dataset on the 3-View Setting. We qualitatively compare rendering quality with FSGS* [14],
InstantSplat [2], ZeroNVS* [8], ViewCrafter [12] given 3 input views.
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Figure B. Comparison on Tanks and Temples [6] Dataset on the 4-View Setting. We qualitatively compare rendering quality with
FSGS* [14], InstantSplat [2], ZeroNVS* [8], ViewCrafter [12] given 4 views.
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Figure C. Comparison on 3D Surface Reconstruction. We qualitatively compare surface reconstruction with 2DGS [3] on (a) Counter
(top) and Treehill (down) from Mip-NeRF 360◦ [1] dataset and (b) Caterpillar (top) and Horse (down) from Tanks and Temples dataset [6].

of the scene conditioned previously generated image and
Dust3R [9] point cloud. However, Dust3R’s feed-forward
nature struggles with inconsistencies in generated images,
leading to inaccurate depths that degrade subsequent genera-
tions. In contrast, our iterative fusion framework integrates
an uncertainty-aware GS optimization after each iteration
to refine the generative error promptly. The optimized 3D-
consistent GS rendering is used to condition subsequent
generations for consistent multi-view generation guiding the
next GS optimization. ViewCrafter [12] and ZeroNVS [8]

use the same group of unknown cameras to generate novel
views as our method.

C. More Experiments

C.1. Novel View Synthesis

We show more rendering comparisons on the Mip-
NeRF360 [1] and Tanks and Temples [6], as illustrated
in Fig. A and Fig. B respectively. FSGS [14] and In-
stantSplat [2] exhibit severe distortion and needle-like Gaus-



Settings PSNR↑ SSIM↑ LPIPS↓
w/o Ld & Ln 16.723 0.310 0.505
w/o Ld 16.799 0.314 0.499
w/o Ln 16.825 0.313 0.498
Ours 16.95 0.321 0.480

Table A. We perform ablation studies on the geometric priors in
our method.

sian artifacts in the rendering results. ZeroNVS [8] fails in
synthesizing clear novel views due to limited consistency
from generative prior. ViewCrafter [12] cannot present a
detailed and consistent rendering of the scene. Instead, our
method shows the crisp rendering and complete structure of
the scene.

C.2. Geometry Evaluation
We show more geometry evaluation on the Mip-NeRF360 [1]
and Tanks and Temples [6], as illustrated in Fig. C. Given the
sparse views, the geometry from 2DGS has many missing
areas and distorted surfaces, such as the holes in Treehill, the
missing legs in Horse, and the floater at the top of Caterpillar.
In contrast, our method not only produces a complete and
smooth geometry of the scene but also detailed structures.
We show the F1-score precision and recall curves of 2DGS
and our method in Fig. D. Since the extremely sparse-view
surface reconstruction is ambiguous and error-prone, few
points lie within the official error threshold in Tanks and
Temples [6]. To facilitate a clearer comparison, we increase
the error threshold by a factor of 10 (represented by the black
dotted line in Fig. D).

C.3. Ablation on geometry prior
As shown in Tab. A, we show ablation of geometry priors
Ld and Ln in Eq. 1, 2 on Bicycle and Garden (3 views). The
geometry prior improves the rendering quality but is not the
key to sparse-view reconstruction.
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Figure D. The Precision and Recall Curves of F1-score Comparisons. We show detailed precision and recall curves of F1-score
comparisons between 2DGS and our method on Barn, Caterpillar, Ignatius, and Truck, given 4 views. The black dotted line in each subfigure
denotes the error threshold.
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